CS196886B1 - Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides - Google Patents
Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides Download PDFInfo
- Publication number
- CS196886B1 CS196886B1 CS866877A CS866877A CS196886B1 CS 196886 B1 CS196886 B1 CS 196886B1 CS 866877 A CS866877 A CS 866877A CS 866877 A CS866877 A CS 866877A CS 196886 B1 CS196886 B1 CS 196886B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- hydrogenation
- hydrogenated
- ostion
- yield
- calculated
- Prior art date
Links
Landscapes
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Vynález popisuje přípravu alkoholických cukrov katalytickou hydrogenáciou monosacharidov vodíkom pod tlakom, pri upravenom pH hydrogenovaných roztokov, s nasledovnou ionomeničovou úpravou produktu hydrogenácie.The invention describes the preparation of alcoholic sugars by catalytic hydrogenation of monosaccharides with hydrogen under pressure, at adjusted pH of hydrogenated solutions, followed by ion exchange treatment of the hydrogenation product.
Alkoholické cukry, najma sorbitol a xylitol, sa používajú ako sladidlo pri diabetickej diéte, majú však aj širšie uplatnenie v kozmetike a ako nahrážka glycerínu v potravinárskom priemysle. Z alkoholických cukrov sa pripravujú oxyetyláciou povrchovo-aktívne látky. Dajú sa obecne použit v chemickej syntéze všade, kde sa ako jedna zložka uplatňujú polyoly.Alcoholic sugars, in particular sorbitol and xylitol, are used as a sweetener in the diabetic diet, but are also widely used in cosmetics and as a substitute for glycerin in the food industry. Alcoholic sugars are prepared by oxyethylation of surfactants. They can generally be used in chemical synthesis wherever polyols are used as one component.
Příprava alkoholických cukrov je dávno známa, a to klasickým postupom, redukciou aldóz a ketóz sodíkovou amalgámou.The preparation of alcoholic sugars has long been known by the classical method of reducing aldoses and ketoses with sodium amalgam.
Je ich tiež možné připravovat katalytickou hydrogenáciou za atmosferického tlaku vodíka, reakcia sa však uskutočňuje len velmi pomaly. S Raneyovým niklom ako katalyzátorom je možné hydrogenovať dxylózu ako 70 %-ný roztok v etanole. Je výhodné před hydrogenáciou roztoky čeřit napr. aktívnym uhlím. Daleko účinnejšia je katalytická hydrogenácia monosacharidov na alkoholické cukry za zvýšeného tlaku vodíka, 5 až 20 MPa. Ako katalyzátory sa používajú nikel na kremeline, Raneyov nikel, nikel průmotovaný chrómom, zmesný nikel-kobal — chrómový katalyzátor a katalyzátory na báze médi.They can also be prepared by catalytic hydrogenation under atmospheric hydrogen pressure, but the reaction is carried out only very slowly. With Raney nickel catalyst, it is possible to hydrogenate dxylose as a 70% solution in ethanol. It is preferred to clarify the solutions before hydrogenation e.g. activated carbon. Far more efficient is the catalytic hydrogenation of monosaccharides to sugar alcohols under elevated hydrogen pressure of 5 to 20 MPa. As catalysts, nickel for silica, Raney nickel, chromium-prized nickel, mixed nickel-cobal-chromium catalyst and medium-based catalysts are used.
Nevýhodou katalyzovanej hydrogenácie vodných roztokov monosacharidov je stúpanie ich kystlosti tvorbou oxykyselfn Cannizarovou reakciou. Kyseliny móžu vznikat aj z aldóz cez pyranózy, ich dehydrogenáciou a následnou hydratáciou. Kyseliny dezaktivujú hydrogenačně katalyzátory, v dosledku čoho sa znižuje rýchlost hydrogenácie a dosahuje sa nižšia konverzia monosacharidov na alkoholické cukry.A disadvantage of the catalysed hydrogenation of aqueous monosaccharide solutions is the increase in their cysticity by the formation of the oxykyselfn Cannizar reaction. Acids can also be formed from aldoses via pyranoses, their dehydrogenation and subsequent hydration. The acids deactivate the hydrogenation catalysts, as a result of which the rate of hydrogenation is reduced and the conversion of monosaccharides to alcohol sugars is lowered.
Zlepšenie přípravy alkoholických cukrov sa dosahuje postupom podlá vynálezu, ktorým sa dosahujú vysoké výtažky čistých finálnych produktov.Improvement of the preparation of alcoholic sugars is achieved by the process according to the invention, which achieves high yields of pure end products.
Spósob přípravy alkoholických cukrov hydrogenáciou monosacharidov, vykonává sa podl'a vynálezu pri tlaku vodíka alebo vodík obsahujúceho plynu 2 až 25 MPa, v přítomnosti hydrogenačných katalyzátorov, najvýhodnejšie niklových, násadovým alebo kontinuálnym sposobom tak, že u hydrogenovaného roztoku s obsahom 5 až 50 % monosacharidov s výhodou připravených hydrolýzou dřeva, upravuje sa prídavkom alkalicky reagujúcich látok pH na hodnotu 7 až 10 a produkt hydrogenácie sa upravuje na katiónaktívnych a aniónaktívnych ionomeničoch pri objemovej rýchlosti 0,5 až 5 1. h_1 na 1 1 ionomeničovej náplně.The process for preparing alcoholic sugars by hydrogenating monosaccharides according to the invention is carried out at a hydrogen or hydrogen pressure of 2 to 25 MPa in the presence of hydrogenation catalysts, most preferably nickel, batch or continuous process, such that in a hydrogenated solution containing 5 to 50% monosaccharides preferably by hydrolysis of the timber, provides for the addition of alkaline reactants to pH 7-10 and the product of the hydrogenation is adjusted to the cationic and anionic ion-exchange at a space velocity of 0.5 to 5 h _1 1 1 1 ion exchange cartridge.
196 886196 886
196 886196 886
Postup podía vynálezu ukazujú ďalej uvedené příklady.The following examples show the process according to the invention.
Příklad 1Example 1
V rotačnom autokláve z nehrdzavejúcej ocele, o obsahu 0,5 1 urobila sa hydrogenácia 100 g 20 % vodného roztoku čistej xylózy, za přídavku 1,6 g katalyzátora, nlkel na kremeline, ktorý obsahoval 49,1 °/o niklu. Prídavkom pevného kysličníka vápenatého upravilo sa pH hydrogenovaného roztoku na 8,4.In a 0.5 L stainless steel rotary autoclave, 100 g of a 20% aqueous xylose aqueous solution was hydrogenated with 1.6 g of nlkel catalyst on silica gel containing 49.1% nickel. The pH of the hydrogenated solution was adjusted to 8.4 by addition of solid calcium oxide.
Hydrogenácia sa uskutočnila vo dvoch stupňoch. V 1. stupni pri 80 °C a v 2. stupni pri 110 °C. Tlak vodíka v autokláve sa udržiaval na 12,5 MPa. Po 90 minútach reakčného času sa dosiahla 98,3 °/o-ná konverzia xylózy.Hydrogenation was carried out in two stages. In the 1st stage at 80 ° C and in the 2nd stage at 110 ° C. The hydrogen pressure in the autoclave was maintained at 12.5 MPa. After a reaction time of 90 minutes, a 98.3% conversion of xylose was achieved.
Produkt hyrogenácie sa demineralizoval prietokom cez štipec katexu Wofatit KPS200, Wofatit SBW pri objemovej rýchlostiThe product of hydrogenation was demineralized by passing through a cation exchanger column of Wofatit KPS200, Wofatit SBW at volumetric rate
2,5 1. h_1 na 1 lit. ionomeničovej náplně. Získal sa číry produkt, z ktorého sa kryštalizáciou připravil xylitol s teplotou topenia 92,5 °C, vo výtažku 75,1 %.2,5 1 h _1 per 1 liter ion exchange filler. A clear product was obtained, from which xylitol with a melting point of 92.5 ° C was obtained by crystallization in a yield of 75.1%.
Příklad 2Example 2
Kontinuálna hydrogenácia hydrolyzátu z bukových pilin sa vykonala v reaktore z nehrdzavejúcej ocele, dlžky 4000 mm, o obsahu 2,8 1. Vodík a 1,129 kg.h-1 hydrolyzátu sa privádzali do reaktora protiprúdne. Ako katalyzátor sa používal kúskovitý Raneyov nlkel, zrnenia 6 až 8 mm, s obsahom 41,83 °/o Ni v neaktivovanej zliatine. Hydrolyzát obsahoval 49,4 % hmot. sušiny tohto zloženia: xylóza 75,58 % hmot., arabinóza 8,9 % hmot., glukóza 4,24 % hmot. a galaktóza 6,82 % hmot., zbytok minerálně a neidentifikované látky. Prídavkom vodného roztoku hydroxidu sódneho o koncentrácii 10 % upravilo sa pH hydrogenovaného roztoku na 8,7. KontinuálnaContinuous hydrogenation of the beech sawdust hydrolyzate was carried out in a stainless steel reactor, 4000 mm long, containing 2.8 L of hydrogen and 1.129 kg.h -1 of hydrolyzate were fed countercurrently into the reactor. The catalyst used was a piece of Raney nlkel, grain size 6 to 8 mm, containing 41.83% Ni in the non-activated alloy. The hydrolyzate contained 49.4 wt. dry matter of this composition: xylose 75.58% by weight, arabinose 8.9% by weight, glucose 4.24% by weight and galactose 6.82 wt%, the remainder of the mineral and unidentified substance. The pH of the hydrogenated solution was adjusted to 8.7 by the addition of 10% aqueous sodium hydroxide. continuous
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS866877A CS196886B1 (en) | 1977-12-22 | 1977-12-22 | Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS866877A CS196886B1 (en) | 1977-12-22 | 1977-12-22 | Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides |
Publications (1)
Publication Number | Publication Date |
---|---|
CS196886B1 true CS196886B1 (en) | 1980-04-30 |
Family
ID=5437552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS866877A CS196886B1 (en) | 1977-12-22 | 1977-12-22 | Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS196886B1 (en) |
-
1977
- 1977-12-22 CS CS866877A patent/CS196886B1/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3784408A (en) | Process for producing xylose | |
US3627636A (en) | Manufacture of xylitol | |
US3586537A (en) | Process for the production of xylose | |
US4476331A (en) | Two stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage | |
CA1321789C (en) | Process for preparing alkylglucoside compounds from oligo- and/or polysaccharides | |
CA2328900C (en) | Process for producing l-arabinose by acid hydrolysis method | |
JPS6250477B2 (en) | ||
AU735009B2 (en) | Process for hydrogenation of sugars using a shell catalyst | |
JP2865150B2 (en) | Method for producing epimer-free sugar alcohols | |
EP0716067B1 (en) | Process for the production of xylitol | |
US3558725A (en) | Preparation of xylitol | |
FI106853B (en) | A process for making polyols from an arabinoxylan-containing material | |
CZ409098A3 (en) | Process for preparing xylolite | |
US3965199A (en) | Hydrogenation and hydrogenolysis of carbohydrates with tungsten oxide promoted supported nickel catalyst | |
Makkee et al. | Combined action of an enzyme and a metal catalyst on the conversion of D-glucose/D-fructose mixtures into D-mannitol | |
JP3139686B2 (en) | Process for producing alkyl glycoside and alkyl polyglycoside | |
US3691100A (en) | Tungsten oxide promoted and supported nickel catalyst | |
DE2324470C3 (en) | Hydrolyzed starch hydroxypropyl ethers, process for their preparation and their use | |
EP0157043B1 (en) | The production of mannitol and higher mannosaccharide alcohols | |
CA2324117A1 (en) | Process for preparing a noncrystallizable polyol syrup | |
US2335731A (en) | Hydrogenolysis of polyhydric alcohols | |
CS196886B1 (en) | Method of preparing alcoholic sugars by hydrogenation ofmonosaccharides | |
US4292451A (en) | High mannitol process (alkaline hydrogenation in presence of alkali metal carbonate) | |
KR19990036975A (en) | Method for preparing trehalose and sugar alcohol | |
US1963999A (en) | Process for producing polyhydroxy alcohols |