CN2556643Y - Electrochemical biological sensor - Google Patents

Electrochemical biological sensor Download PDF

Info

Publication number
CN2556643Y
CN2556643Y CN 01272180 CN01272180U CN2556643Y CN 2556643 Y CN2556643 Y CN 2556643Y CN 01272180 CN01272180 CN 01272180 CN 01272180 U CN01272180 U CN 01272180U CN 2556643 Y CN2556643 Y CN 2556643Y
Authority
CN
China
Prior art keywords
utility model
layer
biosensor
receptor
detect
Prior art date
Application number
CN 01272180
Other languages
Chinese (zh)
Inventor
马保亮
范翊
李亚军
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Priority to CN 01272180 priority Critical patent/CN2556643Y/en
Application granted granted Critical
Publication of CN2556643Y publication Critical patent/CN2556643Y/en

Links

Abstract

The utility model relates to an electrochemistry biosensor, pertaining to the microbial detection technical field and comprises a silicon chip, a gold film, a support layer, a detecting layer, a receptor, an electrolytic cell, a circulating volt-ampere scanner and a computer. The utility model adopts the self-assembly technique and realizes the embellishment of a working electrode surface by using thiol, polydiacetylene and a polydiacetylene detecting layer with the receptor, furthermore, the utility model uses cyclic voltammetry to detect the response value of the electrode and the current after germiculture and prepares the electrochemistry biosensor to detect bacteria. The theory of the utility model is that the structure of the polydiacetylene in the detecting layer is influenced by the biomolecular recognition so that the transporting of the detect molecule and the electrode surface are hindered, thus producing extremely obvious current response. Compared with an original biosensor, the biosensor of the utility model has the advantages of simple preparation, strong specificity, etc. The utility model can detect the bacteria fast and has extremely important significance to the fields of medical diagnosis, food industry and environmental protection. The utility model is applicable to detecting the variety and consistency of microbes in surrounding environment, etc.

Description

一种电化学生物传感器 An electrochemical biosensor

技术领域 FIELD

:本实用新型属于微生物检测技术领域,涉及一种电化学生物传感器。 : The present invention belongs to the technical field of detection of microorganisms, it relates to an electrochemical biosensor.

背景技术 Background technique

:众所周知,微生物与人类的生活息息相关,且它们对人类的生活有着十分重要的影响。 : As we all know, microbes and human lives, and they have a very important influence on human life. 例如,许多细菌能够通过释放毒素使人致病;同时也有许多细菌能够被我们所利用为人类服务。 For example, many pathogenic bacteria can release toxins through people; there are many bacteria can also be used by us to serve mankind. 目前,一般检测细菌的方法是通过测定细菌的生理、形态特征或通过测定细菌的基因组成来鉴定细菌。 At present, the general method of detection of bacteria is measured by physiological bacteria, morphological features or by identification of bacteria by measuring the bacterial genes. 这些方法的操作复杂,且需要花费很长的时间,它们已远远不能满足当前对微生物检测的要求。 These methods complicated operation, and it takes a long time, they can not meet the current requirements for microbiological testing. 在这种情况下,许多研究人员努力地探索新的方法,以便对细菌进行快速地检测。 In this case, many researchers trying to explore new methods to detect bacteria quickly. 1993年Charach等人在科学上首次报导了利用带有细胞表面受体的聚双炔薄膜在与对应的配体分子结合时,薄膜的颜色可以由蓝变红这种现象对流感病毒进行了直接的比色检测。 In 1993 Charach et al first reported in the scientific use of polydiacetylene film with cell surface receptors for Influenza virus directly with the corresponding ligand molecule upon binding, color film can be from blue to red phenomenon colorimetric detection. 这种亲合变色现象引起了人们的广泛兴趣。 This affinity discoloration phenomenon has aroused widespread interest. 国内有不少单位对此进行了研究,如北京感光所的江龙等人利用带有受体的聚双炔脂质体对细菌进行了检测。 Many domestic units have conducted studies, such as the photosensitive Beijing Martial et al using polydiacetylene liposomes with receptors for bacteria detection. 这些研究都集中于利用聚双炔的光学性质对细菌进行检测,而利用电化学的方法检测细菌的报道还很少。 These studies have focused on the bacterium is detected by the optical properties of polydiacetylene, and the detection of bacteria by the method of electrochemical few reports.

详细内容:本实用新型的目的是为了解决对细菌检测操作复杂,且需要花费时间长的问题,为了实现上述目的,本实用新型是在金膜(2)上利用分子自组装技术沉积一层微生物敏感的单分子层,含有硅片(1)、金膜(2)、支撑层(3)、检测层(4)、受体(5)、电解池(6)、循环伏安扫描器(7)、计算机(8),其特征是用蒸发镀膜法在硅片(1)上镀制金膜(2),支撑层(3)制备在金膜(2)的表面上,在支撑层(3)上沉积一层检测层(4),检测层(4)之上是受体(5),受体(5)置于电解池(6)的电解液中,循环伏安扫描器(7)的三个输入端分别与金膜(2)和电解池(6)中的参比电极和对极连接,循环伏安扫描器(7)的输出端与计算机(8)的输入端连接。 Details: The object of the present invention is to solve the complex bacterial testing operation, and it takes a long time to issue, in order to achieve the above object, the present invention is the use of the gold film (2) depositing a layer of self-assembled monolayers microorganism sensitive monolayer comprising silicon (1), a gold film (2), the support layer (3), the detection layer (4), receptor (5), electrolysis cell (6), cyclic voltammetry scanner (7 ), a computer (8), characterized by a vapor deposition method on a silicon wafer plate (1) made of a gold film (2), the support layer (3) on the surface of the gold film prepared in (2), the support layer (3 one detection layer (4), detecting layer (4) on the receptor (5) is deposited on), receptor (5) were placed in an electrolytic cell (6) in the electrolyte, cyclic voltammetry scanner (7) the three input terminals of the gold film (2) and the electrolysis cell (6) of the reference electrode and the counter electrode is connected, cyclic voltammetry scanner (7) and the output terminal of the computer (8) connected to the input.

本实用新型工作时,将金膜、支撑层和检测层组成工作电极,并用循环伏安扫描器对工作电极进行循环伏安扫描,此时记录工作电极的峰电流为I0;然后把工作电极置于一定浓度的细菌溶液中培养,再对其进行循环伏安扫描,此时记录的是工作电极与细菌结合后的峰电流为IX;并由此计算出电流的响应值(IX/I0)×100%。 When working the present invention, the gold film, the support layer and the detection layer composed of the working electrode, cyclic voltammetry and the scanner working electrode cyclic voltammetry, the working electrode at this time is recorded as the peak current I0; working electrode and the counter bacterial solution cultured in a certain concentration, and then subjected to cyclic voltammetry, the peak current at this time is recorded after binding the bacteria to the working electrode and IX; and calculating a response value of the current (IX / I0) × 100%. X代表工作电极与细菌结合的时间,X=1、2、3、4、5......。 X represents a working electrode bacterial binding time, X = 1,2,3,4,5 ....... 按照上述方法,分别测出工作电极与相同浓度细菌培养2、3、5和8分钟后的电流IX的响应值,再作出工作电极对细菌不同时间的响应曲线。 According to the above method, the working electrode were measured at the same concentration response value current IX bacterial cultures 2,3,5 and 8 minutes, and then to the working electrode response curves for different times bacteria. 由该响应曲线获得检测的最佳时间后,又在此最佳时间下,测量了工作电极对不同浓度细菌的响应曲线。 After obtaining the best time detected by the response curve, and at this optimal time, the working electrode was measured response curves for different concentrations of bacteria. 同时,我们又测试了工作电极放在生理盐水中和检测层表面无受体时,工作电极对细菌的响应曲线,结果表明:这种电化学传感器对细菌的检测是特异性的,且其检测的灵敏度非常高。 Meanwhile, we also tested the working electrode on the surface without saline receptor, the response curve of the working electrode and the detection layer bacteria results show: an electrochemical sensor that is specific detection of bacteria, and detecting the sensitivity is very high.

本实用新型的原理是检测层的结构受细菌配体和受体识别的影响:即当检测层表面的受体与细菌表面的配体识别后,检测层中聚双炔薄膜的结构变得更加有序,使聚双炔薄膜中缺陷的数量减少,则阻碍了电解液中探测分子到金膜表面的运输,从而产生了非常明显了电流响应。 The principles of the present practical structure of the detector layer is affected by bacteria and receptor recognition of ligand: ligand recognition that is, when the surface of the bacterium and receptors of the surface of the detection layer, the detection layer structure polydiacetylene film becomes more ordered, the number of defects in the polydiacetylene film is reduced, the electrolyte hindered the probe molecule to transport the gold film surface, resulting in a very significant current response. 同时,所测数据可直接用计算机进行处理,这也使得数据处理的速度大大加快,有利于细菌的定量检测。 At the same time, the measured data may be processed directly by a computer, which also makes the data processing speed is greatly accelerated, facilitate quantitative detection of bacteria.

本实用新型的优点是:采用本实用新型解决了对细菌检测操作复杂,且需要花费时间长的问题,提供了一种容易制备且测试操作简单方便、灵敏度高、特异性强、响应时间短、可定量检测细菌浓度的生物传感器,实现了对细菌的直接检测。 The present invention has the advantage that: the present invention solves the complicated operation for the detection of bacteria, and it takes a long time the problem, there is provided a readily prepared and tested for easy operation, high sensitivity, specificity, short response time, quantitative detection of the concentration of bacteria biosensor enables a direct detection of bacteria. 本实用新型可快速地对细菌进行检测,在医疗诊断、食品工业和环境保护领域均具有十分重要的意义。 The utility model can quickly detect bacteria, it is of great importance in medical diagnostics, food industry and environmental protection. 本实用新型还可用硫醇和聚双炔及带有其它受体的聚双炔双分子层检测层对不同的细菌和病毒进行检测。 The present invention can also be used and thiol polydiacetylene and polydiacetylene with other receptors bilayer different detection layer for the detection of bacteria and viruses.

附图说明 BRIEF DESCRIPTION

:图1是本实用新型中的工作电极结构示意图图2是本实用新型结构示意图具体实施方式:如图1和图2所示双分子层电极包括有:硅片(1)、金膜(2)、支撑层(3)、检测层(4)、受体(5)、电解池(6)、循环伏安扫描器(7)、计算机(8),硅片(1)采用单晶硅;金膜(2)采用99%的金丝,并用蒸发镀膜法将金丝镀到硅片(1)上形成金膜(2);支撑层(3)采用十八烷基硫醇分子用自组装技术组装在金膜(2)表面;检测层(4)采用聚双炔材料用朗缪技术(Langmuir-Blodgett)将其拉膜至支撑层(3)上;受体(5)通过共价键与检测层(4)连接,受体(5)采用可选用甘露糖或唾液酸;电解池(6)采用玻璃电解池。 : FIG. 1 according to the present invention is a working electrode structure of FIG. 2 is a schematic structural diagram of the present invention DETAILED DESCRIPTION: As shown in FIGS. 1 and 2 shown in the bilayer electrode comprises: a silicon wafer (1), a gold film (2 ), the support layer (3), the detection layer (4), receptor (5), electrolysis cell (6), cyclic voltammetry scanner (7), a computer (8), a silicon wafer (1) single crystal silicon; gold film (2) using 99% of the gold, and plated by gold vapor deposition method on a silicon wafer (1) forming a gold film (2); a supporting layer (3) using octadecyl mercaptan with self-assembling molecules technical assembled gold film (2) surface; detection layer (4) using polydiacetylene material technology Langmuir (Langmuir-Blodgett) film and pull it to the support layer (3); receptor (5) via a covalent bond connected to the detection layer (4), receptor (5) can be selected using mannose or sialic acid; electrolysis cell (6) using a glass cell. 循环伏安扫描器(7)采用CHI832。 Cyclic voltammetry scanner (7) using CHI832. 计算机(8)采用普通的个人计算机。 Computer (8) ordinary personal computer.

Claims (1)

1.一种电化学生物传感器,其特征在于:含有硅片(1)、金膜(2)、支撑层(3)、检测层(4)、受体(5)、电解池(6)、循环伏安扫描器(7)、计算机(8),用蒸发镀膜法在硅片(1)上镀制金膜(2),支撑层(3)制备在金膜(2)的表面上,在支撑层(3)上沉积一层检测层(4),检测层(4)之上是受体(5),受体(5)置于电解池(6)的电解液中,循环伏安扫描器(7)的三个输入端分别与金膜(2)和电解池(6)中的参比电极和对极连接,循环伏安扫描器(7)的输出端与计算机(8)的输入端连接。 1. An electrochemical biosensor comprising: containing a wafer (1), a gold film (2), the support layer (3), the detection layer (4), receptor (5), electrolysis cell (6), cyclic voltammetry scanner (7), a computer (8), a silicon wafer by vapor deposition method in the gold plating film (2), the support layer (3) on the surface of the gold film prepared in (2) in (1), in on one detection layer (4), detecting layer (4) deposited on (3) is a receptor support layer (5), receptor (5) were placed in an electrolytic cell (6) in the electrolyte, cyclic voltammetry three input terminals (7), respectively, and a gold film (2) and the electrolysis cell (6) of the reference electrode and the counter electrode is connected, cyclic voltammetry scanner (7) and the output terminal of the computer (8) input terminal.
CN 01272180 2001-12-12 2001-12-12 Electrochemical biological sensor CN2556643Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 01272180 CN2556643Y (en) 2001-12-12 2001-12-12 Electrochemical biological sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 01272180 CN2556643Y (en) 2001-12-12 2001-12-12 Electrochemical biological sensor

Publications (1)

Publication Number Publication Date
CN2556643Y true CN2556643Y (en) 2003-06-18

Family

ID=33677392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01272180 CN2556643Y (en) 2001-12-12 2001-12-12 Electrochemical biological sensor

Country Status (1)

Country Link
CN (1) CN2556643Y (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375009A (en) * 2011-09-14 2012-03-14 东南大学 Method for rapidly detecting bacteria by using electrochemical method
CN1981192B (en) 2004-05-14 2014-04-16 拜尔健康护理有限责任公司 Voltammetric systems for assaying biological analytes
CN107151629A (en) * 2017-04-25 2017-09-12 青岛天人环境股份有限公司 Intelligent double-stage biogas desulfurization apparatus
CN108444930A (en) * 2018-02-12 2018-08-24 中国科学院长春应用化学研究所 Method for identifying wine by using polydiacetylene probe matrix
CN108444930B (en) * 2018-02-12 2019-08-16 中国科学院长春应用化学研究所 A method of identifying wine with polybutadiene alkynes probe array

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981192B (en) 2004-05-14 2014-04-16 拜尔健康护理有限责任公司 Voltammetric systems for assaying biological analytes
CN103901092B (en) * 2004-05-14 2016-07-06 拜尔健康护理有限责任公司 Voltammetric system for detecting biological analyte
CN102375009A (en) * 2011-09-14 2012-03-14 东南大学 Method for rapidly detecting bacteria by using electrochemical method
CN102375009B (en) 2011-09-14 2013-09-18 东南大学 Method for rapidly detecting bacteria by using electrochemical method
CN107151629A (en) * 2017-04-25 2017-09-12 青岛天人环境股份有限公司 Intelligent double-stage biogas desulfurization apparatus
CN107151629B (en) * 2017-04-25 2019-06-28 青岛天人环境股份有限公司 The double rank desulfurizers of Intelligent biogas
CN108444930A (en) * 2018-02-12 2018-08-24 中国科学院长春应用化学研究所 Method for identifying wine by using polydiacetylene probe matrix
CN108444930B (en) * 2018-02-12 2019-08-16 中国科学院长春应用化学研究所 A method of identifying wine with polybutadiene alkynes probe array

Similar Documents

Publication Publication Date Title
Sun et al. Nanoelectrochemistry of mammalian cells
Chen et al. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites
Guo et al. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan
Xiao et al. Assessment of cytotoxicity using electric cell− substrate impedance sensing: concentration and time response function approach
Lin et al. Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis
Xi et al. Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode
Wang et al. Simultaneous Capture, Detection, and Inactivation of Bacteria as Enabled by a Surface‐Enhanced Raman Scattering Multifunctional Chip
Qian et al. A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection
Hu et al. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine
Niu et al. Electrochemiluminescence of peroxydisulfate enhanced by l-cysteine film for sensitive immunoassay
Zhong et al. A reusable interface constructed by 3‐aminophenylboronic acid‐functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing
Guo et al. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge
Chen et al. Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy
Lo et al. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode
Wang et al. Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein
Qu et al. A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite
Zheng et al. An amperometric biosensor based on hemoglobin immobilized in poly (ɛ-caprolactone) film and its application
Zhang et al. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles
Peng et al. A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles
Liu et al. Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor
Wei et al. Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously
Jiang et al. Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection
Huang et al. Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform
Omidfar et al. A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41–polyvinyl alcohol nanocomposite and colloidal gold nanoparticles
Han et al. Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6

Legal Events

Date Code Title Description
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee