CN2454953Y - 一种微型半导体泵浦激光器 - Google Patents

一种微型半导体泵浦激光器 Download PDF

Info

Publication number
CN2454953Y
CN2454953Y CN00261928U CN00261928U CN2454953Y CN 2454953 Y CN2454953 Y CN 2454953Y CN 00261928 U CN00261928 U CN 00261928U CN 00261928 U CN00261928 U CN 00261928U CN 2454953 Y CN2454953 Y CN 2454953Y
Authority
CN
China
Prior art keywords
micro
laser
optical fiber
slice
semiconductor pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN00261928U
Other languages
English (en)
Inventor
吴砺
李保华
余锋
林彤
吴秀榕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casix Inc
Original Assignee
Casix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casix Inc filed Critical Casix Inc
Priority to CN00261928U priority Critical patent/CN2454953Y/zh
Application granted granted Critical
Publication of CN2454953Y publication Critical patent/CN2454953Y/zh
Priority to US10/012,944 priority patent/US20020071456A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种微型半导体泵浦激光器,陶瓷芯棒与相对应TEC光纤构成耦合TEC输出光纤头,光纤与陶瓷芯棒构成输入光纤头。本实用新型由于光纤线可弯曲,整个外型结构可控制在φ3×20mm,在科研、仪器上将获得较大应用。

Description

一种微型半导体泵浦激光器
本实用新型涉及固体激光器,尤其是指一种微型半导体泵浦激光器。
半导体泵浦的微片式激光器作为固体激光器的一个分支已获得了一定的应用。
已往,微片式激光器多采用激光介质加工成平行平片,同时镀上介质膜形成平平腔激光器。它的泵浦源多采用LD激光器101通过透镜102耦合聚焦在微式片式平一平腔激光器103(见专利ZL99251263.8),如图1。它亦可通过微片式激光器202直接贴在半导体激光器201发光点附近,如图2。或采用光纤耦合半导体激光器301作为泵浦光直接将微片式激光器302贴在光纤线出光上(见“Microchip lazers create light in small spaces”《Lacer Focus World》April 1996)如图3。以上三种激光器只能采用准直器耦合输出激光进入光纤,如图9所示。
本实用新型的目的在于提供一种可采用特殊光纤直接耦合,由光纤输出激光的微型半导体泵浦激光器。
本实用新型的技术方案是这样的:
一种微型半导体泵浦激光器,包括一微片激光器等,圆柱型精密外套中紧密套设两块光纤连接器所用的陶瓷芯棒,陶瓷芯棒中轴线位置形成插芯,沿着插芯紧密插设两条光纤,陶瓷芯棒之间紧密夹贴微片激光器,其中一个陶瓷芯棒出光端口与相应TEC光纤一端都形成喇叭口,构成耦合TEC输出光纤头,另一端光纤与插芯构成输入光纤头。
本实用新型激光通过光纤线输出,光纤线可弯曲,从而可用于一些特殊场合。由于整个激光器外型结构可控制在φ3×20mm,成为光纤泵浦,光纤耦合输出激光器最微型化结构之一。有理由相信,本专利所设计超小型光纤输出激光器在科研、仪器上将获得较大的应用。
现结合附图说明如下:
图1为已有技术A结构示意图。
图2为已有技术B结构示意图。
图3为已有技术C结构示意图。
图4为本实用新型中微片式激光器形式a。
图5为本实用新型中微片式激光器形式b。
图6为本实用新型中微片式激光器形式c。
图7为本实用新型结构图。
图8为本实用新型中TEC光纤示意图。
图9为已有技术结构图。
微片式激光器通常有下列三种形式,以最常见激光增质介质Nd:YAG,Nd:YVO4在808nm泵浦光产生激光增荡波长1.06μm为例。
图4微片激光器以单一激光介质构成激光谐振腔,S1面镀对泵浦光808nm波长增透,对基波长1.064μm镀高反射膜;S2面平行S1面,S2上镀部分反射膜,一般对1.064反射率为90%~98%;激光介质可为Nd:YAG,Nd:YVO4;激光腔长一般为0.5~1mm。图5为微片式倍频激光谐振腔,51B为激光增益介质,52B为倍频晶体,S3面平行S4面,S3面镀对泵浦光增透膜对1.064光镀高反射膜,S4表面镀1.064高反射膜,对倍频光镀增透膜,激光输出0.532μm光,激光增益介质为Nd:YAG,Nd:YVO4等激光晶体,倍频晶体可为KTP,BBO,LiNO3等倍频晶体。
图6为产生被动调Q式脉冲激光微片激光器,51C为激光增益介质如Nd:YAG等激光晶体,52C可为Cr:YAG,可产生被动调Q式脉冲激光输出;S5面平行S6面;S5面镀泵浦增透膜,对1.064μm波长高反射;S6对1.064μm反射85%左右。(见“Ultraviolet generationwith passively Q-Switched microchip lazers”Optics letters/Vol.21,No.8/April15,1996,/P588-590)。本专利以该文章提供参数讨论问题。该文中采用1mm的Nd:YAG晶体,0.25mm的Cr4+:YAG,其出射光1/e2处直径为100μm;发散角为6.8毫弧度。
本实用新型涉及另一项技术将用到热扩散纤芯光纤(thermallyexpanded Core(TEC)fiber),如图8所示,将光纤一段放在火焰上加热,原单模光纤纤芯在高温下掺杂离子由于热扩散而向包层移动使光纤本征模场直径增加,对Φ125μm单模光纤的纤芯直径可以扩散到20~100μm。在光纤扩散直径最大处用切割刀切断,形成平整光纤输出端面,这样光纤接收光直径相对通常光纤纤芯可大一个数量级。
本实用新型采用的光纤泵浦光纤输出激光器的结构如图7所示。
图7所示,701为单模光纤,当微片激光器激光增益介质是各向同性晶体时,可采用普通单模光纤,当激光增益介质是各向异性晶体时,701则采用保偏光纤并使其出光偏振方向与激光增益晶体偏振吸收最大值方向一致;702为高精度的用于光纤连接器的陶瓷芯棒,与光纤701形成光纤光,中轴线位置的形成插芯,其出光端面抛光成严格与陶瓷芯机械轴线相垂直的平面,将抛光端面对泵浦光镀增透膜,704为微片激光器;706为热扩散纤芯光纤线(以下称TEC光纤线),其出光孔径大于φ100μm。微片激光器704严格紧贴702端面,并用环氧胶709粘结在702端面上,此时激光出光方向将与702光纤线同轴,并且激光光束中心线与702机械轴线近似重合或完全重合;如背景专利所示,微片激光器一般输出光斑在100μm附近;而陶瓷芯棒705在精密外套703之中,其705与光纤706构成光纤头,陶瓷芯棒702与705轴心偏离应在1μm之内;706中采用TEC光纤,其模场直径亦在100μm左右,而TEC出光数值孔径一般均大于微片激光器发散角,因此,综上所述不难看出,以微片激光器704输出激光几乎全部耦合到光纤706之中,成为最佳光纤耦合输出结构之一。激光器外形结构可控制在φ3×20mm以下。

Claims (4)

1.一种微型半导体泵浦激光器,包括微片激光器等,其特征在于:在圆柱形精密外套(703)中,紧密套设两块陶瓷芯棒(702、705),陶瓷芯棒(702、705)分别与光纤(701、706)形成光纤头,并且激光光束中心线与陶瓷芯棒(702、705)机械轴线近似重合或完全重合,陶瓷芯棒(702、705)之间通过环氧胶紧密夹贴微片激光器(704),其中陶瓷芯棒(705)与相对应TEC光纤(706)构成耦合TEC输出光纤头,光纤(701)与陶瓷芯棒(702)构成输入光纤头。
2.根据权利要求1所述的一种微型半导体泵浦激光器,其特征在于:微片激光器(704)可以是基模激光谐振腔。
3.根据权利要求1所述的一种微型半导体泵浦激光器,其特征在于:微片激光器(704)可以采用平一平腔腔内倍频微片激光器。
4.根据权利要求1所述的一种微型半导体泵浦激光器,其特征在于:微片激光器(704)可以是被动调Q式脉冲微片激光器。
CN00261928U 2000-12-12 2000-12-12 一种微型半导体泵浦激光器 Expired - Lifetime CN2454953Y (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN00261928U CN2454953Y (zh) 2000-12-12 2000-12-12 一种微型半导体泵浦激光器
US10/012,944 US20020071456A1 (en) 2000-12-12 2001-12-10 Miniature fabry-perot laser structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00261928U CN2454953Y (zh) 2000-12-12 2000-12-12 一种微型半导体泵浦激光器

Publications (1)

Publication Number Publication Date
CN2454953Y true CN2454953Y (zh) 2001-10-17

Family

ID=4645791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00261928U Expired - Lifetime CN2454953Y (zh) 2000-12-12 2000-12-12 一种微型半导体泵浦激光器

Country Status (2)

Country Link
US (1) US20020071456A1 (zh)
CN (1) CN2454953Y (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103999A (zh) * 2014-07-24 2014-10-15 福建福晶科技股份有限公司 一种光纤耦合微片激光器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522651B2 (en) * 2004-03-10 2009-04-21 Pavilion Integration Corporation Solid-state lasers employing incoherent monochromatic pump
CN109478754A (zh) * 2016-06-29 2019-03-15 瑞士Csem电子显微技术研发中心 光学谐振器、光学谐振器的制造方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103999A (zh) * 2014-07-24 2014-10-15 福建福晶科技股份有限公司 一种光纤耦合微片激光器

Also Published As

Publication number Publication date
US20020071456A1 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
CN1722548A (zh) 脉冲激光装置和方法
CN101483317A (zh) 一种半导体激光器的泵浦方式
CN203536720U (zh) 一种532nm绿光激光器
CN104953457A (zh) 交替输出双波长调q脉冲激光的装置
CN102044834B (zh) 一种非线性镜自锁模激光器
CN2454953Y (zh) 一种微型半导体泵浦激光器
CN112713490B (zh) 一种中红外波段连续全光纤振荡器
CN109244809A (zh) 一种抑制模式不稳定的区域镀膜端帽组及其应用
CN103618208B (zh) 一种光纤耦合的微型集成化纳秒脉冲激光模块
CN102332676A (zh) 一种中红外光纤激光器
CN202059040U (zh) 一种线形腔被动调q光纤激光器
CN111900606A (zh) 一种高功率大能量黄光拉曼激光器系统
CN2927418Y (zh) 高功率蓝光光纤激光器
CN100372197C (zh) 高功率蓝光光纤激光器
CN102208740A (zh) 一种环形结构纳秒脉冲光纤激光器
CN114552354A (zh) 基于乙二醇的可饱和吸收体与制备方法及其应用
CN208797347U (zh) 一种抑制模式不稳定的区域镀膜端帽组
CN201323376Y (zh) 内腔倍频蓝光光纤激光器
CN101075005A (zh) 用于包层泵浦光纤放大器的光纤合波器
CN101132106A (zh) 获得488nm波长的腔内和频全固体蓝光激光器
CN202550278U (zh) 腔内光纤耦合激光器
CN101237110B (zh) 主动锁相多芯相干包层泵浦大功率光纤激光器及制备方法
CN1421967A (zh) 多棒串接的双灯泵浦大功率固体激光器
CN216818936U (zh) 一种光纤激光器
CN218867625U (zh) 一种基于光纤光栅保护泵浦源的光纤激光器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20101212

Granted publication date: 20011017