CN2907028Y - 一种投切电容器组的串联型复合开关电路 - Google Patents

一种投切电容器组的串联型复合开关电路 Download PDF

Info

Publication number
CN2907028Y
CN2907028Y CNU2006200125811U CN200620012581U CN2907028Y CN 2907028 Y CN2907028 Y CN 2907028Y CN U2006200125811 U CNU2006200125811 U CN U2006200125811U CN 200620012581 U CN200620012581 U CN 200620012581U CN 2907028 Y CN2907028 Y CN 2907028Y
Authority
CN
China
Prior art keywords
switch
thyristor
voltage
diode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2006200125811U
Other languages
English (en)
Inventor
杨建宁
邓富民
董兆振
梁京琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNU2006200125811U priority Critical patent/CN2907028Y/zh
Application granted granted Critical
Publication of CN2907028Y publication Critical patent/CN2907028Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

本实用新型公开了一种投切电容器组的串联型复合开关电路,一个高压硅堆二极管与一个高压限流电阻串联后,并联一个机械开关,作为慢速低精度高耐压开关;一个二极管和一个晶闸管的并联电路组成快速高精度低耐压开关与上述慢速低精度高耐压开关串联;再串接一个电抗器和一个电容器;控制器控制晶闸管的导通截止,同时控制器控制机械开关的开合。本实用新型的投切效果像TSC(晶闸管投切电容器组)投切准确没有电流冲击,装置的动作精度要求在同等效果下比同步开关放宽了5.5倍,运行功耗像机械开关几乎为零功耗,成本远远小于TSC装置。

Description

一种投切电容器组的串联型复合开关电器
技术领域
本实用新型涉及一种复合开关电路,尤其涉及一种投切电容器组的串联型复合开关电路。
背景技术
投切电容器组常规电路为:机械式触点投切开关,晶闸管投切电容器(TSC),并联型复合开关和同步真空开关。
机械式触点投切开关价格便宜,但是存在电容器组投入时电流冲击大,最少7倍的额定电流。还存在合闸机械触点弹跳,打开触点重燃的危险概率,弹跳重燃使得电容器组过电压,损坏电容器,容易造成事故。
晶闸管投切电容器(TSC)电路可以准确投入电容器,没有电流冲击。不存在弹跳重燃的问题。中压TSC电路,晶闸管要承受约3倍的电网电压,由于晶闸管的耐压只有几KV,需要多只晶闸管串联,晶闸管导通存在2V左右的管压降,几百安培的电流流过晶闸管,损耗发热大,一套TSC电路导通时存在几个KW的热量,耗能大。这么大的热量需要由风冷、水冷、热管等来散热,散热设施的技术难度大,造价高。
在低压380V电网,国内有复合开关投切电容器的装置。这是并联型复合开关电路,并联型复合开关是在晶闸管两端并联机械触点,投切时让晶闸管首先动作,无冲击电流,然后,机械触点开关闭合,没有能耗,打开时触点先打开,然后晶闸管打开。在中压应用并联型复合开关要串联多只晶闸管,成本高,几乎没有应用。
同步真空开关使用永磁操作机构,开关的合闸相位角精度为±0.2mS。同步开关的原理为在正弦波电压的过零点闭合,在电容器上没有电压时,只有这点投切电容器的效果好。在这一点投切电容器不是理想状态,所以有冲击。在正弦波的过零点,电压变化率最大,在零点的±3.6°即±0.2mS时,电压幅值变化了电网峰值电压的6%。这就要求同步开关的精度必须高。由于受温度,机械磨损,触发电压等的影响,需要不断地校准投切点。如ABB公司的产品,首次投切是对电网有小的冲击,寿命为1500次。国产低压同步开关有4倍的冲击电流,寿命60000次。
在现有的中、低压投切电容器组的技术方案中,都存在着一些缺欠。
发明内容
本实用新型提出一种投切电容器组的串联型复合开关电路,该电路投切准确,没有电流冲击,成本远远小于TSC装置。
本实用新型通过以下方案实现:一个高压硅堆二极管与一个高压限流电阻串联后,并联一个机械开关,作为慢速低精度高耐压开关;一个二极管和一个晶闸管的并联电路组成快速高精度低耐压开关与上述慢速低精度高耐压开关串联;再串接一个电抗器和一个电容器。控制器发出晶闸管通断命令,产生触发脉冲,控制晶闸管的导通截止,同时控制器控制机械开关的开合。
所述机械开关为真空接触器。
可使用一个机械开关并联在上述晶闸管和二极管的两端,这样晶闸管无需散热器。
本实用新型可以应用在单相电路,也可应用在三相电路。
由于高压硅堆二极管、二极管和高压限流电阻对电容器的充电作用,上述慢速低精度高耐压开关承受了电网电压加电容器的充电直流电压,在电网电压的负峰值附近,上述慢速低精度高耐压开关和快速高精度低耐压开关承受的电压最低,变化缓慢,这时候投切电容器达到了理想的投切状态,没有电流冲击和开关重燃现象。
本实用新型的投切效果像TSC(晶闸管投切电容器组)投切准确没有电流冲击,装置的动作精度要求在同等效果下比同步开关放宽了5.5倍,运行功耗像机械开关几乎为零功耗,成本远远小于TSC装置。
附图说明
图1为本实用新型的原理图。
图2为本实用新型的机械开关S1两端的电压示意图。
图3为本实用新型的开关闭合时序图。
图4为本实用新型的开关打开时序图。
图5为本实用新型用在电气化铁路时的电路原理图。
具体实施方式
下面结合具体实施例对本实用新型作进一步详细描述:
实施例1:
以某低压660V工程为例,如图1所示,高压硅堆二极管D1与高压限流电阻R1串联后,并联一个机械开关S1,作为慢速低精度高耐压开关,接到660V的A相电网上;晶闸管Q1、二极管D2和机械开关S2的并联组成快速高精度低耐压开关与上述慢速低精度高耐压开关串联;再串接电抗器L1和电容器C1,接到B相电网上。控制器1包括触发脉冲变压器T1,发出晶闸管Q1通断命令,控制触发脉冲变压器T1产生触发脉冲,控制晶闸管Q1的导通截止,同时控制器1控制两个机械开关S1、S2的开合。
机械开关S1为660V接触器,D1为4KV,1A的高压硅堆二极管,R1为30K欧姆高压限流电阻,电抗器L1为0.546mH、C1为786uF电容器的5次滤波电路,S2为380V400A接触器,Q1、D2为1000V,100A晶闸管和二极管。
高压限流电阻R1电阻值应该能够使得电容器的充电电压保持不变。电容器内置有放电电阻,按照要求,电容器C1自身的放电电阻R要使电容器的剩余电压在10分钟内从1.414Un降至75V以下。电容器C1和R的时间常数为τ,2*τ=10*60s=2*R*C1,R约等于381K欧姆,那末,高压限流电阻R1电阻值为30K欧姆就可以维持电容器的电压不变。以上述公式可以类推,在不同电压等级下的高压限流电阻R1限流电阻值。S2接触器的电压值这样确定:电网电压为660V,电网6%的电压值为:39.6V,那末,S2接触器的耐压最低电压值为380V,取380V400A接触器。晶闸管和二极管的耐压有1000V电流100A就满足要求。
投切原理:用高压硅堆二极管D1通过高压限流电阻R1对电容器C1充电到电网电压的峰值。由于高压限流电阻R1分压的结果,机械开关S1的电压约为3倍的电网有效值电压,由电网正弦波电压叠加电容器C1的充到电网峰值的直流电压组成。机械开关S2的电压几乎为零。
充电后的机械开关S1的电压如图2所示,在负峰值点变化缓慢,电压值最小,对于50HZ的正弦波,在零电压的±20°即±1.11mS,电压上升了电网峰值电压的6%。
如图3所示,机械开关S1开关闭合时间为A相电网的正弦波负峰值的±20°即±1.11mS,机械开关S1开关闭合,机械开关S2开关和晶闸管Q1、二极管D2承受的电压最多只有电网峰值电压的6%,,机械开关S1闭合后,晶闸管Q1在正弦波的负峰值点触发导通,投入电容器C1。由于这种投入方式是理想的电容器投入状态,所以没有冲击电流。晶闸管Q1导通1、2个电网电压的周波后,闭合机械开关S2,电流流过了机械开关S1、S2开关触点,没有能耗。
如图4所示,电容器C1停止工作开关的动作顺序是,发出停止命令,首先给晶闸管Q1触发脉冲,打开机械开关S2,晶闸管Q1导通,在正弦波的负峰值点前10mS里停发触发脉冲,晶闸管Q1不再工作,在A相电网的负峰值的±20°即±1.11mS打开机械开关S1,电容器C1经过高压硅堆二极管D1和二极管D2对电容器C1充电,使电容器C1保持电网电压的峰值不变。
实施例2:
以电气化铁路为例,使用如图5所述的电路原理图,高压硅堆二级管D1与高压限流电阻R1串联后和机械开关S1并联,接到27.5KV的A相电网上。机械开关S1开关的下面接入电感L1为127.4mH、C1为9.39uF电容器的滤波电路,电容器C1的下面接入机械开关S2、晶闸管Q1、二极管D2的并联电路,机械开关S2、Q1、D2的并联电路与轨道大地相连接。
机械开关S1为35KV真空接触器,D1为150KV,1A的高压硅堆二极管,R1为3M欧姆高压限流电阻,S2为3000V真空接触器,Q1、D2为6500V,300A晶闸管和二极管。
高压限流电阻R1电阻值应该能够使得电容器C1的充电电压保持不变。电容器C1内置有放电电阻,按照要求,电容器C1自身的放电电阻R要使电容器C1的剩余电压在10分钟内从1.414Un降至75V以下。C1和R的时间常数为τ,2*τ=10*60s=2*R*C1,R约等于32M欧姆,那末,R1电阻值为3M欧姆就可以维持电容器的电压不变。以上述公式可以类推,在不同电压等级下的R1限流电阻值。S2接触器的电压值这样确定电气化铁路电网电压为27.5KV,电网6%的电压值为:1.65KV,那末,S2接触器的耐压有一倍的电压值就够了,取3000V真空接触器。晶闸管Q1和二极管D2的耐压有6500V就满足要求,C1、L1的工作电流为123A,取晶闸管Q1和二极管D2的电流值300A。D1高压硅堆二极管,D1的耐压约为6倍的电网电压就满足要求,27.5KV的电网电压取150KV,串联限流电阻R1为3M,充电电流9mA,D1的电流值取1A。
机械开关S1、S2开关没有动作前,电网通过高压硅堆二级管D1、高压限流电阻R1、二极管D2对电容器C1充电,电容器C1充到峰值电压。
开关闭合动作:在A相电网的负峰点±1.1mS,闭合机械开关S1,在A相电网的负峰点对晶闸管Q1发出触发脉冲列,使得晶闸管Q1导通,滤波电路工作,晶闸管Q1导通1、2个周波后,闭合机械开关S2。由于机械开关S2的导通,晶闸管Q1不工作。
开关打开的动作:首先,打开机械开关S2,由于机械开关S2打开,晶闸管Q1工作,打开机械开关S2后,停止触发晶闸管Q1,晶闸管Q1没有触发脉冲,自然关断,二极管D2导通,A相电网的负峰点±1.1mS,打开S1开关,电路停止工作。电容器C1经过高压硅堆D1和二极管D2对电容器充电,使电容器C1保持电网电压的峰值不变。
在中低压电网中,使用一般要求的机械开关S1,就可以使得机械开关S2、晶闸管Q1、二极管D2工作在低压的状态下,设备成本降低,安全可靠。如果机械开关S1开关动作失误,不再预期的时间范围内,有两种方法保护晶闸管,一种晶闸管Q1可以经过过压转折二极管BOD的作用,使得晶闸管强迫导通,保护其不被击穿;另一种通过并联在晶闸管两端的氧化锌避雷器保护。
本实用新型的特定实施例已对发明内容做了详尽说明。对本领域一般技术人员而言,在不背离本实用新型原理的前提下对它所做的任何显而易见的改动,都不会超出本申请所附权利要求的保护范围。

Claims (6)

1.一种投切电容器组的串联型复合开关电路,其特征在于:一个高压硅堆二极管与一个高压限流电阻串联后,并联一个机械开关,作为慢速低精度高耐压开关;一个二极管和一个晶闸管的并联电路组成快速高精度低耐压开关与上述慢速低精度高耐压开关串联;再串接一个电抗器和一个电容器;控制器控制晶闸管的导通截止,同时控制器控制机械开关的开合。
2.根据权利要求1所述的投切电容器组的串联型复合开关电路,其特征在于:所述电抗器和电容器串联在所述慢速低精度高耐压开关和快速高精度低耐压开关之间。
3.根据权利要求1所述的投切电容器组的串联型复合开关电路,其特征在于:一个机械开关并联在上述晶闸管和二极管的两端。
4.根据权利要求1所述的投切电容器组的串联型复合开关电路,其特征在于:所述机械开关为真空接触器。
5.根据权利要求1所述的投切电容器组的串联型复合开关电路,其特征在于:过压转折二极管并联在阳极和控制极之间,保护晶闸管。
6.根据权利要求1所述的投切电容器组的串联型复合开关电路,其特征在于:氧化锌避雷器并联在晶闸管阳极和阴极之间保护晶闸管。
CNU2006200125811U 2006-04-29 2006-04-29 一种投切电容器组的串联型复合开关电路 Expired - Lifetime CN2907028Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2006200125811U CN2907028Y (zh) 2006-04-29 2006-04-29 一种投切电容器组的串联型复合开关电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2006200125811U CN2907028Y (zh) 2006-04-29 2006-04-29 一种投切电容器组的串联型复合开关电路

Publications (1)

Publication Number Publication Date
CN2907028Y true CN2907028Y (zh) 2007-05-30

Family

ID=38115673

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2006200125811U Expired - Lifetime CN2907028Y (zh) 2006-04-29 2006-04-29 一种投切电容器组的串联型复合开关电路

Country Status (1)

Country Link
CN (1) CN2907028Y (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845456B (zh) * 2006-04-29 2011-01-19 杨建宁 一种投切电容器组的串联型复合开关电路
CN102201673A (zh) * 2010-03-24 2011-09-28 北京博电新能电力科技有限公司 用于向电网系统投入和切除电力设备的开关装置及方法
CN103176117A (zh) * 2013-02-27 2013-06-26 国网智能电网研究院 一种基于半波法的大功率晶闸管关断特性测试装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845456B (zh) * 2006-04-29 2011-01-19 杨建宁 一种投切电容器组的串联型复合开关电路
CN102201673A (zh) * 2010-03-24 2011-09-28 北京博电新能电力科技有限公司 用于向电网系统投入和切除电力设备的开关装置及方法
CN103176117A (zh) * 2013-02-27 2013-06-26 国网智能电网研究院 一种基于半波法的大功率晶闸管关断特性测试装置
CN103176117B (zh) * 2013-02-27 2016-01-20 国网智能电网研究院 一种基于半波法的大功率晶闸管关断特性测试装置

Similar Documents

Publication Publication Date Title
Shi et al. Design and numerical investigation of a HVDC vacuum switch based on artificial current zero
US20170178844A1 (en) Arrangement, system, and method of interrupting current
CN106505514A (zh) 磁感应转移和电阻限流相结合的直流断路器及其使用方法
CN105609344A (zh) 一种混合式直流断路器拓扑结构
KR20180103181A (ko) 직류 전류 차단장치 및 제어 방법
US9178348B2 (en) DC voltage line circuit breaker
CN110970875A (zh) 一种用于直流电网的组合限流型直流断路器
CN101604835B (zh) 一种基于快速开关和触发真空开关的故障限流器
US20140233140A1 (en) Dc voltage circuit breaker
CN102611123B (zh) 基于单台三极同步开关的智能型无功补偿装置
CN1845456B (zh) 一种投切电容器组的串联型复合开关电路
CN102931669B (zh) 基于同步预充电开关投切电容器组的装置
CN106711930A (zh) 一种直流断路器及其控制方法
CN2907028Y (zh) 一种投切电容器组的串联型复合开关电路
EP2226914B1 (en) Systems and methods for protecting a series capacitor bank
CN110957708A (zh) 一种基于rc辅助支路的机械式直流断路器及其操控方法
Jehle et al. Hybrid circuit breaker for HVDC grids with controllable pulse current shape
Zhuang et al. Research on topological structure and simulation of hybrid DC circuit breaker
CN102593847B (zh) 基于单台三极同步开关的智能型无功补偿装置
CN101783511B (zh) 一种投切电容器组的2控3预充电相控开关电路
CN202474877U (zh) 基于单台三极同步开关的智能型无功补偿装置
CN114725900A (zh) 振荡电容电压自适应的机械式直流断路器及其控制方法
CN201378738Y (zh) 一种投切电容器组的2控3预充电相控开关电路
CN106532662A (zh) 一种自适应电容限压式高压直流断路器
CN102522758A (zh) 高压电容器组无损智能投切装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20070530

Effective date of abandoning: 20110119