CN2711404Y - Mixing type traveling wave themoacoustic engine with bypass structure - Google Patents

Mixing type traveling wave themoacoustic engine with bypass structure Download PDF

Info

Publication number
CN2711404Y
CN2711404Y CN 200420020569 CN200420020569U CN2711404Y CN 2711404 Y CN2711404 Y CN 2711404Y CN 200420020569 CN200420020569 CN 200420020569 CN 200420020569 U CN200420020569 U CN 200420020569U CN 2711404 Y CN2711404 Y CN 2711404Y
Authority
CN
China
Prior art keywords
traveling wave
mixing type
regenerator
type traveling
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 200420020569
Other languages
Chinese (zh)
Inventor
邱利民
孙大明
严伟林
陈萍
甘智华
陈国邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 200420020569 priority Critical patent/CN2711404Y/en
Application granted granted Critical
Publication of CN2711404Y publication Critical patent/CN2711404Y/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Abstract

The utility model discloses a mixing type traveling wave themoacoustic engine with bypass structure, comprising a feedback channel, an acoustic capacitance channel, an ejector pump, a primary cooler, a thermal acoustic regenerator, a heater, a thermal buffer channel, and a supplementary cooler, a resonance straight tube, and a silencing part which are successively connected with each other. A bypass structure is arranged between the feedback channel and the thermal acoustic regenerator. The utility model aims at reducing the sound power loss of the traveling wave loop, efficiently preventing the direct flow in the loop, and putting forward a bypass structure of the mixing type traveling wave themoacoustic engine. The utility model is an improved structure of the mixing type traveling wave themoacoustic engine, can efficiently prevent the direct flow in the loop, and can decrease the irreversible loss in the regenerator and the ejector pump. Thus, the performance of the themoacoustic engine can be improved.

Description

Mixing type traveling wave thermoacoustic engine with by-pass structure
Technical field
The utility model relates to a kind of mixing type traveling wave thermoacoustic engine with by-pass structure, and by-pass structure can improve the performance of thermoacoustic engine.
Background technique
Thermoacoustic engine is to utilize thermoacoustic effect, realizes the sound generator of heat energy to acoustic energy conversion and the output of realization sound merit.According to the sound field characteristic difference, thermoacoustic engine mainly is divided into three kinds of patterns of the capable ripple hybrid type of stationary mode, travelling-wave type and standing wave.Because standing-wave sound field medium velocity ripple and pressure wave phase difference are 90 °, do not have the transmission of merit in the stationary field in theory; On the other hand, in standing wave thermoacoustic engine plate is folded gas with solid between heat exchange relatively poor, what gas carried out is that irreversible thermodynamics circulate, so thermoacoustic engine efficient is low.The utilization of travelling-wave type thermoacoustic engine be row wave sound field, the fluctuation of sound field medium velocity is identical with the pressure surge phase place, and the hydraulic radius of gas channel is much smaller than the gas heat penetration in the motor regenerator, gas carries out in regenerator warm transmission such as is, so traveling wave thermoacoustic engine can reach the thermodynamic efficiency higher than standing wave thermoacoustic engine in theory.But utilize pure capable wave sound field also be difficult to realize higher heat sound transformation efficiency, main cause has: 1) always there is thermal hysteresis when heat is transmitted mutually between the gas medium inevitably in solid dielectric in the regenerator; 2) going the wave sound field has the low acoustic impedance characteristic, and this can cause big viscosity loss, particularly at the regenerator place; 3) there are various forms of loop direct currents.The standing wave forthright is introduced in appropriate location at loop, constitute mixing type traveling wave thermoacoustic engine, the thermal hysteresis that can utilize on the one hand solid dielectric in the regenerator to exist when heat is transmitted mutually between the gas medium realizes the conversion of standing wave heat sound, thus can improve on the other hand capable wave sound field particularly the acoustic impedance at regenerator place reduce viscous loss.U.S. Los Alamos National Laboratory has made a travelling-wave type thermoacoustic engine, draw a standing wave forthright by the ripple loop of being expert at, successfully in sound field, introduce the standing wave composition, and in experiment, obtained 42% relative Carnot efficiency and 30% thermodynamic efficiency.As shown in Figure 1, mixing type traveling wave thermoacoustic engine has following constituent element usually:
One, goes the ripple loop
1. primary cooler, primary cooler is positioned at the top of regenerator 2, and its effect is to take away heat, cooled gas working medium at the regenerator indoor temperature end, to set up the temperature gradient on the thermal acoustic regenerator;
2. thermal acoustic regenerator is positioned at primary cooler 1 below, and thermal acoustic regenerator is the key member that produces and strengthen thermoacoustic effect, and the thermoacoustic effect of Fa Shenging produces merit or strengthens herein;
3. heater, the effect of heater are that the other end at the relative cooler of regenerator provides a high temperature heat source, form a temperature gradient with the ambient temperature at cooler place on regenerator.This temperature gradient is the power of thermoacoustic engine work;
4. thermal buffer channel, thermal buffer channel are between heater 3 and supplementary cooler 5, and effect is to realize that the heater and the heat of supplementary cooler isolates, and to reduce the leakage heat of hot end heat exchanger to supplementary cooler, makes the sound merit from the outwards transmission of engine high-temperature zone simultaneously.In order to reduce axial thermal conductivity, tube wall should be thin as far as possible under the situation of requirement of strength satisfying for thermal buffer channel;
5. supplementary cooler and fluid director, the effect of supplementary cooler are the gas temperatures that reduces transmission sound merit, are beneficial to that merit is drawn and provide power for hot sound refrigerating machine.Direct current in loop flows, and (Gedeon flows, promptly pass through the time equal mass flow along loop such as regenerator, thermal buffer channel, feedback pipe) and thermal buffer channel in direct current flow when all being suppressed fully, the load of supplementary cooler only is that diameter is big so supplementary cooler can adopt along the leakage of thermal buffer channel tube wall heat with from the thermal radiation of hot end heat exchanger, length is lacked the Stainless Steel Tube of (being that heat exchange area is less);
Fluid director is positioned at thermal buffer channel below, and effect is to make to enter the thermal buffer channel bottom and the interior air-flow of thermal buffer channel evenly distributes, prevent owing to the shape of supplementary cooler or with the jet that forms that separates of the tie point place air-flow of resonatron.Jet can cause the direct current of gas in the thermal buffer channel to flow, and causes the waste of a large amount of heats of heater.
6. feedback pipe, the effect of feedback pipe are for the row wave component provides path, play the effect of phonoreception parts simultaneously, make the cooler place produce traveling-wave phase;
7. acoustic capacitance channel, acoustic capacitance is a cavity that volume is bigger across loop left and right sides branch road.It is acoustic capacitance parts in essence, realizes traveling-wave phase in cooler end together with the feedback forthright;
8. jet pump, spray body pump is between acoustic capacitance 7 and primary cooler 1, its effect is to utilize the runner asymmetrical effect to produce a pressure difference at two ends, forms a counteracting as far as possible with it of flowing also against loop second order mass flow, thereby suppresses loop Gedeon direct current.
Two, standing wave resonance forthright
9. resonance straight-path, the effect of resonance straight-path are the standing wave pipelines of coupling on the ripple loop of being expert at, and in standing wave composition drawing-in system, make this system have the advantage of standing wave and traveling wave thermoacoustic engine concurrently, thereby have improved the thermodynamic efficiency of thermoacoustic engine; On the other hand, resonance straight-path is drawn most of sound merit and is formed the standing wave phase place at forthright from loop, because standing wave system can realize bigger acoustic impedance, so resonance straight-path provides the optimum position that connects load;
10. muffling part.
Owing to exist capable ripple loop, to consider that therefore direct current suppresses problem in the hybrid type thermoacoustic engine.Adopt the jet pump structure of people such as the Swift promotion of U.S. Los Alamos National Laboratory, suppress effect preferably though can obtain, the loss of sound merit is bigger.And the sound merit in the feedback loop is when all getting back to regenerator, and loss is too big in regenerator.
Summary of the invention
The purpose of this utility model provides a kind of mixing type traveling wave thermoacoustic engine with by-pass structure.
It comprises feedback pipe, acoustic capacitance channel, jet pump, primary cooler, thermal acoustic regenerator, heater, thermal buffer channel, supplementary cooler, resonance straight-path, the muffling part that connects successively, establishes by-pass structure between feedback pipe and thermal acoustic regenerator.
The utility model loses for the sound merit that reduces in the capable ripple loop, and effectively suppresses the direct current in the loop, proposes to use on mixing type traveling wave thermoacoustic engine by-pass structure.
A kind of by-pass structure be from regenerator to feedback pipe connection one or more bypass tube, the Guan Shangke mounted valve is used for regulating the size of bypass sound merit.So a part of feedback sound merit just need not be by jet pump and whole regenerator, thereby can significantly reduce the irreversible loss of merit in regenerator and jet pump in theory, thereby improves the efficient of thermoacoustic engine.
Another kind of by-pass structure is to be expert to adopt double-feedback-loop in the ripple loop.Respectively establish a feedback loop in the both sides of regenerator place branch road, adopt two feedback arrangements.The resonance straight tube can follow row ripple loop in same plane, also can be perpendicular to the plane at row ripple loop place.If adopt the double loop structure of symmetry, acoustic streaming equal and opposite in direction, direction in two feedback loops are opposite, can effectively suppress the generation of direct current, so can remove the jet pump structure of consumption sound merit in the system from, have reduced the irreversible loss of system.And the employing symplex structure, help strengthening the steadiness of capable ripple loop structure.
The mixing type traveling wave thermoacoustic engine that by-pass structure is arranged is two kinds of typical case of by-pass structure, and by-pass structure also can adopt other various ways.For example in loop, connect several pipelines simultaneously between any two branch roads, or the like, the category of mixing type traveling wave thermoacoustic engine all belonged to by-pass structure.On mixing type traveling wave thermoacoustic engine, adopt the outstanding advantage of by-pass structure: be to the structural innovation of mixing type traveling wave thermoacoustic engine, can effectively suppress the direct current on the row ripple loop, and reduce irreversible loss in regenerator and the jet pump, thereby improve the performance of thermoacoustic engine.
Description of drawings
Fig. 1 is the mixing type traveling wave thermoacoustic engine structural representation;
Fig. 2 is the mixing type traveling wave thermoacoustic engine structural representation that uses by-pass structure between regenerator and feedback pipe;
Fig. 3 is the hybrid type thermoacoustic engine structural representation that adopts symmetrical feedback arrangement.
Embodiment
As shown in Figure 2, a kind of mixing type traveling wave thermoacoustic engine with by-pass structure comprises feedback pipe 6, acoustic capacitance channel 7, jet pump 8, primary cooler 1, thermal acoustic regenerator 2, heater 3, thermal buffer channel 4, supplementary cooler 5, resonance straight-path 9, the muffling part 10 that connects successively, establishes by-pass structure between feedback pipe 6 and thermal acoustic regenerator 2.By-pass structure is a bypass tube, is provided with the valve of adjusting sound merit flow size on bypass tube.
As shown in Figure 3, the mixing type traveling wave thermoacoustic engine that another kind has a by-pass structure comprises feedback pipe 6, acoustic capacitance channel 7, jet pump 8, primary cooler 1, thermal acoustic regenerator 2, heater 3, thermal buffer channel 4, supplementary cooler 5, resonance straight-path 9, the muffling part 10 that connects successively, is connected with second feedback pipe at the inlet of acoustic capacitance channel 7 and resonance straight-path 9.Be expert at and establish by-pass structure between feedback pipe 6 between the acoustic capacitance channel 7 of the hot acoustic generator of ripple loop structure and resonance straight-path 9 inlets or second feedback pipe or feedback pipe 6 and second feedback pipe and the thermal acoustic regenerator 2.By-pass structure is a bypass tube, is provided with the valve of adjusting sound merit flow size on bypass tube.
Thermoacoustic engine is assembled the constituent elements of loop and resonance straight-path, loop and resonance straight-path is linked together by flange after finishing the assembling of loop and resonance straight-path respectively, has just realized the assembling of whole system.After finishing the assembling of system, charge into the working gas of certain pressure in system, the water inlet of major and minor cooler and outlet conduit are connected also water flowing, heater begins heating, and system enters working state so, can obtain merit output at the suitable position of system.

Claims (4)

1. mixing type traveling wave thermoacoustic engine with by-pass structure, it comprises successively the hot acoustic generator of capable ripple loop structure that the feedback pipe (6), acoustic capacitance channel (7), jet pump (8), primary cooler (1), thermal acoustic regenerator (2), heater (3), thermal buffer channel (4), the supplementary cooler (5) that connect are formed and resonance straight-path (9), muffling part (10), it is characterized in that: establish by-pass structure between the feedback pipe (6) of the hot acoustic generator of ripple loop structure of being expert at and the thermal acoustic regenerator (2).
2. a kind of mixing type traveling wave thermoacoustic engine with by-pass structure according to claim 1 is characterized in that: the acoustic capacitance channel (7) of the hot acoustic generator of ripple loop structure of being expert at is connected with second feedback pipe with the inlet of resonance straight-path (9).
3. a kind of mixing type traveling wave thermoacoustic engine with by-pass structure according to claim 2 is characterized in that: establish by-pass structure between said second feedback pipe and thermal acoustic regenerator (2).
4. according to claim 1 or 3 described a kind of mixing type traveling wave thermoacoustic engines with by-pass structure, it is characterized in that: said by-pass structure is a bypass tube, is provided with the valve of adjusting sound merit flow size on bypass tube.
CN 200420020569 2004-02-26 2004-02-26 Mixing type traveling wave themoacoustic engine with bypass structure Expired - Lifetime CN2711404Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200420020569 CN2711404Y (en) 2004-02-26 2004-02-26 Mixing type traveling wave themoacoustic engine with bypass structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200420020569 CN2711404Y (en) 2004-02-26 2004-02-26 Mixing type traveling wave themoacoustic engine with bypass structure

Publications (1)

Publication Number Publication Date
CN2711404Y true CN2711404Y (en) 2005-07-20

Family

ID=36192507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200420020569 Expired - Lifetime CN2711404Y (en) 2004-02-26 2004-02-26 Mixing type traveling wave themoacoustic engine with bypass structure

Country Status (1)

Country Link
CN (1) CN2711404Y (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593678C (en) * 2006-12-31 2010-03-10 中国科学院理化技术研究所 Tandem type thermoacoustic system
CN104895751A (en) * 2015-04-10 2015-09-09 中国科学院理化技术研究所 Single output multi-grade traveling wave thermo-acoustic engine system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593678C (en) * 2006-12-31 2010-03-10 中国科学院理化技术研究所 Tandem type thermoacoustic system
CN104895751A (en) * 2015-04-10 2015-09-09 中国科学院理化技术研究所 Single output multi-grade traveling wave thermo-acoustic engine system
CN104895751B (en) * 2015-04-10 2017-07-14 中国科学院理化技术研究所 A kind of multistage traveling wave thermo-acoustic engine system of single output

Similar Documents

Publication Publication Date Title
CN101706169B (en) Thermoacoustically-driven thermally-coupled two-stage pulse tube cooling system
US9777951B2 (en) Thermoacoustic engine
WO2018028367A1 (en) Multi-stage thermoacoustic generator unit and multi-stage heat regenerative refrigeration system having same
Göktun et al. Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition
WO2018107827A1 (en) System using thermoacoustic engine to drive thermoacoustic heat pump
CN102116538B (en) Double-effect and triple-effect first-type absorption heat pump with heat return end and heat supply end
CN103808063A (en) Acoustic resonance type thermally-driven travelling wave thermo-acoustic refrigerating system
CN101608847A (en) The thermoacoustic refrigeration system that using waste heat from tail gas of internal combustion engine drives
CN108167147A (en) A kind of tandem cold, heat electric shaft producting device
CN102901263B (en) Multilevel pulse tube refrigerator utilizing acoustic pressure amplifier
CN104654650A (en) Inertia tube vessel device and application thereof
JP3857587B2 (en) Refrigerator operating periodically
CN1293303C (en) Engine of mixing line wave thermal sound with bypass structure
CN103527433A (en) Thermo-acoustic engine system simultaneously using cold source and heat source
CN2711404Y (en) Mixing type traveling wave themoacoustic engine with bypass structure
CN208343853U (en) A kind of electrombile thermal management system
CN211953255U (en) Waste heat recovery system of circulating heat pump hot water unit
JP2005233485A (en) Cooling device for internal combustion engine
CN100402844C (en) Double-feedback-loop mixing type traveling wave thermoacoustic engine with bypass structure
CN1282825C (en) Mixed line wave thermal sound engine with bouble-end drive
CN2697342Y (en) Double end driven mixing type travelling wave thermocoustic engine
CN2876632Y (en) Thermoacoustic driven pulse tube refrigerator system
CN106247661A (en) A kind of multi-stage pulse tube refrigeration machine
CN108995817B (en) Multi-ring heat exchanger and propulsion system and method based on multi-ring heat exchanger
CN108168134B (en) Inertia tube pulse tube device

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Effective date of abandoning: 20040226

C25 Abandonment of patent right or utility model to avoid double patenting