CN2616908Y - 一种作物水分胁迫指数测定装置 - Google Patents

一种作物水分胁迫指数测定装置 Download PDF

Info

Publication number
CN2616908Y
CN2616908Y CN 03245091 CN03245091U CN2616908Y CN 2616908 Y CN2616908 Y CN 2616908Y CN 03245091 CN03245091 CN 03245091 CN 03245091 U CN03245091 U CN 03245091U CN 2616908 Y CN2616908 Y CN 2616908Y
Authority
CN
China
Prior art keywords
unit
data acquisition
acquisition unit
angled intersection
sway brace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 03245091
Other languages
English (en)
Inventor
袁国富
孙晓敏
罗毅
朱治林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geographic Sciences and Natural Resources of CAS
Original Assignee
Institute of Geographic Sciences and Natural Resources of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geographic Sciences and Natural Resources of CAS filed Critical Institute of Geographic Sciences and Natural Resources of CAS
Priority to CN 03245091 priority Critical patent/CN2616908Y/zh
Application granted granted Critical
Publication of CN2616908Y publication Critical patent/CN2616908Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本实用新型为一种作物水分胁迫指数测定装置。它包括:数据采集单元和数据处理单元;数据采集单元由数据采集探头组成,数据处理单元包括数据采集器和计算单元,数据采集单元与数据处理单元连接;数据采集探头包括有红外温测探头、通风干湿表、太阳净辐射表、风速仪。本装置克服了采用土壤水分信息指导农业灌溉系统的不足,监测站点可设置在田间任意位置,提高了工作效率且系统无须埋入地下,为农业机械化劳动提供了便利的条件。本装置应用CWSI的理论模式进行作物水分胁迫诊断、形成灌溉决策,提高了诊断精度,可大大减少水资源的浪费,提高灌溉水资源的利用率。

Description

一种作物水分胁迫指数测定装置
技术领域:
本实用新型涉及一种农业灌溉系统,尤其涉及一种应用作物水分胁迫指数CWSI理论模式实施探测、数据处理和给出灌溉决策的装置。
背景技术:
现有技术中,农业灌溉决策系统一般选取土壤水分为控制参数,再配以相关的计算方法。但是选取土壤水分为控制参数的系统有以下缺点:首先,由于大田土壤的土壤水分具有很大的异质性,选取土壤水分为控制参数,这就意味着必须安装一定数量的土壤水分探头,才能保证测量系统的测量具有代表性,但是在大田里布设比较多的土壤水分探头或经常进入田地中央测量是很不现实的,而田地边缘的土壤水分往往不具有很好的代表性;其次,该系统显然只适用于面积不太大的灌溉受控系统,若灌溉面积较大,则操控人员操作和维护的劳动强度会很大;第三,水分传感器永久或半永久埋设将不利于大田的机械作业;第四,土壤水分和作物是否发生水分生理胁迫是一个间接和复杂关系,不同作物之间存在较大的差别。用作物冠层温度信息作为控制参数,采取非接触和近距离遥感方式,探测的主要信息直接来自作物本身,并结合几个作物生长环境的参数,使得探测结果更具有代表性,因此,用作物冠层温度信息作为控制参数,是指导田间灌溉开始时间的农田水分管理技术之一,能有效地防止作物遭受水分胁迫,从而稳定和提高作物产量。
另外,基于作物冠层温度的作物水分胁迫诊断指标是作物水分胁迫指数CWSI(Crop Water Stress Index)
CWSI的定义:
CWSI = ( T c - T a ) - ( T c - T a ) ll ( T c - T a ) ul - ( T c - T a ) ll
其中,Tc指作物冠层温度,Ta指空气温度,(Tc-Ta)ll是作物在潜在蒸发状态下的冠气温差,(Tc-Ta)ul是作物无蒸腾条件下的冠气温差。
根据CWSI的定义现有技术中存在两种计算方法:经验模式和理论模式。
1,经验模式,计算方法是:
(Tc-Ta)ll=A+B·VPD
(Tc-Ta)ul=A+B·VPG
其中,A,B分别为线性回归系数,VPD(Vapor Pressure Deficit)为空气的饱和水汽压差,VPG(Vapor Pressure Gap)指温度为Ta时的空气饱和水汽压和温度为Ta+A时的空气饱和水汽压之间的差。A,B可以通过田间实验获得,并针对某种作物在某一地区不发生变化。
2,理论模式,计算方法是:
( T c - T a ) ll = r a ( R n - G ) ρ C p · γ ( 1 + r cp / r a ) Δ + γ ( 1 + r cp / r a ) - VPD Δ + γ ( 1 + r cp / r a )
( T c - T a ) ul = rγ a ( R n - G ) ρ C p
其中,Rn为净辐射通量密度(Wm2),G为土壤热通量密度(Wm2),ρ为空气密度(kg m3),Cp为空气比热□J kg11□,γ为干湿表常数□Pa℃1□,ra为空气动力学阻力(sm1),rcp为潜在蒸发条件下的冠层阻力(sm1),Δ为饱和水汽压随温度变化的斜率□Pa℃1□,其他符号同上。
现有技术中根据CWSI的定义所发明的观测仪器主要是采用CWSI经验模式,将不同作物的A,B系数固化到便携式的红外测温仪器中,在观测作物冠层温度和空气饱和差后计算CWSI来应用于田间灌溉管理。
采用CWSI经验模式目前存在的问题有:以冬小麦为例,(1)没有考虑理论模式的应用,据研究,理论模式更适合在我国华北地区冬小麦水分胁迫监测上的应用;(2)CWSI理论模式的应用可以更为精确的诊断作物水分胁迫指数,并且根据CWSI理论模式所得出的灌溉建议可以更有效地利用水资源,提高水分利用效率。
实用新型的内容:
为了解决现有技术中农业灌溉决策系统中一般选取土壤水分为控制参数,所带来的测量点不具有普遍性、监测站点难以选取、操作人员劳动强度大、监控器材埋放在土壤中不利农业机械作业等问题。同时本实用新型也要解决现有技术中因应用CWSI经验模式评估作物水分胁迫指数的高低,所带来的在农业灌溉中水资源利用率不高、不适合我国华北地区农业区等问题。
本实用新型采取针对作物的冠层温度进行作物水分胁迫指数的测量体系,应用CWSI理论模式作为作物测量依据,从理论模式计算CWSI所需要的变量入手。
根据背景技术中有关CWSI理论模式计算的介绍,可知公式中涉及多种变量,用于CWSI理论模式计算的各个变量获取方式说明如下:
(1)冠层温度Tc:系统观测获取;
(2)空气温度Ta:系统观测获取;
(3)净辐射通量Rn:本系统观测获取;
(4)土壤热通量G:根据作物覆盖程度按0.1Rn或0.2Rn近似计算获得;
(5)空气密度ρ:为常数;
(6)空气比热Cp:常数;
(7)干湿表常数γ:常数;
(8)饱和水汽压随温度变化的斜率Δ:
按下式近似计算获得:
Δ=45.03+3.014T+0.05345T2+0.00224T3
其中变量T处理为冠层表面温度与空气温度的平均值((Tc+Ta)/2),可以经过系统观测获取;
(9)空气饱和差VPD:通过本系统观测的空气干球温度(即空气温度)和湿球温度计算获得;
(10)作物冠层最小阻力(阻抗)rcp:采用田间实验获取,它是一个仅跟作物相关的变量;
(11)空气动力学阻力ra
按以下公式计算:
当风速大于2ms1时:
r a = [ ln ( z - d z 0 ) ] 2 / ku 2
当风速小于等于2ms1时:
r a = 4.72 [ ln ( z - d z 0 ) ] 2 / ( 1 + 0.54 u )
其中,z为参考高度(m),d为零平面位移(m),设为0.75h,h为作物高度(m),z0为粗糙长度(m),设为0.13h,k为von Karman(卡曼)常数,为0.41,u为参考高度的风速(ms1)。在计算空气动力学阻力中,需要两个变量,一个是风速,一个是作物高度,其中风速由系统观测获得,作物高度则由其他方式获得。
从以上各变量获得情况看,系统需直接观测获得数据的有以下五个变量:
A、冠层温度
B、空气温度
C、冠层上方净辐射
D、空气湿球温度
E、风速
根据以上所需测量的变量,本系统需要安装的传感器探头有:红外温测探头、通风干湿表、太阳净辐射表、风速仪。
应用以上传感器探头组成作物水分胁迫指数测量系统的技术方案如下:
一种作物水分胁迫指数测定装置,其包括:数据采集单元和数据处理单元;
数据采集单元由数据采集探头组成,数据采集探头用来探测作物生长环境的几个主要参数;
数据处理单元包括数据采集器和计算单元;
数据采集单元与数据处理单元电连接,数据采集单元将数据信号输入给所述的数据处理单元中的数据采集器,数据采集器将采集的信号传送给计算单元,由所述的计算单元对数据信号进行处理;
其特征在于:数据采集单元中的数据采集探头包括有:红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4,以上各采集探头均分别与所述的数据处理单元电连接。
在实际的应用中,所述的计算单元包括CWSI指数计算单元和灌溉决策计算单元;
所述的CWSI指数计算单元是将探测到的各项作物生长环境的几个主要参数指标按照CWSI理论模式进行计算的处理单元;
所述的灌溉决策计算单元是将从所述的CWSI指数计算单元输出的运算结果与作物水分胁迫诊断指标体系进行比较、输出结果的计算单元;所述的作物水分胁迫诊断指标体系是根据不同作物所制定的诊断作物水分胁迫程度的一套CWSI值。
在实际的应用中,所述的作物水分胁迫指数测定装置还包括支撑架5、支撑臂6,所述的支撑臂6连接在支撑架5上;数据采集单元和数据处理单元安装在所述支撑架5和支撑臂6上。
在实际的应用中,所述的支撑架5为塔杆式支撑架,其包括:可伸缩式支架柱和支架座;支架柱由几段柱径不同的柱体套接而成,支架柱中的柱体节数可为1~5节,优选为2~3节。
在实际的应用中,所述的作物水分胁迫指数测定装置还包括有十字交叉组合连接器7和旋紧螺钉8,所述的十字交叉组合连接器7是由两根柱形中空管件十字交叉连接而成,每根柱形中空管上有两个旋紧螺钉8,管件间用所述的旋紧螺钉8固定连接而构成的;所述的十字交叉组合连接器7用于将所述的支撑臂6、数据采集单元和数据处理单元安装在所述支撑架5上。
在实际的应用中,所述的支撑臂6、数据采集单元和数据处理单元分别通过与各自相匹配的十字交叉组合连接器7固定在支撑架6上;十字交叉组合连接器7使得与其安装的数据采集探头与地面之间的夹角可以通过旋紧螺钉8调节。
在实际的应用中,所述的作物水分胁迫指数测定装置包括红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4、支撑架5、支撑臂6、十字交叉组合连接器7、旋紧螺钉8、机箱9、导线10、十字交叉卡箍11、牵绳12和地锚13;
机箱9内部安装有电源(电池)、数据采集器和计算单元;数据采集器和计算单元均分别与电源连接,且数据采集器的输出端与计算单元的输入端9连接;机箱9外壳上留有导线穿出孔;
太阳净辐射表3通过一个十字交叉组合连接器7固定在支撑架5的顶部:将太阳净辐射表3手柄插入十字交叉组合连接器7横向的管件中,并用旋紧螺钉8固定,而十字交叉组合连接器7的纵向管件套接在支撑架5的顶部,并用所述的旋紧螺钉8固定;
支撑臂6通过一个十字交叉组合连接器7与支撑架5连接:将支撑臂6插入十字交叉组合连接器7的横向管件中,并用旋紧螺钉8钉固定,而十字交叉组合连接器7的纵向管件套接在支撑架5上,并用所述的旋紧螺钉8固定;支撑臂6的位置是在太阳净辐射表3下方的支撑架5的支架柱上;
红外温测探头1、风速仪4分别通过与其相匹配十字交叉组合连接器7安装在支撑臂6上,通风干湿表2通过十字交叉卡箍11安装在所述的支撑臂6上,并且各探头之间在支撑臂6上的位置相隔一定距离;
支撑架5的支架柱上固定连接有机箱9,所述的牵绳12一端连接在所述支撑架5的支架柱上,另一端与所述的地锚13连接,所述的牵绳和地锚起到固定支撑架和各种探头的作用;
红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4均分别引导线10通过所述的导线穿出孔与机箱9内的电源连接;并且各采集探头与数据采集器电连接,即均将各自探测的数据信号通过导线10传输给数据采集器。
在实际的系统中,所述的红外温度计的型号为IRTSP或BS04T;
太阳净辐射表的型号为Q7或TBB1;
通风干湿表的型号为DL1;
三杯风速仪的型号为EP1;
数据采集器的型号为DT50或DT500。
本实用新型用作物冠层温度信息指导田间灌溉,克服了用土壤水分信息指导农业灌溉系统的不足,监测站点可根据不同种类的作物设置在田间任意位置,大大降低了操作人员的劳动强度,提高了工作效率,同时监测系统无须埋入地下,系统便于移动,为农业机械化劳动提供了便利的条件;另外,本实用新型采用水分胁迫指数CWSI的理论模式进行数据处理,可更为精确的给出作物遭受水分胁迫的指标,形成一个可以诊断、决策的田间灌溉管理系统,本系统尤其适合于我国北方广大农业生产区,可大大减少水资源的浪费,提高灌溉水资源的利用率。
附图说明:
图1为本实用新型的原理框图;
图2为本实用新型实施方式示意图;
图3为本实用新型实施方式的机械结构连接图。
下面针对具体实施方式对各副附图进行说明。
红外温测探头为1、通风干湿表为2、太阳净辐射表为3、风速仪为4、支撑架为5、支撑臂为6、十字交叉组合连接器为7、旋紧螺钉为8、机箱为9、导线为10、十字交叉卡箍11、牵绳12和地锚13;
具体实施方式:
图1为本实用新型的原理图,本系统包括数据采集单元和数据处理单元。
所述的数据采集单元由多种数据采集探头组成,各种数据采集探头用来探测有关作物生长环境的几个主要参数。数据采集单元中的数据采集探头包括有:红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4,以上采集探头均分别与所述的数据处理单元电连接。
数据处理单元包括数据采集器和计算单元。计算单元包括CWSI指数计算单元和灌溉决策计算单元。CWSI指数计算单元是将所述的数据采集器输出的各项指标按照CWSI理论模式进行计算的数据处理单元;灌溉决策计算单元是将从CWSI指数计算单元输出的运算结果与作物水分胁迫诊断指标体系进行比较、输出结果的计算单元。所述的作物水分胁迫诊断指标体系是根据不同作物所制定的诊断作物水分胁迫程度的一套CWSI值。
数据采集单元与数据处理单元电连接,数据采集单元中各数据采集探头将数据信号输入给所述的数据处理单元中的数据采集器,数据采集器将采集的信号传送给所述的计算单元中CWSI指数计算单元,将CWSI指数计算单元输出的运算结果与作物水分胁迫诊断指标体系数据共同输入进灌溉决策计算单元中,由所述的灌溉决策计算单元对数据信号进行操作。
图2为本系统实施方式的示意图、图3为本系统实施方式的结构连接图,所述的作物水分胁迫指数测定装置包括红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4、支撑架5、支撑臂6、十字交叉组合连接器7、旋紧螺钉8、机箱9导线10、十字交叉卡箍11、牵绳12和地锚13;
支撑臂6连接在支撑架5上,支撑架5为塔杆式支撑架,其包括:可伸缩式支架柱和支架座;支架柱由几段柱径不同的柱体套接而成,支架柱中的柱体节数可为1~5节,优选为2~3节。所述的牵绳12一端连接在所述支撑架5的支架柱上,另一端与所述的地锚13连接。
十字交叉组合连接器7是由两根柱形中空管件经十字交叉连接而成,每根柱形中空管上有两个旋紧螺钉8,管件间用所述的旋紧螺钉8固定连接;十字交叉组合连接器7用于将所述的支撑臂6、数据探测单元安装在支撑架5上。另外,十字交叉组合连接器7使得与其安装的数据采集探头与地面之间的夹角可以通过旋紧螺钉8调节。
数据采集探头包括有:红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪4。
支撑架5的支架柱上固定连接有机箱9,机箱9内部安装有电源、数据采集器和计算单元;计算单元包括CWSI指数计算单元和灌溉决策计算单元;CWSI指数计算单元是将探测到的各项作物指标数据按照CWSI理论模式进行计算的处理单元;灌溉决策计算单元是将从CWSI指数计算单元输出的运算结果与作物水分胁迫诊断指标体系进行比较、输出结果的计算单元;作物水分胁迫诊断指标体系是根据不同作物所制定的诊断作物水分胁迫程度的一套CWSI值。数据采集器和计算单元均分别与电源连接,且数据采集器的输出端与计算单元的输入端连接;机箱9外壳上留有导线穿出孔。
太阳净辐射表3通过一个十字交叉组合连接器7固定在支撑架5的顶部:将太阳净辐射表3手柄插入十字交叉组合连接器7横向的管件中,并用旋紧螺钉8固定,而十字交叉组合连接器7的纵向管件套接在所述支撑架5的顶部。
支撑臂6通过一个十字交叉组合连接器7与支撑架5连接:将支撑臂6插入十字交叉组合连接器7的横向管件中,并用旋紧螺钉8固定,而十字交叉组合连接器7的纵向管件套接在支撑架5上,并用旋紧螺钉8固定;支撑臂6的位置是在太阳净辐射表3下方的支撑架5的支架柱上。
红外温测探头1、风速仪4分别通过与其相匹配十字交叉组合连接器7安装在所述支撑臂6上,通风干湿表2通过十字交叉卡箍11安装在所述的支撑臂6上,并且各探头之间在支撑臂6上的位置相隔一定距离。
红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪均4分别引导线10通过所述的导线穿出孔与机箱9内的电源连接;并且所述的各采集探头与数据采集器电连接,即均将各自探测的数据信号通过导线10传输给数据采集器。
红外温测探头1、通风干湿表2、太阳净辐射表3、风速仪均4的型号为:
红外温度计的型号为IRTSP或BS04T;
太阳净辐射表的型号为Q7或TBB1;
通风干湿表的型号为DL1;
三杯风速仪的型号为EP1;
数据采集器的型号为DT50或DT500。

Claims (8)

1、一种作物水分胁迫指数测定装置,其包括:数据采集单元和数据处理单元;
所述的数据采集单元由数据采集探头组成,所述的数据采集探头用来探测作物生长环境的主要参数;
所述的数据处理单元包括数据采集器和计算单元;
所述的数据采集单元与数据处理单元电连接,数据采集单元将数据信号输入给所述的数据处理单元中的数据采集器,所述的数据采集器将采集的信号传送给所述的计算单元,由所述的计算单元对数据信号进行处理;
其特征在于:所述的数据采集单元中的数据采集探头包括有:红外温测探头(1)、通风干湿表(2)、太阳净辐射表(3)、风速仪(4),以上各采集探头均分别与所述的数据处理单元电连接。
2、根据权利要求1所述的作物水分胁迫指数测定装置,其特征在于:所述的计算单元包括CWSI指数计算单元和灌溉决策计算单元;
所述的CWSI指数计算单元是将探测到的作物生长环境的主要参数按照CWSI理论模式进行计算的处理单元;
所述的灌溉决策计算单元是将从所述的CWSI指数计算单元输出的运算结果与作物水分胁迫诊断指标体系进行比较、输出结果的计算单元;所述的作物水分胁迫诊断指标体系是根据不同作物所制定的诊断作物水分胁迫程度的一套CWSI值。
3、根据权利要求1所述的作物水分胁迫指数测定装置,其特征在于:所述的作物水分胁迫指数测定装置还包括支撑架(5)、支撑臂(6);所述的支撑臂(6)连接在所述的支撑架(5)上;所述的数据采集单元和数据处理单元安装在所述支撑架(5)和支撑臂(6)上。
4、根据权利要求3所述的作物水分胁迫指数测定装置,其特征在于:所述的支撑架(5)为塔杆式支撑架,其包括:可伸缩式支架柱和支架座;所述的支架柱由几段柱径不同的柱体套接而成,所述支架柱中的柱体节数可为1~5节,优选为2~3节。
5、根据权利要求3所述的作物水分胁迫指数测定装置,其特征在于:所述的作物水分胁迫指数测定装置还包括有十字交叉组合连接器(7)和旋紧螺钉(8),所述的十字交叉组合连接器(7)是由两根柱形中空管件十字交叉连接而成,每根柱形中空管上有两个旋紧螺钉(8),管件间用所述的旋紧螺钉(8)固定连接而构成的;所述的十字交叉组合连接器(7)用于将所述的支撑臂(6)、数据采集单元和数据处理单元安装在所述支撑架(5)上。
6、根据权利要求4所述的作物水分胁迫指数测定装置,其特征在于:所述的支撑臂(6)、数据采集单元和数据处理单元分别通过与各自相匹配的十字交叉组合连接器(7)固定在所述的支撑架(5)上;所述的十字交叉组合连接器(7)中两根管件间的夹角可以通过所述的旋紧螺钉(8)调节。
7、根据权利要求1~6之一所述的作物水分胁迫指数测定装置,其特征在于:所述的作物水分胁迫指数测定装置包括红外温测探头(1)、通风干湿表(2)、太阳净辐射表(3)、风速仪(4)、支撑架(5)、支撑臂(6)、十字交叉组合连接器(7)、旋紧螺钉(8)、机箱(9)、导线(10)、十字交叉卡箍(11)、牵绳(12)和地锚(13);
所述机箱(9)内部安装有电源、所述的数据采集器和计算单元;所述的数据采集器和计算单元均分别与电源连接,且所述的数据采集器的输出端与计算单元的输入端连接;所述的机箱(9)外壳上留有导线穿出孔;
所述的太阳净辐射表(3)通过所述的一个十字交叉组合连接器(7)固定在所述支撑架(5)的顶部:将所述的太阳净辐射表(3)手柄插入所述的十字交叉组合连接器(7)横向的管件中,并用所述的旋紧螺钉(8)固定,而十字交叉组合连接器(7)的纵向管件套接在所述支撑架(5)的顶部,并用所述的旋紧螺钉(8)固定;
所述的支撑臂(6)通过一个十字交叉组合连接器(7)与所述的支撑架(5)连接:将所述支撑臂(6)插入所述的十字交叉组合连接器(7)的横向管件中,并用所述的旋紧螺钉(8)固定,而所述的十字交叉组合连接器(7)的纵向管件套接在所述的支撑架(5)上,并用所述的旋紧螺钉(8)固定,所述支撑臂(6)的位置是在所述的太阳净辐射表(3)下方的支撑架(5)的支架柱上;
所述的红外温测探头(1)、风速仪(4)分别通过与其相匹配十字交叉组合连接器(7)安装在所述支撑臂(6)上,所述通风干湿表(2)通过所述的十字交叉卡箍(11)安装在所述的支撑臂(6)上,并且各探头之间在所述支撑臂(6)上的位置相隔一定距离;
所述的支撑架(5)的支架柱上固定连接有机箱(9),所述的牵绳(12)一端连接在所述支撑架(5)的支架柱上,另一端与所述的地锚(13)连接;
所述的红外温测探头(1)、通风干湿表(2)、太阳净辐射表(3)、风速仪(4)均分别引导线(10)通过所述的导线穿出孔与机箱(9)内的电源连接;并且所述的各采集探头与数据采集器电连接,即均将各自探测的数据信号通过导线(10)传输给所述的数据采集器。
8、根据权利要求1~6之一所述的作物水分胁迫指数测定装置,其特征在于:
所述的红外温度计的型号为IRTSP或BS04T;
太阳净辐射表的型号为Q7或TBB1;
通风干湿表的型号为DL1;
三杯风速仪的型号为EP1;
数据采集器的型号为DT50或DT500。
CN 03245091 2003-04-11 2003-04-11 一种作物水分胁迫指数测定装置 Expired - Lifetime CN2616908Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03245091 CN2616908Y (zh) 2003-04-11 2003-04-11 一种作物水分胁迫指数测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03245091 CN2616908Y (zh) 2003-04-11 2003-04-11 一种作物水分胁迫指数测定装置

Publications (1)

Publication Number Publication Date
CN2616908Y true CN2616908Y (zh) 2004-05-19

Family

ID=34251463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03245091 Expired - Lifetime CN2616908Y (zh) 2003-04-11 2003-04-11 一种作物水分胁迫指数测定装置

Country Status (1)

Country Link
CN (1) CN2616908Y (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573146C (zh) * 2003-04-11 2009-12-23 中国科学院地理科学与资源研究所 一种作物水分胁迫指数测定装置及其测定方法
CN106771056A (zh) * 2016-11-29 2017-05-31 鲁东大学 一种基于作物胁迫指数的作物系数估算方法
CN113049750A (zh) * 2021-03-12 2021-06-29 中国农业大学 一种基于高通量气孔导度诊断植物水分胁迫的方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573146C (zh) * 2003-04-11 2009-12-23 中国科学院地理科学与资源研究所 一种作物水分胁迫指数测定装置及其测定方法
CN106771056A (zh) * 2016-11-29 2017-05-31 鲁东大学 一种基于作物胁迫指数的作物系数估算方法
CN113049750A (zh) * 2021-03-12 2021-06-29 中国农业大学 一种基于高通量气孔导度诊断植物水分胁迫的方法及系统
CN113049750B (zh) * 2021-03-12 2024-05-03 中国农业大学 一种基于高通量气孔导度诊断植物水分胁迫的方法及系统

Similar Documents

Publication Publication Date Title
CN1536362A (zh) 一种作物水分胁迫指数测定装置及其测定方法
CN204833008U (zh) 一种温室大棚室内环境控制系统
CN101666741B (zh) 机载式作物氮素信息高密度无损采集方法
CN207976474U (zh) 一种分层多点式土壤水分测定装置
CN207923498U (zh) 一种泥炭土取样装置
CN103310613A (zh) 移动式自组网土壤环境信息远程监测装置
CN104655014A (zh) 一种农作物冠层结构信息自动测量装置与测量方法
CN2616908Y (zh) 一种作物水分胁迫指数测定装置
CN206638278U (zh) 一种基于互联网的农业技术监测显示装置
CN107396676A (zh) 一种智能蔬菜种植大棚
CN205506123U (zh) 农业环境监测装置
CN111328639A (zh) 一种人工羊肚菌高品质栽培的环境监测方法
CN103149243B (zh) 树木热脉冲蒸腾量测定仪及其测量方法
CN212904882U (zh) 一种多层土壤墒情监测装置
CN107843700B (zh) 一种测定作物群体不同高度处光合速率、呼吸速率和温室气体排放的装置及方法
CN102937410A (zh) 生态环境勘察中的外生菌根菌丝野外原位动态监测方法
CN218847269U (zh) 一种农田小气候梯度监测装置
CN111487380A (zh) 一种植物表型监测装置
CN209044399U (zh) 一种用于智能农业监测设备
CN204154342U (zh) 一种井灌水量与地下水位无线实时采集装置
CN206832799U (zh) 一种用于耕地土壤检测的传感器装置
CN105928984A (zh) 一种基于土壤质地的非接触水盐传感器及其测试方法
CN206725015U (zh) 一种农作物病虫害远程自动监测预警装置
CN205404846U (zh) 一种农田小气候自动观测仪
CN202494579U (zh) 便携式电动取土钻

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Effective date of abandoning: 20091223

AV01 Patent right actively abandoned

Effective date of abandoning: 20091223

C25 Abandonment of patent right or utility model to avoid double patenting