CN2809918Y - Planar array antenna for high-gain waveguide horn - Google Patents
Planar array antenna for high-gain waveguide horn Download PDFInfo
- Publication number
- CN2809918Y CN2809918Y CN 200520110435 CN200520110435U CN2809918Y CN 2809918 Y CN2809918 Y CN 2809918Y CN 200520110435 CN200520110435 CN 200520110435 CN 200520110435 U CN200520110435 U CN 200520110435U CN 2809918 Y CN2809918 Y CN 2809918Y
- Authority
- CN
- China
- Prior art keywords
- conductive plate
- layer conductive
- waveguide
- intermediate layer
- top layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Waveguide Aerials (AREA)
Abstract
The utility model relates to a flat plate array antenna for high gain waveguide horns, which comprises a top layer conductive plate, a middle layer conductive plate, a belt line layer conductive plate and a bottom layer conductive plate, wherein an upper surface inner array of the top layer conductive plate is provided with a plurality of horn holes, the middle of the inner bottom of the horn holes is provided with feeding slit through holes, a lower surface inner array of the top layer conductive plate is provided with a plurality of cavity-shaped conduits, the middle layer conductive plate is arranged on the lower part of the top layer conductive plate, the inner part of the upper surface of the middle layer conductive plate is provided with waveguide through holes corresponding to the cavity-shaped conduits on the lower surface of the top layer conductive plate, and the belt line layer conductive plate is arranged on the lower part of the middle layer conductive plate and is a conductive thin plate which is stacked between the bottom layer conductive plate and the middle layer conductive plate. The utility model has the advantages that the hierarchical structure of the utility model easily realizes better precision, the utility model is suitable for batch quantity production, the weight of the utility model is remarkably lightened, the utility model is easily installed and is portable, the manufacturing cost of the utility model is remarkably reduced and the utility model has small loss and can be used as an antenna with high power and high gain.
Description
Technical field
This utility model relates to the plate aerial technical field, is a kind of high-gain waveguide trumpet array flat antenna
Background technology
At present, common plate aerial mainly contains two types, microstrip type and waveguide type antenna.It is little that the microstrip type antenna has a volume, lightweight characteristics, but at microwave frequency band because the characteristic of medium sheet material, the loss of last antenna is big, narrow bandwidth, so the manufacturing of high-gain microstrip antenna has many difficult points such as area is big, cost height.
And the waveguide type antenna mainly utilizes slit or the loudspeaker radiating element as antenna, because antenna does not adopt dielectric material, has avoided the loss that brings therefrom, therefore is easy to make high-gain aerial.But the waveguide type antenna also exists volume big, is difficult for the shortcoming of processing, is unfavorable for the miniaturization of antenna.
Summary of the invention
The purpose of this utility model provides a kind of high-gain waveguide trumpet array flat antenna, it is by introducing a kind of new band line feeding network, and success combines with the waveguide trumpet radiating element, compare with above-mentioned two kinds of antennas, the low-loss characteristics of existing waveguide type antenna, have again that the microstrip type antenna volume is little, in light weight, the advantage of easy processing, combine with the waveguide trumpet radiating element on this basis, develop a kind of miniaturization high-gain plate aerial.
For achieving the above object, the utility model is taked following design:
A kind of high-gain waveguide trumpet array flat antenna is characterized in that: it includes top layer conductive plate, intermediate layer conductive plate, band line layer conductive plate, bottom conductive plate;
Array is provided with a plurality of bellmouth orifices in the upper surface of described top layer conductive plate, in the middle of this bellmouth orifice inner bottom part, be provided with the feed gaps through hole, array is provided with a plurality of cavity shape conduits in the lower surface of top layer conductive plate, and the Si Jiaochu in this cavity shape conduit has the feed gaps through hole that communicates with four bellmouth orifices;
Described intermediate layer conductive plate is arranged on the bottom of top layer conductive plate, in the upper surface of intermediate layer conductive plate, be provided with the corresponding waveguide through hole of cavity shape conduit with top layer conductive plate lower surface, be provided with the fovea superior conduit that each waveguide through hole is communicated with in the lower surface of intermediate layer conductive plate, this fovea superior conduit is provided with a upper groove road outlet;
Described band line layer conductive plate is arranged on the bottom of intermediate layer conductive plate, this band line layer conductive plate is a conductive plate, be stacked between bottom conductive plate and the intermediate layer conductive plate, in band line layer conductive plate, be provided with and waveguide through hole, slotted eye that the upper groove road shape is corresponding, in this slotted eye, be provided with the transmission conduction band, be provided with fixedly conduction band between this transmission conduction band and the band line layer conductive plate.
Described bottom conductive plate is arranged on the bottom of band line layer conductive plate, is provided with the corresponding waveguide blind hole of waveguide through hole with the corresponding identical recessed conduit of fovea superior conduit, low groove road to export in the upper surface of bottom conductive plate;
Described top layer conductive plate, intermediate layer conductive plate and bottom conductive plate are made of plastics, and surface-coated has conductive metal layer.
Described top layer conductive plate, intermediate layer conductive plate and bottom conductive plate are made by metal material.
Be provided with coupling conduction band angle in the corresponding position of waveguide through hole.
The upper surface of described bottom conductive plate has conducting metal with the lower surface of intermediate layer conductive plate, the surface-coated of band line layer conductive plate, so that received signal.
Corner at the transmission conduction band is provided with the coupling step.
According to carrying out feed respectively by lower end feed gaps through hole in each bellmouth orifice on the top layer conductive plate of the present invention.Every adjacent four of lower end feed gaps through hole forms one group, merges in the cavity shape conduit of lower end, and enters on earth in portion's converted wave guide hole.Signal of each conversion waveguide is connected to one another at together by transmission conduction band and conduit, makes signal finally by with superimposed and export.
In order to guarantee the property produced in batches, the top layer of antenna of the present invention, band line layer, intermediate layer and bottom conductive plate all can be made of plastics, and make in the method for surface-coated conducting metal.But for the electric property that guarantees, antenna top layer of the present invention, intermediate layer, band line layer and bottom conductive plate also can be made by the metal material Precision Machining.
The utility model has the advantages that: the employed hierarchy of this antenna is realized better precision easily, also be suitable for simultaneously making in batches, and weight can significantly be alleviated, be easy to install light again, compare with traditional antenna, manufacturing cost of the present invention significantly reduces, and because therefore its less consumption can be used as high power, high-gain aerial.
Description of drawings
Fig. 1 looks the contour structures schematic diagram for master of the present utility model.
Fig. 2 is the schematic top plan view of the top layer conductive plate 1 among Fig. 1.
Fig. 3 is that A-A among Fig. 2 is to cross-sectional schematic.
Fig. 4 is the elevational schematic view of the top layer conductive plate 1 among Fig. 1.
Fig. 5 is the vertical view of the intermediate layer conductive plate 2 among Fig. 1.
Fig. 6 is the upward view of the intermediate layer conductive plate 2 among Fig. 1.
Fig. 7 is that B-B among Fig. 6 is to cross-sectional schematic.
Fig. 8 is that D-D among Fig. 6 is to cross-sectional schematic.
Fig. 9 is that C-C among Fig. 6 is to cross-sectional schematic.
Figure 10 is the schematic top plan view of the band line layer conductive plate 3 among the figure.
Figure 11 is the schematic top plan view of the bottom conductive plate 4 among Fig. 1.
Figure 12 is that E-E among Figure 11 is to cross-sectional schematic.
Figure 13 is that F-F among Figure 11 is to cross-sectional schematic.
Figure 14 is that G-G among Figure 11 is to cross-sectional schematic.
Figure 15 is the local enlarged diagram of Fig. 1.
Figure 16 is a schematic perspective view of the present utility model.
Figure 17 is an overall structure exploded view of the present utility model.
Embodiment
Referring to Fig. 1, Figure 16, shown in Figure 17: a kind of high-gain waveguide trumpet array flat antenna, it includes top layer conductive plate 1, intermediate layer conductive plate 2, band line layer conductive plate 3, bottom conductive plate 4;
Referring to Fig. 2, Fig. 3, shown in Figure 4: array is provided with a plurality of bellmouth orifices 12 in the upper surface of described top layer conductive plate 1, in the middle of these bellmouth orifice 12 inner bottom parts, be provided with feed gaps through hole 13, array is provided with a plurality of cavity shape conduits 14 in the lower surface 15 of top layer conductive plate 1, and the Si Jiaochu in this cavity shape conduit 14 has the feed gaps through hole 13 that communicates with four bellmouth orifices;
Referring to Fig. 5, Fig. 6, Fig. 7, Fig. 8, shown in Figure 9: described intermediate layer conductive plate 2 is arranged on the bottom of top layer conductive plate 1, in the upper surface 201 of intermediate layer conductive plate 2, be provided with cavity shape conduit 14 corresponding waveguide through holes 203 with top layer conductive plate lower surface 15, be provided with the fovea superior conduit 204 that each waveguide through hole 203 is communicated with in the lower surface 202 of intermediate layer conductive plate 2, this fovea superior conduit 204 is provided with a upper groove road outlet 205;
Referring to shown in Figure 10: described band line layer conductive plate 3 is arranged on the bottom that 2 electroplaxs are led in the intermediate layer, this band line layer conductive plate 3 is a conductive plate, be stacked between bottom conductive plate 4 and the intermediate layer conductive plate 2, in band line layer conductive plate 3, be provided with and waveguide through hole 203, the corresponding slotted eye 302 of fovea superior conduit 204 shapes, in this slotted eye 302, be provided with transmission conduction band 301, be provided with fixedly conduction band 304 between this transmission conduction band 301 and the band line layer conductive plate 3.
Referring to Figure 11, Figure 12, Figure 13, shown in Figure 14: described bottom conductive plate 4 is arranged on the bottom of band line layer conductive plate 3, is provided with in the upper surface 405 of bottom conductive plate 4 with the corresponding waveguide blind hole 402 of waveguide through hole 203 with fovea superior conduit 204 corresponding identical recessed conduits 403, low groove road and exports 404;
Described top layer conductive plate 1, intermediate layer conductive plate 2 and bottom conductive plate 4 can be made of plastics, and surface-coated has conductive metal layer.
Or described top layer conductive plate 1, intermediate layer conductive plate 2 and bottom conductive plate 4 are made by metal material.
Be provided with coupling conduction band angle 305 (see figure 10)s in the corresponding position of waveguide through hole 203.
The upper surface 405 of described bottom conductive plate 4 has conducting metal with the lower surface 202 of intermediate layer conductive plate 2, the surface-coated of band line layer conductive plate 3, so that received signal.
Be provided with coupling step 303 (see figure 10)s in the corner of transmission conduction band 301.
Function according to multiplet waveguide trumpet array antenna of the present utility model is as mentioned below.
The foreign frequency signal is by bellmouth orifice 12 inputs of top layer conductive plate 1, signal is by slit 13 coupling and gather cavity shape conduit 14, and is passed in the connection waveguide through hole 203 of intermediate layer conductive plate 2 and the converted wave guide hole 402 that bottom conductive plate 4 is constituted.Signal is received and is sent in the band line feeding network that intermediate layer conductive plate 2, bottom conductive plate 4, band line layer conductive plate 3 formed by the band line in the converted wave guide hole 402 of bottom conductive plate coupling conduction band angle 305 and carries out with superimposed output.
The principle that forms transmitting signal band line as shown in figure 15, bottom conductive plate 4, intermediate layer conductive plate 2 and band line layer conductive plate 3 are stacked each other.When the recessed conduit 403 of the fovea superior conduit 204 of intermediate layer conductive plate 2, bottom conductive plate 4 and band line layer 3 were closed, conduit was formed.With the middle conduction band 301 common band line transmission lines that form.Simultaneously as shown in figure 10, utilize in the band line layer conduction band coupling step 303 and fixedly conduction band 304 on the one hand to signal transmission carrying out impedance matching, make the signal can high efficiency of transmission, also conduction band 301 in the middle of the metal in the entire belt line is carried out supporting role simultaneously, to guarantee the stable of conduction band structure.
As mentioned above, the band line transmission line of antenna of the present invention and conversion waveguide are designed to the multiple-level stack structure that is bonded together by bolt 16.The advantage of doing like this is, though overall antenna structure more complicated, but can easily make by layered approach, and the structure of integrated antenna is comparatively flat, compare with the platypelloid type antenna that uses dielectric material, waveguide trumpet array antenna according to the present invention is all higher in bandwidth, effectiveness and gain.
Antenna of the present invention can be used for communication or broadcasting.Compare with traditional metal waveguide slot antenna, the employed hierarchy of antenna of the present invention is realized easily better precision, also be suitable for simultaneously making in batches, and weight can significantly be alleviated, and is easy to install light again.Compare with traditional antenna, the utility model manufacturing cost significantly reduces, and because therefore its less consumption can be used as high power, high-gain aerial.
Claims (6)
1, a kind of high-gain waveguide trumpet array flat antenna is characterized in that: it includes top layer conductive plate (1), intermediate layer conductive plate (2), band line layer conductive plate (3), bottom conductive plate (4);
The interior array of upper surface (11) of described top layer conductive plate (1) is provided with a plurality of bellmouth orifices (12), in the middle of this bellmouth orifice (12) inner bottom part, be provided with feed gaps through hole (13), array is provided with a plurality of cavity shape conduits (14) in the lower surface (15) of top layer conductive plate (1), and the Si Jiaochu in this cavity shape conduit (14) has the feed gaps through hole (13) that communicates with four bellmouth orifices;
Described intermediate layer conductive plate (2) is arranged on the bottom of top layer conductive plate (1), in the upper surface (201) of intermediate layer conductive plate (2), be provided with the corresponding waveguide through hole of cavity shape conduit (203) with top layer conductive plate lower surface, be provided with the fovea superior conduit (204) that each waveguide through hole is communicated with in the lower surface (202) of intermediate layer conductive plate, this fovea superior conduit is provided with a upper groove road outlet (205);
Described band line layer conductive plate 3 is arranged on the bottom of intermediate layer conductive plate (2), this band line layer conductive plate (3) is a conductive plate, be stacked between bottom conductive plate and the intermediate layer conductive plate, in band line layer conductive plate, be provided with and waveguide through hole (203), the corresponding slotted eye (302) of fovea superior conduit (204) shape, in this slotted eye, be provided with transmission conduction band (301), be provided with fixedly conduction band (304) between this transmission conduction band (301) and the band line layer conductive plate (3);
Described bottom conductive plate (4) is arranged on the bottom of band line layer conductive plate (3), is provided with in the upper surface (401) of bottom conductive plate with the corresponding waveguide blind hole (402) of waveguide through hole with the corresponding identical recessed conduit (403) of fovea superior conduit, low groove road and exports (404).
2, high-gain waveguide trumpet array flat antenna according to claim 1 is characterized in that: described top layer conductive plate, intermediate layer conductive plate and bottom conductive plate are made of plastics, and surface-coated has conductive metal layer.
3, high-gain waveguide trumpet array flat antenna as claimed in claim 1 is characterized in that, described top layer conductive plate, intermediate layer conductive plate and bottom conductive plate are made by metal material.
4, high-gain waveguide trumpet array flat antenna as claimed in claim 1 is characterized in that, is provided with coupling conduction band angle (305) in the corresponding position of waveguide through hole.
5, high-gain waveguide trumpet array flat antenna as claimed in claim 1 is characterized in that, the upper surface of described bottom conductive plate has conducting metal with the lower surface of intermediate layer conductive plate, the surface-coated of band line layer conductive plate.
6, high-gain waveguide trumpet array flat antenna as claimed in claim 1 is characterized in that, is provided with coupling step (303) in the corner of transmission conduction band.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520110435 CN2809918Y (en) | 2005-06-23 | 2005-06-23 | Planar array antenna for high-gain waveguide horn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520110435 CN2809918Y (en) | 2005-06-23 | 2005-06-23 | Planar array antenna for high-gain waveguide horn |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2809918Y true CN2809918Y (en) | 2006-08-23 |
Family
ID=36926102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200520110435 Expired - Fee Related CN2809918Y (en) | 2005-06-23 | 2005-06-23 | Planar array antenna for high-gain waveguide horn |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2809918Y (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255138A (en) * | 2011-03-28 | 2011-11-23 | 李峰 | Circularly polarized waveguide flat plate array antenna |
CN101083359B (en) * | 2007-07-10 | 2012-05-09 | 中国电子科技集团公司第五十四研究所 | Process for manufacturing high gain dual-linear polarization or dual-circle polarization waveguide array antennas |
CN103050776A (en) * | 2012-12-20 | 2013-04-17 | 山东国威卫星通信有限公司 | High-gain high-efficiency flat plate antenna loaded with left-handed material |
CN103236582A (en) * | 2013-04-18 | 2013-08-07 | 山东国威卫星通信有限公司 | Circular polarization panel antenna of patch-loaded special-shaped radiation unit |
CN103825089A (en) * | 2014-02-28 | 2014-05-28 | 电子科技大学 | Near-field focusing planar array antenna |
CN104659463A (en) * | 2013-11-22 | 2015-05-27 | 现代摩比斯株式会社 | Microstripline-fed slot array antenna and manufacturing method thereof |
CN105098366A (en) * | 2015-09-09 | 2015-11-25 | 西安三维通信有限责任公司 | Ridge waveguide planar array antenna employing mechanical center feeding |
-
2005
- 2005-06-23 CN CN 200520110435 patent/CN2809918Y/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101083359B (en) * | 2007-07-10 | 2012-05-09 | 中国电子科技集团公司第五十四研究所 | Process for manufacturing high gain dual-linear polarization or dual-circle polarization waveguide array antennas |
CN102255138A (en) * | 2011-03-28 | 2011-11-23 | 李峰 | Circularly polarized waveguide flat plate array antenna |
CN103050776A (en) * | 2012-12-20 | 2013-04-17 | 山东国威卫星通信有限公司 | High-gain high-efficiency flat plate antenna loaded with left-handed material |
CN103236582A (en) * | 2013-04-18 | 2013-08-07 | 山东国威卫星通信有限公司 | Circular polarization panel antenna of patch-loaded special-shaped radiation unit |
CN104659463A (en) * | 2013-11-22 | 2015-05-27 | 现代摩比斯株式会社 | Microstripline-fed slot array antenna and manufacturing method thereof |
KR20150059392A (en) * | 2013-11-22 | 2015-06-01 | 현대모비스 주식회사 | Microstripline-fed slot array antenna and manufacturing method thereof |
KR102033311B1 (en) * | 2013-11-22 | 2019-10-17 | 현대모비스 주식회사 | Microstripline-fed slot array antenna and manufacturing method thereof |
CN103825089A (en) * | 2014-02-28 | 2014-05-28 | 电子科技大学 | Near-field focusing planar array antenna |
CN105098366A (en) * | 2015-09-09 | 2015-11-25 | 西安三维通信有限责任公司 | Ridge waveguide planar array antenna employing mechanical center feeding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1885616A (en) | High-gain waveguide trumpet array flat antenna | |
CN2809918Y (en) | Planar array antenna for high-gain waveguide horn | |
CN101000978A (en) | Super-thin oblique wave beam plate antenna | |
CN1233063C (en) | Waveguide input apparatus of two orthogonally polarized waves | |
CN1080466C (en) | Antenna apparatus, method of manufacturing same and method of designing same | |
CN103825101A (en) | Broadband flat plate array antenna | |
CN111786114B (en) | Millimeter wave circular polarized antenna based on differential feed | |
CN1710749A (en) | Mobile-terminal multi-antenna system | |
CN101000980A (en) | High gain oblique wave beam circular plate antenna | |
CN114639967B (en) | Composite artificial medium lens antenna and manufacturing method thereof | |
CN2857244Y (en) | Combined mini-band patch antenna for mobile satellite communicator | |
CN103367911A (en) | Metamaterial base station antenna housing and antenna system | |
CN102760962B (en) | Wideband wave-transmitting metamaterial, and antenna housing and antenna system formed by same | |
CN205069859U (en) | Dull and stereotyped array antenna of waveguide of machinery central feed | |
CN204966703U (en) | Dull and stereotyped array antenna of ridge waveguide of machinery central feed | |
CN213782267U (en) | Double-layer differential feed circularly polarized antenna applied to millimeter wave frequency band | |
CN212725583U (en) | Miniaturized millimeter wave microstrip antenna | |
CN201130714Y (en) | Ultrathin oblique wave beam flat antenna | |
CN1874063A (en) | Wide frequencies in plane typed end fire antenna with dual frequency in low side lobes | |
CN114639969B (en) | 5G massive MIMO artificial dielectric lens antenna and artificial dielectric lens thereof | |
CN111416199B (en) | Multi-band vehicle-mounted communication antenna | |
CN1527437A (en) | Improvement to radiation diversity antenna | |
CN212571348U (en) | Double-frequency microstrip antenna | |
CN212230610U (en) | 5G antenna | |
CN213692344U (en) | Double-ridge horn antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060823 |