CN2729863Y - Polarization holographic optical storage device using photochromic material film as recording medium - Google Patents
Polarization holographic optical storage device using photochromic material film as recording medium Download PDFInfo
- Publication number
- CN2729863Y CN2729863Y CN 200420042274 CN200420042274U CN2729863Y CN 2729863 Y CN2729863 Y CN 2729863Y CN 200420042274 CN200420042274 CN 200420042274 CN 200420042274 U CN200420042274 U CN 200420042274U CN 2729863 Y CN2729863 Y CN 2729863Y
- Authority
- CN
- China
- Prior art keywords
- light
- fourier transform
- recording medium
- transform lens
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 53
- 239000000463 material Substances 0.000 title claims abstract description 31
- 230000003287 optical effect Effects 0.000 title claims description 43
- 238000001093 holography Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 108010082845 Bacteriorhodopsins Proteins 0.000 claims description 5
- 230000005055 memory storage Effects 0.000 claims 3
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 abstract description 6
- 102000004330 Rhodopsin Human genes 0.000 abstract description 6
- 108090000820 Rhodopsin Proteins 0.000 abstract description 6
- 150000008064 anhydrides Chemical class 0.000 abstract description 6
- 241000193830 Bacillus <bacterium> Species 0.000 abstract description 5
- 238000013500 data storage Methods 0.000 abstract description 2
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 19
- 239000013078 crystal Substances 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- -1 silver halide salts Chemical class 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Holo Graphy (AREA)
Abstract
一种光致变色材料薄膜作为记录介质的偏振全息存储装置,以空间光调制器作为页面式信息输入元件,图像采集器件作为信息读出设备,采用光致变色材料薄膜作为记录介质,将其放置在傅立叶变换透镜的频谱面上记录全息图,利用光致变色材料的光诱导各向异性,采用相互正交的线偏振光或正交圆偏振光作为物光和参考光记录偏振调制的全息图,提高再现图像信噪比。采用菌紫质薄膜或俘精酸酐薄膜作为可擦写全息记录介质,具有感光灵敏度高,空间分辨率高,可擦写次数多,抗疲劳性和稳定性好,使用寿命长等优点。该装置再现全息图像信噪比高,可同时空间复用与角度复用,大大提高数据存储密度和容量。
A polarization holographic storage device using a photochromic material film as a recording medium, using a spatial light modulator as a page-type information input element, an image acquisition device as an information readout device, using a photochromic material film as a recording medium, and placing it Record holograms on the spectral surface of Fourier transform lenses, use the light-induced anisotropy of photochromic materials, and use mutually orthogonal linearly polarized light or orthogonal circularly polarized light as the object light and reference light to record polarization-modulated holograms , to improve the signal-to-noise ratio of the reproduced image. The bacillus rhodopsin film or fulginic anhydride film is used as the rewritable holographic recording medium, which has the advantages of high photosensitive sensitivity, high spatial resolution, many rewritable times, good fatigue resistance and stability, and long service life. The device reproduces a holographic image with a high signal-to-noise ratio, can simultaneously space multiplex and angle multiplex, and greatly improves data storage density and capacity.
Description
技术领域technical field
本实用新型涉及一种全息光存储装置,尤其涉及一种采用光致变色材料薄膜作为记录介质的傅立叶变换角度复用偏振全息光存储装置。The utility model relates to a holographic optical storage device, in particular to a Fourier transformation angle multiplexing polarization holographic optical storage device which uses a photochromic material film as a recording medium.
背景技术Background technique
高密度、大容量、高存取速度是光存储技术的方向发展,全息光存储因具有存储密度高、存储大容量和数据存取速度高而成为光存储的重要发展方向之一。全息光存储提高存储密度和容量的关键是采用复用技术,如角度复用、波长复用、空间复用等;因为全息光存储采用并行信息写入和读出方法,一次写入和读出的数据量可以很大,因而数据存取速度高。全息记录介质是全息光存储的关键因素之一。全息记录介质很多,如卤化银盐、重铬酸盐明胶、光致聚合物、光折变晶体、光致变色材料等;其中卤化银盐、重铬酸盐明胶、光致聚合物是一次性使用记录介质;光折变晶体和光致变色材料是可擦写记录介质,且无需显影、定影等后处理,因而具有显著的技术优势。目前大多全息光存储装置采用块状光折变晶体作为可擦写全息记录介质或采用光致聚合物薄膜作为一次写入多次读出全息记录介质,利用角度复用技术可进行高密度大容量存储。这种全息图记录的是强度调制光栅,物光和参考光必须具有相同的偏振分量,如果物光和参考光的偏振方向相互垂直,则合成光场的光强不发生调制,不能形成强度调制光栅。但是如果记录介质具有光诱导各向异性(光致双折射或光致二向色性),介质对于偏振光的吸收系数或折射率在合成光场照射下将发生调制变化,从而可以记录下偏振调制光栅。当用偏振光照明全息图时,便会再现出与其偏振态正交的物光波。实现偏振全息的必要条件是记录介质具有光诱导各向异性,其优点是比普通全息可以获得高信噪比的再现像。High density, large capacity, and high access speed are the development directions of optical storage technology. Holographic optical storage has become one of the important development directions of optical storage because of its high storage density, large storage capacity and high data access speed. The key to improving storage density and capacity of holographic optical storage is to use multiplexing technologies, such as angle multiplexing, wavelength multiplexing, spatial multiplexing, etc.; because holographic optical storage uses parallel information writing and reading methods, one write and read The amount of data can be very large, so the data access speed is high. Holographic recording medium is one of the key factors of holographic optical storage. There are many holographic recording media, such as silver halide salts, dichromate gelatin, photopolymers, photorefractive crystals, photochromic materials, etc.; among them, silver halide salts, dichromate gelatin, and photopolymers are disposable Use recording media; photorefractive crystals and photochromic materials are rewritable recording media, and do not require post-processing such as developing and fixing, so they have significant technical advantages. At present, most holographic optical storage devices use bulk photorefractive crystals as rewritable holographic recording media or photopolymer thin films as write-once-read-multiple-read holographic recording media. storage. This hologram records an intensity-modulated grating, and the object light and reference light must have the same polarization component. If the polarization directions of the object light and reference light are perpendicular to each other, the light intensity of the synthetic light field will not be modulated, and no intensity modulation will be formed. raster. However, if the recording medium has light-induced anisotropy (photobirefringence or photodichroism), the absorption coefficient or refractive index of the medium for polarized light will be modulated and changed under the irradiation of the synthetic light field, so that the polarization can be recorded. Modulation grating. When a hologram is illuminated with polarized light, an object wave orthogonal to its polarization state is reproduced. The necessary condition for the realization of polarization holography is that the recording medium has light-induced anisotropy, and its advantage is that it can obtain a reconstructed image with a higher signal-to-noise ratio than ordinary holography.
发明内容Contents of the invention
本实用新型的目的是提供一种以光致变色材料薄膜作为可擦写全息记录介质,利用其光诱导各向异性进行正交偏振全息记录,获得高信噪比再现像的高密度全息光存储装置,其解决了背景技术中普通全息光存储装置再现像信噪比低的技术问题。The purpose of this utility model is to provide a high-density holographic optical storage that uses photochromic material film as a rewritable holographic recording medium, uses its light-induced anisotropy to perform orthogonal polarization holographic recording, and obtains a reproduced image with a high signal-to-noise ratio. The device solves the technical problem of the low signal-to-noise ratio of the reproduced image of the common holographic optical storage device in the background art.
本实用新型的技术解决方案是:一种光致变色材料薄膜作为记录介质的偏振全息光存储装置,包括读写激光器1、总快门2、偏振分光棱镜3、物光路、参考光路、全息记录介质12;所述总快门2、偏振分光棱镜3、物光路依次设置在读写激光器1发射光束的传播方向上;所述物光路包括物光快门4、扩束准直透镜组5、空间光调制器6、第一傅立叶变换透镜7、物光空间滤波光阑8、第一傅立叶反变换透镜9和第二傅立叶变换透镜11,其中空间光调制器6位于第一傅立叶变换透镜7的前焦面,物光空间滤波光阑8位于第一傅立叶变换透镜7的后焦面,第一傅立叶反变换透镜9的前焦面与第一傅立叶变换透镜7的后焦面重合,第一傅立叶反变换透镜9的后焦面与第二傅立叶变换透镜11的前焦面重合,全息记录介质12位于第二傅立叶变换透镜11的后焦面;所述参考光路包括反射镜13、光强衰减器14、参考光空间滤波光阑16、旋转反射镜17、第一透镜18和第二透镜19,其中反射镜13设置在偏振分光棱镜3反射光束传播方向上,第一透镜18和第二透镜19构成4F结构,旋转反射镜17位于透镜18的前焦面,全息记录介质12位于透镜19的后焦面。The technical solution of the utility model is: a polarization holographic optical storage device with a photochromic material film as a recording medium, including a read-write
上述物光路还包括设置在第一傅立叶反变换透镜9和第二傅立叶变换透镜11之间的物光用四分之一波片10;上述参考光路还包括设置在光强衰减器14和参考光空间滤波光阑16之间的参考光用四分之一波片15。Above-mentioned object optical path also comprises the quarter-wave plate 10 for object light that is arranged between the first Fourier transform lens 9 and the second Fourier transform lens 11; Above-mentioned reference optical path also includes being arranged at light intensity attenuator 14 and reference light A quarter-wave plate 15 is used for the reference light between the spatial filtering diaphragms 16 .
上述全息光存储装置包括依次设置在读写激光器1光束传播方向上的偏振片21、第二傅立叶反变换透镜22、衍射光快门23、图像采集器件24,其中偏振片21位于全息记录介质12和第二傅立叶反变换透镜22之间,第二傅立叶反变换透镜22的前焦面与第二傅立叶变换透镜11的后焦面重合,图像采集器件24的光敏面位于第二傅立叶反变换透镜22的后焦面。The above-mentioned holographic optical storage device comprises a polarizer 21, a second inverse Fourier transform lens 22, a diffractive optical shutter 23, and an image acquisition device 24 which are sequentially arranged in the beam propagation direction of the read-write
上述物光路包括设置在第一傅立叶反变换透镜9和第二傅立叶变换透镜11之间的物光用四分之一波片10;所述参考光路包括设置在光强衰减器14和参考光空间滤波光阑16之间的参考光用四分之一波片15;所述全息记录介质12和偏振片21之间设置有衍射光用四分之一波片20。Above-mentioned object optical path comprises the quarter-wave plate 10 for object light that is arranged between the first inverse Fourier transform lens 9 and the second Fourier transform lens 11; A quarter-wave plate 15 is used for the reference light between the filter apertures 16 ; a quarter-wave plate 20 for diffracted light is arranged between the holographic recording medium 12 and the polarizer 21 .
上述全息光存储装置包括擦除激光器25,所述擦除激光器25为输出波长接近光致变色材料亚稳态吸收峰的连续或脉冲激光器,其光束与所述读写激光器1的光束在全息记录介质12上相交重合。The above-mentioned holographic optical storage device includes an erasing laser 25, which is a continuous or pulsed laser whose output wavelength is close to the metastable absorption peak of the photochromic material. Intersect and overlap on the medium 12.
上述全息记录介质12为具有光诱导各向异性的光致变色材料薄膜,所述光致变色材料薄膜为生物分子材料中的菌紫质薄膜或有机分子材料中的俘精酸酐薄膜。The above-mentioned holographic recording medium 12 is a photochromic material film with light-induced anisotropy, and the photochromic material film is a bacillus rhodopsin film in a biomolecular material or a fulginic anhydride film in an organic molecular material.
本实用新型具有如下优点:The utility model has the following advantages:
1、使用生物分子光致变色材料——菌紫质薄膜或有机光致变色材料——俘精酸酐薄膜作为可擦写全息记录介质,具有感光灵敏度高,空间分辨率高,抗疲劳性和稳定性好,使用寿命长的优点。1. Use biomolecular photochromic material—bacteriorhodopsin film or organic photochromic material—fulginic anhydride film as rewritable holographic recording medium, which has high photosensitivity, high spatial resolution, fatigue resistance and stability Good performance and long service life.
2、利用光致变色材料的光诱导各向异性,采用正交线偏振光或正交圆偏振光,记录偏振调制全息图。记录介质具有光诱导各向异性(光致双折射或光致二向色性),介质对于偏振光的吸收系数或折射率在合成光场照射下将发生调制变化,从而可以记录下偏振调制光栅,当用偏振光照明全息图时,便会再现出与其偏振态正交的物光波,由此可获得比普通全息更高信噪比的再现像。2. Utilize the light-induced anisotropy of photochromic materials, and use orthogonal linearly polarized light or orthogonal circularly polarized light to record polarization-modulated holograms. The recording medium has light-induced anisotropy (photo-induced birefringence or photo-dichroism), and the absorption coefficient or refractive index of the medium for polarized light will undergo a modulation change under the irradiation of a synthetic light field, so that the polarization-modulated grating can be recorded , when the hologram is illuminated with polarized light, the object light wave orthogonal to its polarization state will be reproduced, thereby obtaining a reconstructed image with a higher signal-to-noise ratio than ordinary holograms.
3、在傅立叶变换透镜的频谱面上记录全息图,可同时角度复用与空间复用,提高数据存储密度和容量。3. The hologram is recorded on the spectral surface of the Fourier transform lens, which can simultaneously multiplex the angle and space, and improve the data storage density and capacity.
附图图面说明Description of drawings
图1是光致变色材料薄膜作为记录介质的偏振全息光存储装置示意图;Fig. 1 is a schematic diagram of a polarization holographic optical storage device in which a photochromic material film is used as a recording medium;
图2为正交线偏振光和正交园偏振光记录时,记录介质内干涉场偏振态周期变化的规律;Fig. 2 is the law of the periodic variation of the polarization state of the interference field in the recording medium when the orthogonal linearly polarized light and the orthogonal circularly polarized light are recorded;
图3为正交线偏振光和正交园偏振光记录的全息图再现时,衍射光的偏振态与参考光的偏振态的关系;Fig. 3 is the relationship between the polarization state of the diffracted light and the polarization state of the reference light when the hologram recorded by the orthogonal linearly polarized light and the orthogonal circularly polarized light is reproduced;
图4是参考光路中采用4F结构,通过旋转反射镜实现角度复用的原理图,其特点是虽然参考光入射角发生变化,但其在记录介质处入射点位置不变,且始终为平面波;Figure 4 is a schematic diagram of using 4F structure in the reference light path and realizing angle multiplexing by rotating the mirror, which is characterized in that although the incident angle of the reference light changes, the position of the incident point on the recording medium remains unchanged, and it is always a plane wave;
图5是实施例中生物分子光致变色材料——菌紫质薄膜的基态(B态)和亚稳中间态(M态)的吸收光谱。Fig. 5 is the absorption spectrum of the ground state (B state) and the metastable intermediate state (M state) of the biomolecular photochromic material-bacillus rhodopsin film in the embodiment.
具体实施方式Detailed ways
以具有光诱导各向异性的光致变色材料薄膜作为可擦写全息记录介质,实施例中使用一种生物分子光致变色材料——菌紫质或有机光致变色材料——俘精酸酐。菌紫质薄膜或俘精酸酐薄膜是由菌紫质或俘精酸酐与高分子聚合物(如明胶,聚乙烯醇,PMMA等)按一定比例混合制备于透明玻璃上的薄膜,其上还可覆盖一层透明保护层用于保护薄膜不被机械损伤。菌紫质是一种从嗜盐菌中提取出来的光敏蛋白质,全称是细菌视紫红质(bacteriorhodopsin),简称菌紫质或BR。菌紫质可以是野生型的、化学修饰型的或基因改性型的。本实施例中使用的是一种基因改性型的BR-D96N菌紫质薄膜,薄膜厚度约80m,附图5是其基态(B态)和亚稳中间态(M态)的吸收光谱,B态的吸收峰在570nm,M态的吸收峰在410nm。本实施例选择波长633nm,功率2mW的连续He-Ne激光器作为记录与读出光源。全息图擦除光源为波长405nm的半导体激光器。A photochromic material film with light-induced anisotropy is used as a rewritable holographic recording medium. In the embodiment, a biomolecular photochromic material—bacteriorhodopsin or an organic photochromic material—fulginic anhydride is used. The bacillus rhodopsin film or fulgid anhydride film is a film prepared by mixing bacillus rhodopsin or fulgid anhydride with a high molecular weight polymer (such as gelatin, polyvinyl alcohol, PMMA, etc.) in a certain proportion on a transparent glass. A transparent protective layer is applied to protect the film from mechanical damage. Bacteriorhodopsin is a light-sensitive protein extracted from halophilic bacteria. The full name is bacteriorhodopsin (bacteriorhodopsin), referred to as bacteriorhodopsin or BR. Bacillus rhodopsin can be wild type, chemically modified or genetically modified. What used in the present embodiment is a kind of genetically modified BR-D96N bacillhodopsin film, film thickness about 80m, accompanying drawing 5 is the absorption spectrum of its ground state (B state) and metastable intermediate state (M state), The absorption peak of the B state is at 570nm, and the absorption peak of the M state is at 410nm. In this embodiment, a continuous He-Ne laser with a wavelength of 633 nm and a power of 2 mW is selected as the recording and reading light source. The light source for erasing the hologram is a semiconductor laser with a wavelength of 405nm.
当采用正交线偏振光记录时,光致变色材料薄膜作为记录介质的偏振全息光存储装置包括读写激光器1、总快门2、偏振分光棱镜3、物光路、参考光路、全息记录介质12;总快门2、偏振分光棱镜3、物光路依次设置在读写激光器1发射光束的传播方向上;物光路包括物光快门4、扩束准直透镜组5、空间光调制器6、第一傅立叶变换透镜7、物光空间滤波光阑8、第一傅立叶反变换透镜9和第二傅立叶变换透镜11,其中空间光调制器6位于第一傅立叶变换透镜7的前焦面,物光空间滤波光阑8位于第一傅立叶变换透镜7的后焦面,第一傅立叶反变换透镜9的前焦面与第一傅立叶变换透镜7的后焦面重合,第一傅立叶反变换透镜9的后焦面与第二傅立叶变换透镜11的前焦面重合,全息记录介质12位于第二傅立叶变换透镜11的后焦面;参考光路包括反射镜13、光强衰减器14、参考光空间滤波光阑16、旋转反射镜17、第一透镜18和第二透镜19,其中反射镜13设置在偏振分光棱镜3反射光束传播方向上,第一透镜18和第二透镜19构成4F结构,旋转反射镜17位于透镜18的前焦面,全息记录介质12位于透镜19的后焦面。When orthogonal linearly polarized light is used for recording, the polarization holographic optical storage device with a photochromic material film as the recording medium includes a read-write
当采用正交圆偏振光记录时,可在物光路中第一傅立叶反变换透镜9和第二傅立叶变换透镜11之间设置物光用四分之一波片10,在参考光路中光强衰减器14和参考光空间滤波光阑16之间设置参考光用四分之一波片15。When adopting orthogonal circular polarized light recording, a quarter-wave plate 10 for object light can be set between the first inverse Fourier transform lens 9 and the second Fourier transform lens 11 in the object light path, and the light intensity is attenuated in the reference light path A quarter-wave plate 15 for reference light is set between the filter 14 and the reference light spatial filter diaphragm 16 .
当采用正交线偏振光读出时,全息光存储装置还包括依次设置在读写激光器1光束传播方向上的偏振片21、第二傅立叶反变换透镜22、衍射光快门23、图像采集器件24,其中偏振片21位于全息记录介质12和第二傅立叶反变换透镜22之间,第二傅立叶反变换透镜22的前焦面与第二傅立叶变换透镜11的后焦面重合,图像采集器件24的光敏面位于第二傅立叶反变换透镜22的后焦面。When using orthogonal linearly polarized light to read, the holographic optical storage device also includes a polarizer 21, a second inverse Fourier transform lens 22, a diffractive optical shutter 23, and an image acquisition device 24, which are sequentially arranged in the beam propagation direction of the read-write
当采用正交圆偏振光读出时,可在物光路中第一傅立叶反变换透镜9和第二傅立叶变换透镜11之间设置物光用四分之一波片10,在参考光路中光强衰减器14和参考光空间滤波光阑16之间设置参考光用四分之一波片15,在全息记录介质12和偏振片21之间设置衍射光用四分之一波片20。When adopting orthogonal circularly polarized light to read out, a quarter-wave plate 10 for object light can be set between the first inverse Fourier transform lens 9 and the second Fourier transform lens 11 in the object light path, and the light intensity in the reference light path A quarter-wave plate 15 for reference light is provided between the attenuator 14 and the spatial filter diaphragm 16 for reference light, and a quarter-wave plate 20 for diffracted light is provided between the hologram recording medium 12 and the polarizer 21 .
需要擦除全息图时,全息光存储装置可设置擦除激光器25,擦除激光器25为输出波长接近光致变色材料亚稳态吸收峰的连续或脉冲激光器,其光束与读写激光器1的光束在全息记录介质12上相交重合。When the hologram needs to be erased, the holographic optical storage device can be equipped with an erasing laser 25, the erasing laser 25 is a continuous or pulsed laser whose output wavelength is close to the metastable absorption peak of the photochromic material, and its beam is the same as the beam of the read-write
如附图1所示,非偏振的He-Ne激光1经偏振分光棱镜3分束后形成相互正交的线偏振物光(水平偏振)和参考光(垂直偏振)。物光经过扩束准直器5后均匀照明空间光调制器6。第一傅里叶变换透镜7和第一傅里叶反变换透镜9组成4F结构,空间光调制器6位于第一傅里叶变换透镜7的前焦面,物光空间滤波光阑8位于第一傅里叶变换透镜7的后焦面;第一傅里叶反变换透镜9对空间滤波后的频谱进行傅立叶反变换,在其后焦面形成空间光调制器6经低通滤波后的像。第二傅里叶变换透镜11与第一傅里叶反变换透镜9共焦,第二傅里叶变换透镜11的前焦面的像经过傅立叶变换在其后焦面形成频谱。第二傅里叶变换透镜11和第二傅里叶反变换透镜22组成另一个4F结构,全息记录介质12位于第二傅里叶变换透镜11的后焦面处记录傅立叶变换频谱全息图,经过第二傅里叶反变换透镜22的傅立叶反变换后在其后焦面处成像。CCD图像采集器件24位于第二傅里叶反变换透镜22的后焦面处,摄取物像及衍射像。As shown in FIG. 1 , the unpolarized He-Ne
参考光路首先经反射镜13将光路折叠,再经参考光空间滤波光阑16截取高斯光束中心光强较均匀的部分,然后经旋转反射镜17将参考光反射至全息记录介质12上与物光重合。参考光与物光呈90°夹角入射于全息记录介质12的同一侧,可对称也可非对称于全息记录介质12的法线方向。为了实现角度复用,在旋转反射镜17和全息记录介质12之间设置由第一透镜18和第二透镜19构成的另一个4F结构,这样通过旋转反射镜17可以改变参考光入射角,同时保证参考光在全息记录介质12的入射光斑位置不变,其光路原理图如附图4所示,参考角的改变量是反射镜旋转角度的2倍。The reference light path first folds the light path through the reflector 13, and then intercepts the part with a relatively uniform light intensity in the center of the Gaussian beam through the reference light spatial filter diaphragm 16, and then reflects the reference light to the holographic recording medium 12 and the object light through the rotating reflector 17. coincide. The reference light and the object light are incident on the same side of the holographic recording medium 12 at an angle of 90°, and may be symmetrical or asymmetrical to the normal direction of the holographic recording medium 12 . In order to realize angle multiplexing, another 4F structure composed of a first lens 18 and a second lens 19 is set between the rotating mirror 17 and the holographic recording medium 12, so that the reference light incident angle can be changed by rotating the mirror 17, and at the same time To ensure that the incident spot position of the reference light on the holographic recording medium 12 remains unchanged, the schematic diagram of the optical path is shown in Figure 4, and the change of the reference angle is twice the rotation angle of the mirror.
全息记录时,关闭衍射光快门23以阻挡物光进入图像采集器件24,打开物光快门4,通过控制总快门2控制记录曝光时间。连续可调光强衰减器14用于调节物光和参考光的强度之比。通过转动旋转反射镜17至不同的角度,可以在全息记录介质12的同一空间位置记录多幅全息图。通过移动全息记录介质12,还可以在不同的空间位置记录多幅全息图。若采用正交园偏振光记录,需在物光和参考光路中分别加入物光四分之一波片10和参考光四分之一波片15,将物光和参考光分别变为左旋和右旋偏振光。During holographic recording, the diffractive light shutter 23 is closed to prevent the object light from entering the image acquisition device 24, the object light shutter 4 is opened, and the recording exposure time is controlled by controlling the
全息再现读出时,关闭物光快门4阻挡物光,打开衍射光快门23接收衍射光,通过控制总快门2进行再现读出。调节光强衰减器14可以控制再现光强度。转动旋转反射镜17至全息记录时相应的角度可以分别选择读出需要再现的各幅全息图。移动全息记录介质12到全息记录时相应的位置,可以读出记录在不同空间位置的全息图。偏振片21用于选择通过衍射光而阻挡散射噪声,达到提高信噪比的目的。若记录方式为正交园偏振光记录,则需在偏振片21前加入衍射光四分之一波片20,使正交园偏振的衍射光和散射噪声转变为正交线偏振的衍射光和散射噪声。During holographic reproduction and readout, the object light shutter 4 is closed to block the object light, the diffracted light shutter 23 is opened to receive diffracted light, and the
本实用新型原理:Principle of the utility model:
普通全息使用的是具有相同偏振方向的物光和参考光干涉形成光强调制光栅。正交偏振全息的物光和参考光具有相互正交的偏振方向(相互正交的线偏振光或相互正交的圆偏振光),形成的干涉场的光强分布是均匀的,不能产生强度调制光栅。但是正交偏振产生的干涉场的偏振态是周期调制的,可以形成偏振态调制光栅,如附图2所示。对于只对光强响应的各向同性记录介质,无法记录偏振态调制光栅。而对具有光诱导各向异性的记录介质,分子可以对光的偏振态产生响应,干涉场偏振态的周期变化会引起分子电偶极矩取向的周期变化,分子产生沿椭圆偏振光长轴方向或线偏振光偏振方向的光轴,电偶极矩的取向与光轴方向垂直,产生具有类似单轴晶体的性质。一些光致变色材料具有这种光诱导各向异性,因此可以实现偏振态相互正交的两束光的正交偏振全息图记录。Ordinary holography uses the interference of object light and reference light with the same polarization direction to form a light intensity modulation grating. The object light and reference light of orthogonal polarization holography have mutually orthogonal polarization directions (mutually orthogonal linearly polarized light or mutually orthogonally polarized light), and the light intensity distribution of the formed interference field is uniform, and cannot produce intensity Modulation grating. However, the polarization state of the interference field generated by the orthogonal polarization is periodically modulated, and a polarization state modulation grating can be formed, as shown in FIG. 2 . For isotropic recording media that respond only to light intensity, polarization-modulated gratings cannot be recorded. For recording media with light-induced anisotropy, molecules can respond to the polarization state of light, and the periodic changes in the polarization state of the interference field will cause periodic changes in the orientation of the molecular electric dipole moment, and the molecules will generate a wave along the long axis of elliptically polarized light. Or the optical axis of the polarization direction of linearly polarized light, the orientation of the electric dipole moment is perpendicular to the optical axis direction, resulting in properties similar to uniaxial crystals. Some photochromic materials have this light-induced anisotropy, so that the orthogonally polarized hologram recording of two beams of light whose polarization states are orthogonal to each other can be realized.
当以偏振参考光再现全息图时,全息记录介质上记录的偏振光栅对参考光衍射,形成包含强度,相位及偏振信息的衍射像。衍射光的偏振态与再现参考光的偏振态及记录光的偏振态有关系,如附图3所示。衍射效率与记录光偏振态和再现参考光偏振态有关,当以原参考光再现时,可以获得最高的衍射效率,并且衍射光偏振总与再现光偏振正交,即,若以正交的线偏振光记录,用原参考光再现,则衍射光为与参考光正交的线偏振光;若以正交的园偏振光记录,用原参考光再现,则衍射光为与参考光正交的园偏振光。正交圆偏振光记录全息图的衍射效率与普通同偏振记录全息图的衍射效率相当;正交线偏振光记录全息图的衍射效率约为前者的一半。When the hologram is reproduced with polarized reference light, the polarized grating recorded on the holographic recording medium diffracts the reference light to form a diffraction image including intensity, phase and polarization information. The polarization state of the diffracted light is related to the polarization state of the reproduction reference light and the polarization state of the recording light, as shown in FIG. 3 . The diffraction efficiency is related to the polarization state of the recording light and the polarization state of the reproduced reference light. When the original reference light is reproduced, the highest diffraction efficiency can be obtained, and the polarization of the diffracted light is always orthogonal to the polarization of the reproduced light. That is, if the orthogonal line When polarized light is recorded and reproduced with the original reference light, the diffracted light is linearly polarized light orthogonal to the reference light; if it is recorded with orthogonal circular polarized light and reproduced with the original reference light, the diffracted light is orthogonal to the reference light circular polarized light. The diffraction efficiency of the hologram recorded with orthogonal circularly polarized light is equivalent to that of the ordinary same-polarized recorded hologram; the diffraction efficiency of the hologram recorded with orthogonal linearly polarized light is about half of the former.
散射噪声一般为部分偏振光,大部分是与再现参考光偏振态相同的成分。对于正交线偏振光记录情况,再现读出时可以在图像采集器件前放置检偏器,选择通过衍射像而阻止与其正交的散射噪声进入图像采集器件;对于正交园偏振光记录情况,再现读出时除了在图像采集器件前放置检偏器外,还需在检偏器前再放置四分之一波片,使相互正交的园偏振光变为相互正交的线偏振光,然后再用检偏器分离出衍射像而阻止散射噪声,实现提高信噪比的目的。Scattering noise is generally partially polarized light, mostly components of the same polarization state as the reproduced reference light. For the case of orthogonal linearly polarized light recording, an analyzer can be placed in front of the image acquisition device during readout, and the diffraction image can be selected to prevent the scattering noise orthogonal to it from entering the image acquisition device; for the case of orthogonal circular polarized light recording, In addition to placing the analyzer in front of the image acquisition device during reproduction and readout, a quarter-wave plate needs to be placed in front of the analyzer, so that the mutually orthogonal circular polarized light becomes mutually orthogonal linearly polarized light, Then use the analyzer to separate the diffraction image to prevent the scattering noise and achieve the purpose of improving the signal-to-noise ratio.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200420042274 CN2729863Y (en) | 2004-07-30 | 2004-07-30 | Polarization holographic optical storage device using photochromic material film as recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200420042274 CN2729863Y (en) | 2004-07-30 | 2004-07-30 | Polarization holographic optical storage device using photochromic material film as recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2729863Y true CN2729863Y (en) | 2005-09-28 |
Family
ID=35048636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200420042274 Expired - Fee Related CN2729863Y (en) | 2004-07-30 | 2004-07-30 | Polarization holographic optical storage device using photochromic material film as recording medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2729863Y (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314015C (en) * | 2004-07-30 | 2007-05-02 | 中国科学院西安光学精密机械研究所 | Polarization holographic optical storage device using photochromic material film as recording medium |
CN107831141A (en) * | 2017-10-25 | 2018-03-23 | 中国科学院城市环境研究所 | A kind of method for recording consumptive material life-span |
CN109827910A (en) * | 2019-01-22 | 2019-05-31 | 塔里木大学 | A kind of quick monitoring process method of orchard establishing data |
-
2004
- 2004-07-30 CN CN 200420042274 patent/CN2729863Y/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314015C (en) * | 2004-07-30 | 2007-05-02 | 中国科学院西安光学精密机械研究所 | Polarization holographic optical storage device using photochromic material film as recording medium |
CN107831141A (en) * | 2017-10-25 | 2018-03-23 | 中国科学院城市环境研究所 | A kind of method for recording consumptive material life-span |
CN107831141B (en) * | 2017-10-25 | 2020-07-03 | 中国科学院城市环境研究所 | A method of recording the life of consumables |
CN109827910A (en) * | 2019-01-22 | 2019-05-31 | 塔里木大学 | A kind of quick monitoring process method of orchard establishing data |
CN109827910B (en) * | 2019-01-22 | 2021-05-04 | 塔里木大学 | A rapid monitoring and processing method for establishing orchard data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4991872B2 (en) | Configuration of monocular holographic data storage system | |
Ashley et al. | Holographic data storage technology | |
US7154646B2 (en) | Optical recording apparatus and optical recording/reproducing apparatus | |
JP4175204B2 (en) | Hologram erasing method and hologram erasing apparatus | |
US20010002895A1 (en) | Optical storage medium, optical storage method, optical storage apparatus, optical reading method, optical reading apparatus, optical retrieving method and optical retrieving apparatus | |
CN1314015C (en) | Polarization holographic optical storage device using photochromic material film as recording medium | |
US20030156523A1 (en) | Optical storage system | |
US20060176532A1 (en) | Holographic recording and reconstructing apparatus and holographic recording and reconstructing method | |
WO2008047282A2 (en) | Setupand methods for storing data in and reading out data from a holographic storage arrangement. | |
CN2729863Y (en) | Polarization holographic optical storage device using photochromic material film as recording medium | |
JP4174982B2 (en) | Hologram recording / reproducing method, hologram recording / reproducing apparatus, hologram recording method, and hologram recording apparatus | |
CN1255785C (en) | A non-volatile holographic data storage method | |
US7230747B2 (en) | Hologram retention method | |
EP2390731B1 (en) | Monocular holographic data storage system architecture | |
Yao et al. | Polarization holograms recording in photochromic diarylethenes polymeric film | |
US20030147327A1 (en) | Holographic storage device with faceted surface structures and associated angle multiplexing method | |
Zong et al. | Polarization Multiplexing, Angle Multiplexing and Circumrotation Multiplexing Holographic Recording Experiments with 3-Indoly-Benzylfulgimide/PMMA Film | |
TW200822096A (en) | Optical storage system | |
KR20090017387A (en) | Holographic information storage medium, apparatus and method for holographic information recording / reproduction using the same | |
KR100694321B1 (en) | Optical information recording apparatus, optical information recording method using same, optical information reproducing apparatus and optical information reproducing method using same | |
Lin et al. | Holographic data storage in low-shrinkage doped photopolymer | |
JP2000122513A (en) | Optical recording medium, optical recording method, optical recorder, optical reproducing method and optical reproducing device | |
JP2004212606A (en) | Optical information recording apparatus | |
JP2004348856A (en) | Device and method for recording/reproducing optical information, optical information recording medium, device and method for recording optical information, and device and method for reproducing optical information | |
JP2001117475A (en) | Characteristic extraction method and characteristic extraction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |