CN220958671U - Water chiller and air conditioning system - Google Patents
Water chiller and air conditioning system Download PDFInfo
- Publication number
- CN220958671U CN220958671U CN202322636644.7U CN202322636644U CN220958671U CN 220958671 U CN220958671 U CN 220958671U CN 202322636644 U CN202322636644 U CN 202322636644U CN 220958671 U CN220958671 U CN 220958671U
- Authority
- CN
- China
- Prior art keywords
- gas
- water
- valve
- section
- chiller according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 238000004378 air conditioning Methods 0.000 title claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 239000000498 cooling water Substances 0.000 claims abstract description 18
- 238000001179 sorption measurement Methods 0.000 claims description 56
- 238000003795 desorption Methods 0.000 claims description 52
- 230000001105 regulatory effect Effects 0.000 claims description 43
- 239000002274 desiccant Substances 0.000 claims description 25
- 239000006200 vaporizer Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 7
- 239000002808 molecular sieve Substances 0.000 claims description 7
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 7
- 239000000741 silica gel Substances 0.000 claims description 6
- 229910002027 silica gel Inorganic materials 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 14
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 14
- 239000003507 refrigerant Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Drying Of Gases (AREA)
Abstract
Description
技术领域Technical Field
本实用新型涉及冷水机及空气调节系统,且更具体言之,是涉及使用气泡和水致冷的冷水机及空气调节系统。The utility model relates to a water chiller and an air conditioning system, and more particularly to a water chiller and an air conditioning system using bubbles and water for cooling.
背景技术Background technique
现有冷水机主要是通过压缩机(compressor)将冷媒(refrigerant)压缩成高压高温的气态冷媒,并进入冷凝器(condenser)冷凝成高压常温液态冷煤,为了让冷媒回到低温可吸热的状态,利用膨胀阀(expansion valve)进行汽化,冷媒因相变而形成低压、低温的汽化效果,再进入蒸发器让负载侧的水可以被降温以及冷却。而蒸发器的冷媒侧也因吸热后,回到了低压的气体状态,再次回到压缩机进行压缩循环,达到重复致冷的效果。此外,现有空气调节系统也普遍使用压缩机及冷媒来达到空气致冷效果。The existing chiller mainly compresses the refrigerant into a high-pressure and high-temperature gaseous refrigerant through a compressor, and enters the condenser to condense into a high-pressure and room-temperature liquid refrigerant. In order to return the refrigerant to a low-temperature state where it can absorb heat, an expansion valve is used to vaporize it. The refrigerant forms a low-pressure and low-temperature vaporization effect due to phase change, and then enters the evaporator so that the water on the load side can be cooled and cooled. The refrigerant side of the evaporator also returns to a low-pressure gas state after absorbing heat, and returns to the compressor for compression cycle again, achieving a repeated refrigeration effect. In addition, existing air conditioning systems also generally use compressors and refrigerants to achieve air cooling effects.
然而,压缩机运转的耗电量大,会增加碳排放量(carbon emissions)。而冷媒的使用会对环境造成污染及加速气候暖化。且使用压缩机及冷媒致冷的性能系数(coefficientof performance,COP)普遍不佳。However, the high power consumption of compressors will increase carbon emissions. The use of refrigerants will pollute the environment and accelerate global warming. In addition, the coefficient of performance (COP) of refrigeration using compressors and refrigerants is generally poor.
实用新型内容Utility Model Content
在一些实施例中,一种冷水机包括一气体干燥器、一气体分散器以及一鼓风机。所述气体分散器设置于水中,用以产生多个气泡,且通过所述多个气泡与所述水产生湍流运动而形成一气体与水分子混合物及降低所述水的温度而得一冷却水。所述鼓风机连接所述气体干燥器,用以将所述气体与水分子混合物送入所述气体干燥器中,以去除所述气体与水分子混合物中的水份而得一干燥气体,并将所述干燥气体输送至所述气体分散器,以产生所述多个气泡。In some embodiments, a water chiller includes a gas dryer, a gas disperser, and a blower. The gas disperser is disposed in water to generate a plurality of bubbles, and a gas and water molecule mixture is formed by the plurality of bubbles and the water generating turbulent motion and the temperature of the water is lowered to obtain cooling water. The blower is connected to the gas dryer to send the gas and water molecule mixture into the gas dryer to remove the water in the gas and water molecule mixture to obtain a dry gas, and to send the dry gas to the gas disperser to generate the plurality of bubbles.
在一些示例中,所述冷水机还包括:壳体,其连接水源,用以接收所述水;其中所述气体分散器设置于所述壳体内,以接触所述水,且所述壳体与所述气体分散器构成气泡汽化器。In some examples, the chiller further includes: a shell connected to a water source for receiving the water; wherein the gas disperser is disposed in the shell to contact the water, and the shell and the gas disperser constitute a bubble vaporizer.
在一些示例中,所述气泡汽化器、所述鼓风机及所述气体干燥器连接成封闭环路。In some examples, the bubble vaporizer, the blower, and the gas dryer are connected in a closed loop.
在一些示例中,所述鼓风机进一步连接所述壳体,用以排出所述壳体内的所述气体与水分子混合物。In some examples, the blower is further connected to the shell to discharge the mixture of gas and water molecules in the shell.
在一些示例中,所述壳体通过热交换器连接所述鼓风机。In some examples, the housing is connected to the blower via a heat exchanger.
在一些示例中,所述热交换器包括冷部,所述冷部的两端分别连接所述鼓风机及所述壳体的顶部。In some examples, the heat exchanger includes a cold portion, and two ends of the cold portion are respectively connected to the blower and the top of the shell.
在一些示例中,所述壳体的宽度向下渐缩。In some examples, the width of the housing tapers downwardly.
在一些示例中,所述气体分散器不接触所述壳体的内侧壁。In some examples, the gas disperser does not contact an inner sidewall of the housing.
在一些示例中,所述气体干燥器通过热交换器连接所述气体分散器。In some examples, the gas dryer is connected to the gas disperser via a heat exchanger.
在一些示例中,所述热交换器包括热部,所述热部的两端分别连接所述气体干燥器及所述气体分散器。In some examples, the heat exchanger includes a hot part, and two ends of the hot part are respectively connected to the gas dryer and the gas disperser.
在一些示例中,所述气体干燥器通过至少一阀连接所述热交换器的所述热部。In some examples, the gas dryer is connected to the hot portion of the heat exchanger via at least one valve.
在一些示例中,所述鼓风机的压力比为1.1至1.2。In some examples, the blower has a pressure ratio of 1.1 to 1.2.
在一些示例中,所述气体干燥器包含可再生干燥剂。In some examples, the gas dryer includes a regenerable desiccant.
在一些示例中,所述可再生干燥剂包括分子筛、硅胶或石墨烯氧化物。In some examples, the regenerable desiccant includes molecular sieves, silica gel, or graphene oxide.
在一些示例中,所述气体干燥器包括第一吸附部及第一解吸部,所述第一吸附部包含可再生干燥剂,且所述第一吸附部通过第一阀连接所述鼓风机,所述第一解吸部包含可再生干燥剂,且所述第一解吸部通过第二阀连接所述鼓风机。In some examples, the gas dryer includes a first adsorption section and a first desorption section, the first adsorption section contains a regenerable desiccant, and the first adsorption section is connected to the blower via a first valve, and the first desorption section contains a regenerable desiccant, and the first desorption section is connected to the blower via a second valve.
在一些示例中,所述可再生干燥剂包括分子筛、硅胶或石墨烯氧化物。In some examples, the regenerable desiccant includes molecular sieves, silica gel, or graphene oxide.
在一些示例中,所述第一阀开启时,所述第二阀关闭;所述第二阀开启时,所述第一阀关闭。In some examples, when the first valve is open, the second valve is closed; when the second valve is open, the first valve is closed.
在一些示例中,所述第一吸附部及所述第一解吸部通过热交换器连接所述气体分散器。In some examples, the first adsorption unit and the first desorption unit are connected to the gas disperser via a heat exchanger.
在一些示例中,所述第一吸附部通过第三阀连接所述热交换器的热部,所述第一解吸部通过第四阀连接所述热交换器的所述热部。In some examples, the first adsorption section is connected to the hot section of the heat exchanger through a third valve, and the first desorption section is connected to the hot section of the heat exchanger through a fourth valve.
在一些示例中,所述第三阀开启时,所述第四阀关闭;所述第四阀开启时,所述第三阀关闭。In some examples, when the third valve is opened, the fourth valve is closed; when the fourth valve is opened, the third valve is closed.
在一些示例中,所述气体干燥器还包括热交换部,所述第一吸附部通过所述热交换部连接所述第一解吸部。In some examples, the gas dryer further includes a heat exchange portion, and the first adsorption portion is connected to the first desorption portion through the heat exchange portion.
在一些示例中,所述第一吸附部产生的吸附热通过所述热交换部传导至所述第一解吸部,以将所述第一解吸部中的水份解吸。In some examples, the adsorption heat generated by the first adsorption section is conducted to the first desorption section through the heat exchange section to desorb water in the first desorption section.
在一些示例中,所述第一吸附部通过第一调节阀连接所述第一解吸部,所述第一解吸部通过第二调节阀连接所述第一吸附部。In some examples, the first adsorption part is connected to the first desorption part through a first regulating valve, and the first desorption part is connected to the first adsorption part through a second regulating valve.
在一些示例中,所述第一调节阀的流向与所述第二调节阀的流向相反。In some examples, a flow direction of the first regulating valve is opposite to a flow direction of the second regulating valve.
在一些示例中,所述第一调节阀开启时,所述第二调节阀关闭;所述第二调节阀开启时,所述第一调节阀关闭。In some examples, when the first regulating valve is opened, the second regulating valve is closed; when the second regulating valve is opened, the first regulating valve is closed.
在一些示例中,所述鼓风机通过调节阀连接气体源。In some examples, the blower is connected to a gas source via a regulating valve.
在一些示例中,所述气体分散器包括:中空外壳,其具有气室及多个气孔,所述气室用以接收所述干燥气体,所述多个气孔贯穿所述中空外壳且连通所述气室。In some examples, the gas disperser includes: a hollow shell having an air chamber and a plurality of air holes, the air chamber is used to receive the dry gas, and the plurality of air holes penetrate the hollow shell and communicate with the air chamber.
在一些示例中,该冷水机还包括:壳体,其连接水源,用以接收所述水;其中所述中空外壳设置于所述壳体内,以接触所述水,且所述多个气孔设置于所述中空外壳的顶部。In some examples, the chiller further includes: a shell connected to a water source for receiving the water; wherein the hollow shell is disposed in the shell to contact the water, and the plurality of air holes are disposed at the top of the hollow shell.
在一些示例中,所述中空外壳设置为邻近所述壳体的底部。In some examples, the hollow housing is disposed adjacent to a bottom of the housing.
在一些示例中,所述中空外壳不接触所述壳体。In some examples, the hollow shell does not contact the housing.
在一些示例中,所述中空外壳通过气体管路连接热交换器。In some examples, the hollow housing is connected to a heat exchanger via a gas pipeline.
在一些实施例中,一种空气调节系统包括一冷水机、一风机盘管单元以及一水泵。所述风机盘管单元连接所述冷水机,且配置为接收冷却水。所述水泵的两端分别连接所述风机盘管单元及所述冷水机,用以驱动所述冷却水进出所述风机盘管单元,以使所述风机盘管单元产生一冷风。In some embodiments, an air conditioning system includes a water chiller, a fan coil unit, and a water pump. The fan coil unit is connected to the water chiller and configured to receive cooling water. The two ends of the water pump are respectively connected to the fan coil unit and the water chiller to drive the cooling water in and out of the fan coil unit so that the fan coil unit generates a cold wind.
在一些示例中,所述风机盘管单元包括:空气过滤器,其配置为过滤空气;盘管,其配置为供所述冷却水通过,以冷却过滤后的空气;以及风机,其配置为将所述过滤后的空气吹向所述盘管。In some examples, the fan coil unit includes: an air filter configured to filter air; a coil configured to allow the cooling water to pass through to cool the filtered air; and a fan configured to blow the filtered air toward the coil.
本实用新型的优点在于,冷水机通过一气体分散器在水中产生多个气泡,并利用所述多个气泡与所述水产生湍流运动而形成一气体与水分子混合物及降低所述水的温度而得一冷却水;通过一鼓风机将所述气体与水分子混合物送入一气体干燥器中,以去除所述气体与水分子混合物中的水份而得一干燥气体。通过一热交换器将所述干燥气体与所述气体与水分子混合物进行热交换,以降低所述干燥气体的温度。在一些实施例中,通过所述热交换器后的所述干燥气体的温度可小于35℃。The advantage of the utility model is that the water chiller generates a plurality of bubbles in water through a gas disperser, and utilizes the plurality of bubbles and the water to generate turbulent motion to form a mixture of gas and water molecules and reduce the temperature of the water to obtain cooling water; the mixture of gas and water molecules is sent into a gas dryer through a blower to remove the water in the mixture of gas and water molecules to obtain a dry gas. The dry gas is heat-exchanged with the mixture of gas and water molecules through a heat exchanger to reduce the temperature of the dry gas. In some embodiments, the temperature of the dry gas after passing through the heat exchanger may be less than 35°C.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
当结合附图阅读时,自以下详细描述易于理解本实用新型的一些实施例的态样。应注意,各种结构可能未按比例绘制,且各种结构的尺寸可出于论述清晰起见任意增大或减小。When read in conjunction with the accompanying drawings, aspects of some embodiments of the present invention are easily understood from the following detailed description. It should be noted that various structures may not be drawn to scale, and the sizes of various structures may be arbitrarily increased or reduced for clarity of discussion.
图1为本实用新型的一些实施例的冷水机的示意图;FIG1 is a schematic diagram of a water chiller according to some embodiments of the present invention;
图2为本实用新型的一些实施例的气泡汽化器的示意图;FIG2 is a schematic diagram of a bubble vaporizer according to some embodiments of the present invention;
图3为本实用新型的一些实施例的气体分散器的示意图;FIG3 is a schematic diagram of a gas disperser according to some embodiments of the present invention;
图4A至图4B为本实用新型的一些实施例的气体干燥器的一或多个阶段的工作示意图;4A to 4B are schematic diagrams of one or more stages of operation of a gas dryer according to some embodiments of the present invention;
图5为本实用新型的一些实施例的空气调节系统的示意图。FIG. 5 is a schematic diagram of an air conditioning system according to some embodiments of the present invention.
符号说明Symbol Description
1:冷水机1: Chiller
5:空气调节系统5: Air conditioning system
10:气泡汽化器10: Bubble vaporizer
11:壳体11: Shell
12:气体分散器12: Gas Disperser
20:鼓风机20: Blower
30:气体干燥器30: Gas dryer
31:第一吸附部31: First adsorption part
31':第二吸附部31': Second adsorption part
32:第一解吸部32: First desorption section
32':第二解吸部32': Second desorption section
33:热交换部33: Heat exchange unit
35:可再生干燥剂35: Regenerable desiccant
40:热交换器40:Heat exchanger
41:冷部41: Cold Section
42:热部42: Hot Department
50:风机盘管单元50: Fan coil unit
51:空气过滤器51: Air filter
52:盘管52: Coil
53:风机53: Fan
58:水泵58: Water Pump
71:第一阀71: First valve
72:第二阀72: Second valve
73:第三阀73: The third valve
74:第四阀74: The fourth valve
81:第一调节阀81: First regulating valve
82:第二调节阀82: Second regulating valve
83:第三调节阀83: The third regulating valve
84:第四调节阀84: Fourth regulating valve
85:调节阀85: Control valve
91:水源91: Water Source
92:气体源92: Gas source
111:端口111:Port
112:端口112:Port
113:端口113:Port
118:第一挡板118: First baffle
119:第二挡板119: Second baffle
11a:顶部11a: Top
11b:底部11b: Bottom
11c:中间部11c: Middle part
11w:内侧壁11w: inner wall
120:中空外壳120:Hollow shell
121:顶部121: Top
124:气室124: Air Chamber
125:气孔125: Stoma
128:气体管路128: Gas pipeline
A:干燥气体A: Dry gas
B:气泡B: Bubbles
G:间隙G: Gap
M:气体与水分子混合物M: mixture of gas and water molecules
W:水W: Water
W':冷却水W': Cooling water
具体实施方式Detailed ways
图1显示根据本实用新型的一些实施例的冷水机1的示意图。参阅图1,本实用新型的冷水机(water chiller)1可包括一气泡汽化器(bubble evaporator)10、一热交换器(heat exchanger)40、一气体干燥器(gas dryer)30以及一鼓风机(blower fan)20。FIG1 is a schematic diagram of a water chiller 1 according to some embodiments of the present invention. Referring to FIG1 , the water chiller 1 of the present invention may include a bubble evaporator 10 , a heat exchanger 40 , a gas dryer 30 and a blower fan 20 .
在一些实施例中,如图1所示,所述气泡汽化器10可包括一壳体(housing)11及气体分散器(gas diffuser)12。所述壳体11可连接一水源91,用以接收水W。在一些实施例中,所述壳体11可具有一顶部11a、一底部11b及一中间部11c。所述顶部11a可连接所述水源91,且所述顶部11a可具有至少一端口(包括例如,端口111)。所述底部11b相对于所述顶部11a,且所述底部11b可具有至少一端口(包括例如,端口112)。所述中间部11c位于所述顶部11a与所述底部11b之间。在一些实施例中,所述中间部11c的容积(volume)可大于所述顶部11a的容积及所述底部11b的容积。In some embodiments, as shown in FIG. 1 , the bubble vaporizer 10 may include a housing 11 and a gas diffuser 12. The housing 11 may be connected to a water source 91 to receive water W. In some embodiments, the housing 11 may have a top 11a, a bottom 11b, and a middle portion 11c. The top 11a may be connected to the water source 91, and the top 11a may have at least one port (including, for example, port 111). The bottom 11b is relative to the top 11a, and the bottom 11b may have at least one port (including, for example, port 112). The middle portion 11c is located between the top 11a and the bottom 11b. In some embodiments, the volume of the middle portion 11c may be greater than the volume of the top 11a and the volume of the bottom 11b.
在一些实施例中,如图1所示,所述壳体11可包括一第一挡板(first baffle)118及一第二挡板(second baffle)119。所述第一挡板118与所述第二挡板119可连接至所述壳体11的一内侧壁11w,且所述第一挡板118与所述第二挡板119可呈上下间隔配置,也就是说,所述第一挡板118与所述第二挡板119之间可具有一间隙G。在一些实施例中,对应所述间隙G的所述第一挡板118的一部分的向下投影(downward projection)与对应所述间隙G的所述第二挡板119的一部分的向上投影(upward projection)重叠。In some embodiments, as shown in FIG1 , the housing 11 may include a first baffle 118 and a second baffle 119. The first baffle 118 and the second baffle 119 may be connected to an inner side wall 11w of the housing 11, and the first baffle 118 and the second baffle 119 may be arranged with an upper and lower spacing, that is, there may be a gap G between the first baffle 118 and the second baffle 119. In some embodiments, a downward projection of a portion of the first baffle 118 corresponding to the gap G overlaps an upward projection of a portion of the second baffle 119 corresponding to the gap G.
参阅图2,其显示根据本实用新型的一些实施例的气泡汽化器的示意图。在一些实施例中,如图2所示,所述壳体11的宽度(例如,所述中间部11c的宽度)可向下渐缩(taperdownward)。Refer to Fig. 2, which shows a schematic diagram of a bubble vaporizer according to some embodiments of the present invention. In some embodiments, as shown in Fig. 2, the width of the housing 11 (eg, the width of the middle portion 11c) may taper downward.
再参阅图1,所述气体分散器12可设置于所述壳体11内,且所述气体分散器12可设置于所述水W中,以接触所述水W。所述气体分散器12用以或配置为产生多个气泡(gasbubble)B,因此,所述气体分散器12与所述壳体11可构成所述气泡汽化器10。在一些实施例中,通过所述多个气泡B与所述水W产生湍流运动(turbulent motion)可形成一气体与水分子混合物(mixture of gas and water molecules)M及降低所述水W的温度而得一冷却水(chilled water)W'。在一些实施例中,所述多个气泡B与所述水W产生湍流运动而形成所述气体与水分子混合物M及降低所述水W的温度也可称为“气泡增强蒸发冷却机制(coolingmechanism by bubble enhanced evaporation)”。在一些实施例中,所述气体与水分子混合物M可通过所述间隙G进入所述端口111而排出,且所述第一挡板118与所述第二挡板119可防止所述水W在所述湍流运动期间飞溅。Referring to FIG. 1 again, the gas disperser 12 may be disposed in the housing 11, and the gas disperser 12 may be disposed in the water W to contact the water W. The gas disperser 12 is used or configured to generate a plurality of gas bubbles B, and thus, the gas disperser 12 and the housing 11 may constitute the bubble vaporizer 10. In some embodiments, a mixture of gas and water molecules M may be formed by the plurality of bubbles B and the water W generating turbulent motion, and the temperature of the water W may be reduced to obtain a chilled water W'. In some embodiments, the plurality of bubbles B and the water W generating turbulent motion to form the mixture of gas and water molecules M and reduce the temperature of the water W may also be referred to as a "cooling mechanism by bubble enhanced evaporation". In some embodiments, the mixture of gas and water molecules M may enter the port 111 through the gap G and be discharged, and the first baffle 118 and the second baffle 119 may prevent the water W from splashing during the turbulent motion.
参阅图3,其显示根据本实用新型的一些实施例的气体分散器的示意图。在一些实施例中,如图1及图3所示,所述气体分散器12可包括一中空外壳120。所述中空外壳120可设置为邻近所述壳体11的所述底部11b。在一些实施例中,如图1所示,所述中空外壳120可不接触(包括例如,完全不接触或不直接接触)所述壳体11(例如,所述内侧壁11w)。Refer to FIG3 , which shows a schematic diagram of a gas disperser according to some embodiments of the present invention. In some embodiments, as shown in FIG1 and FIG3 , the gas disperser 12 may include a hollow housing 120. The hollow housing 120 may be disposed adjacent to the bottom 11 b of the housing 11. In some embodiments, as shown in FIG1 , the hollow housing 120 may not contact (including, for example, not contacting at all or not directly contacting) the housing 11 (for example, the inner sidewall 11 w).
在一些实施例中,如图3所示,所述中空外壳120可具有一顶部121、一气室124及多个气孔125。所述气室124用以或配置为接收一干燥气体(dry gas)A。在一些实施例中,所述干燥气体A可包括但不限于空气(air)。所述多个气孔125可贯穿所述中空外壳120且连通所述气室124,所述多个气孔125可供所述干燥气体A通过而产生所述多个气泡B。在一些实施例中,所述多个气孔125可设置于所述中空外壳120的所述顶部121。In some embodiments, as shown in FIG. 3 , the hollow housing 120 may have a top 121, an air chamber 124, and a plurality of air holes 125. The air chamber 124 is used or configured to receive a dry gas A. In some embodiments, the dry gas A may include, but is not limited to, air. The plurality of air holes 125 may penetrate the hollow housing 120 and communicate with the air chamber 124, and the plurality of air holes 125 may allow the dry gas A to pass through to generate the plurality of bubbles B. In some embodiments, the plurality of air holes 125 may be disposed at the top 121 of the hollow housing 120.
在一些实施例中,所述气体分散器12可包括多孔材料(porous material)。所述多孔材料可具有多个孔洞(holes),以供所述干燥气体A通过而产生所述多个气泡B。In some embodiments, the gas disperser 12 may include a porous material having a plurality of holes for the dry gas A to pass through to generate the plurality of bubbles B.
再参阅图1,所述热交换器40可连接所述壳体11及所述气体分散器12。在一些实施例中,如图1所示,所述热交换器40可包括一冷部41及一热部42。所述冷部41的一端可连接所述壳体11(例如,所述端口111)。所述热部42的一端可通过一气体管路128连接所述气体分散器12(例如,所述中空外壳120)。Referring again to FIG. 1 , the heat exchanger 40 may be connected to the housing 11 and the gas disperser 12. In some embodiments, as shown in FIG. 1 , the heat exchanger 40 may include a cold portion 41 and a hot portion 42. One end of the cold portion 41 may be connected to the housing 11 (e.g., the port 111). One end of the hot portion 42 may be connected to the gas disperser 12 (e.g., the hollow housing 120) via a gas pipeline 128.
所述气体干燥器30可通过所述热交换器40(例如,所述热部42)连接所述气体分散器12。也就是说,所述热交换器40的所述热部42的两端可分别连接所述气体干燥器30及所述气体分散器12。在一些实施例中,如图1所示,所述气体干燥器30可通过至少一阀(包括例如,第三阀73及第四阀74)连接所述热交换器40的所述热部42。The gas dryer 30 may be connected to the gas disperser 12 via the heat exchanger 40 (e.g., the hot part 42). That is, both ends of the hot part 42 of the heat exchanger 40 may be connected to the gas dryer 30 and the gas disperser 12, respectively. In some embodiments, as shown in FIG1 , the gas dryer 30 may be connected to the hot part 42 of the heat exchanger 40 via at least one valve (including, for example, a third valve 73 and a fourth valve 74).
在一些实施例中,如图1所示,所述气体干燥器30可包括一第一吸附部(firstadsorption portion)31、一第一解吸部(first desorption portion)32及一热交换部(heat exchanging portion)33。所述第一吸附部31及所述第一解吸部32可包含可再生干燥剂(renewabledesiccant)35。在一些实施例中,所述可再生干燥剂35可包括但不限于吸附式可再生干燥剂。在一些实施例中,所述可再生干燥剂35可包括但不限于分子筛(molecular sieves)、硅胶(silica gels)或石墨烯氧化物(graphene oxides)。在一些实施例中,所述可再生干燥剂35可通过加热再生。在一些实施例中,如图1所示,所述第一吸附部31可通过所述第三阀73连接所述热交换器40的所述热部42,所述第一解吸部32可通过所述第四阀74连接所述热交换器40的所述热部42。在一些实施例中,所述第三阀73与所述第四阀74可交替使用,也就是说,所述第三阀73开启时,所述第四阀74可关闭;所述第四阀74开启时,所述第三阀73可关闭。In some embodiments, as shown in FIG. 1 , the gas dryer 30 may include a first adsorption portion 31, a first desorption portion 32, and a heat exchanging portion 33. The first adsorption portion 31 and the first desorption portion 32 may include a renewable desiccant 35. In some embodiments, the regenerable desiccant 35 may include but is not limited to an adsorption-type regenerable desiccant. In some embodiments, the regenerable desiccant 35 may include but is not limited to molecular sieves, silica gels, or graphene oxides. In some embodiments, the regenerable desiccant 35 may be regenerated by heating. In some embodiments, as shown in FIG. 1 , the first adsorption portion 31 may be connected to the hot portion 42 of the heat exchanger 40 through the third valve 73, and the first desorption portion 32 may be connected to the hot portion 42 of the heat exchanger 40 through the fourth valve 74. In some embodiments, the third valve 73 and the fourth valve 74 can be used alternately, that is, when the third valve 73 is opened, the fourth valve 74 can be closed; when the fourth valve 74 is opened, the third valve 73 can be closed.
所述热交换部33可设置于所述第一吸附部31与所述第一解吸部32之间,因此,所述第一吸附部31可通过所述热交换部33连接所述第一解吸部32。在一些实施例中,所述第一吸附部31可界定为所述可再生干燥剂35尚未吸附水份(moisture),所述第一解吸部32可界定为所述可再生干燥剂35已吸附水份,需解吸再生。所述第一吸附部31产生的吸附热可通过所述热交换部33传导至所述第一解吸部32,以将所述第一解吸部32中的水份(例如,所述可再生干燥剂35吸附的水份)解吸。The heat exchange part 33 may be disposed between the first adsorption part 31 and the first desorption part 32, so the first adsorption part 31 may be connected to the first desorption part 32 through the heat exchange part 33. In some embodiments, the first adsorption part 31 may be defined as the regenerable desiccant 35 that has not yet adsorbed moisture, and the first desorption part 32 may be defined as the regenerable desiccant 35 that has adsorbed moisture and needs to be desorbed and regenerated. The adsorption heat generated by the first adsorption part 31 may be conducted to the first desorption part 32 through the heat exchange part 33 to desorb the moisture in the first desorption part 32 (e.g., the moisture adsorbed by the regenerable desiccant 35).
在一些实施例中,如图1所示,所述第一吸附部31可通过一第一调节阀(firstregulating valve)81连接所述第一解吸部32,所述第一解吸部32可通过一第二调节阀(second regulating valve)82连接所述第一吸附部31。在一些实施例中,所述第一调节阀81与所述第二调节阀82可交替使用,也就是说,所述第一调节阀81开启时,所述第二调节阀82可关闭;所述第二调节阀82开启时,所述第一调节阀81可关闭。在一些实施例中,所述第一调节阀81的流向可与所述第二调节阀82的流向相反。此外,在一些实施例中,所述第一吸附部31可通过一第三调节阀(third regulating valve)83连接至一外部环境(externalenvironment),所述第一解吸部32可通过一第四调节阀(fourth regulating valve)84连接至所述外部环境。在一些实施例中,所述第一调节阀81、所述第二调节阀82、所述第三调节阀83及所述第四调节阀84可包括但不限于针阀(needle valve)。In some embodiments, as shown in FIG. 1 , the first adsorption part 31 can be connected to the first desorption part 32 through a first regulating valve 81, and the first desorption part 32 can be connected to the first adsorption part 31 through a second regulating valve 82. In some embodiments, the first regulating valve 81 and the second regulating valve 82 can be used alternately, that is, when the first regulating valve 81 is opened, the second regulating valve 82 can be closed; when the second regulating valve 82 is opened, the first regulating valve 81 can be closed. In some embodiments, the flow direction of the first regulating valve 81 can be opposite to the flow direction of the second regulating valve 82. In addition, in some embodiments, the first adsorption part 31 can be connected to an external environment through a third regulating valve 83, and the first desorption part 32 can be connected to the external environment through a fourth regulating valve 84. In some embodiments, the first regulating valve 81, the second regulating valve 82, the third regulating valve 83 and the fourth regulating valve 84 can include but are not limited to needle valves.
所述鼓风机20可连接所述气体干燥器30(包括例如,所述第一吸附部31及所述第一解吸部32)。在一些实施例中,如图1所示,所述第一吸附部31可通过一第一阀71连接所述鼓风机20,所述第一解吸部32可通过一第二阀72连接所述鼓风机20。在一些实施例中,所述第一阀71与所述第二阀72可交替使用,也就是说,所述第一阀71开启时,所述第二阀72可关闭;所述第二阀72开启时,所述第一阀71可关闭。The blower 20 may be connected to the gas dryer 30 (including, for example, the first adsorption unit 31 and the first desorption unit 32). In some embodiments, as shown in FIG1 , the first adsorption unit 31 may be connected to the blower 20 via a first valve 71, and the first desorption unit 32 may be connected to the blower 20 via a second valve 72. In some embodiments, the first valve 71 and the second valve 72 may be used alternately, that is, when the first valve 71 is opened, the second valve 72 may be closed; when the second valve 72 is opened, the first valve 71 may be closed.
此外,所述壳体11(例如,所述顶部11a)可通过所述热交换器40(例如,所述冷部41)连接所述鼓风机20。也就是说,所述热交换器40的所述冷部41的两端可分别连接所述鼓风机20及所述壳体11的所述顶部11a(例如,所述端口111)。所述鼓风机20用以或配置为排出所述壳体11内的所述气体与水分子混合物M,并将所述气体与水分子混合物M送入所述气体干燥器30(例如,所述第一吸附部31)中,以去除所述气体与水分子混合物M中的水份而得所述干燥气体A(接近零相对湿度),并将所述干燥气体A输送至所述气体分散器12(例如,所述中空外壳120),以产生所述多个气泡B。为使所述鼓风机20可快速排出所述壳体11内的所述气体与水分子混合物M以及将所述干燥气体A高压输送至所述气体分散器12(例如,所述中空外壳120),在一些实施例中,所述鼓风机20的压力比可为1.1至1.2。在一些实施例中,如图1所示,所述鼓风机20可通过一调节阀(regulating valve)85连接一气体源92,以确保气体充足。在一些实施例中,所述调节阀85可包括但不限于针阀(needle valve)。在一些实施例中,所述气体源92可包括但不限于大气(atmosphere)。In addition, the shell 11 (e.g., the top 11a) can be connected to the blower 20 through the heat exchanger 40 (e.g., the cold part 41). That is, the two ends of the cold part 41 of the heat exchanger 40 can be connected to the blower 20 and the top 11a of the shell 11 (e.g., the port 111), respectively. The blower 20 is used or configured to discharge the gas and water molecule mixture M in the shell 11, and send the gas and water molecule mixture M into the gas dryer 30 (e.g., the first adsorption part 31) to remove the water in the gas and water molecule mixture M to obtain the dry gas A (close to zero relative humidity), and the dry gas A is transported to the gas disperser 12 (e.g., the hollow shell 120) to generate the plurality of bubbles B. In order to enable the blower 20 to quickly discharge the gas and water molecule mixture M in the housing 11 and to deliver the dry gas A to the gas disperser 12 (e.g., the hollow housing 120) at high pressure, in some embodiments, the pressure ratio of the blower 20 may be 1.1 to 1.2. In some embodiments, as shown in FIG1 , the blower 20 may be connected to a gas source 92 via a regulating valve 85 to ensure sufficient gas. In some embodiments, the regulating valve 85 may include, but is not limited to, a needle valve. In some embodiments, the gas source 92 may include, but is not limited to, atmosphere.
通过上述配置,所述气泡汽化器10(包括例如,所述壳体11及所述气体分散器12)、所述热交换器40(包括例如,所述冷部41及所述热部42)、所述鼓风机20及所述气体干燥器30(包括例如,所述第一吸附部31及所述第一解吸部32)可连接成一封闭环路(closedloop)。Through the above configuration, the bubble vaporizer 10 (including, for example, the shell 11 and the gas disperser 12), the heat exchanger 40 (including, for example, the cold part 41 and the hot part 42), the blower 20 and the gas dryer 30 (including, for example, the first adsorption part 31 and the first desorption part 32) can be connected into a closed loop.
图4A至图4B显示根据本实用新型的一些实施例的气体干燥器的一或多个阶段的工作示意图。关于所述冷水机1的运作方式现配合图1、图4A及图4B详细说明如下:FIG. 4A to FIG. 4B are schematic diagrams showing one or more stages of operation of a gas dryer according to some embodiments of the present invention. The operation of the chiller 1 is described in detail with reference to FIG. 1 , FIG. 4A and FIG. 4B as follows:
[第一运作循环][First operation cycle]
参阅图1,开启所述调节阀85、所述第一阀71及所述第三阀73,其余阀关闭;Referring to FIG. 1 , the regulating valve 85 , the first valve 71 and the third valve 73 are opened, and the remaining valves are closed;
启动所述鼓风机20,以排出所述壳体11内的所述气体与水分子混合物M,并将所述气体与水分子混合物M通过所述第一阀71送入所述气体干燥器30的所述第一吸附部31中;Starting the blower 20 to discharge the gas and water molecule mixture M in the housing 11, and sending the gas and water molecule mixture M into the first adsorption part 31 of the gas dryer 30 through the first valve 71;
参阅图4A及图1,通过所述第一吸附部31中的所述可再生干燥剂35(例如,分子筛、硅胶或石墨烯氧化物)吸附所述气体与水分子混合物M中的水份而得所述干燥气体A,所述鼓风机20再输送所述干燥气体A通过所述第三阀73、经所述热交换器40的所述热部42至所述气体分散器12(例如,所述中空外壳120),以产生所述多个气泡B。由于所述可再生干燥剂35吸附水份所产生的吸附热对所述干燥气体A有加热作用,会使得所述干燥气体A呈现高温(约75℃至85℃),而高温的所述干燥气体A会降低水冷却效率,因此,高温的所述干燥气体A在经过所述热交换器40的所述热部42时,可与经过所述热交换器40的所述冷部41的低温的所述气体与水分子混合物M进行热交换,以降低所述干燥气体A的温度。此外,所述第一吸附部31产生的吸附热可通过所述热交换部33传导至所述第一解吸部32,以将所述第一解吸部32中的水份(例如,所述可再生干燥剂35吸附的水份)解吸。且可在适当的时机,开启所述第一调节阀81及所述第四调节阀84,以使一小部分(小于10%)的所述干燥气体A通过所述第一调节阀81进入所述第一解吸部32,将所述第一解吸部32中解吸的水分子(watermolecules)通过所述第四调节阀84排出至所述外部环境;以及Referring to FIG. 4A and FIG. 1 , the regenerable desiccant 35 (e.g., molecular sieve, silica gel, or graphene oxide) in the first adsorption part 31 adsorbs water in the mixture of gas and water molecules M to obtain the dry gas A, and the blower 20 then delivers the dry gas A through the third valve 73 and the hot part 42 of the heat exchanger 40 to the gas disperser 12 (e.g., the hollow housing 120) to generate the plurality of bubbles B. Since the adsorption heat generated by the adsorption of water by the regenerable desiccant 35 has a heating effect on the dry gas A, the dry gas A will be at a high temperature (about 75° C. to 85° C.), and the high temperature of the dry gas A will reduce the water cooling efficiency. Therefore, when the high temperature dry gas A passes through the hot part 42 of the heat exchanger 40, it can exchange heat with the low temperature mixture of gas and water molecules M passing through the cold part 41 of the heat exchanger 40 to reduce the temperature of the dry gas A. In addition, the adsorption heat generated by the first adsorption section 31 can be transferred to the first desorption section 32 through the heat exchange section 33 to desorb the moisture in the first desorption section 32 (for example, the moisture adsorbed by the regenerable desiccant 35). The first regulating valve 81 and the fourth regulating valve 84 can be opened at an appropriate time to allow a small portion (less than 10%) of the dry gas A to enter the first desorption section 32 through the first regulating valve 81, and the water molecules desorbed in the first desorption section 32 can be discharged to the external environment through the fourth regulating valve 84; and
利用所述多个气泡B与所述水W产生湍流运动而形成所述气体与水分子混合物M及降低所述水W的温度而得所述冷却水W'。在一些实施例中,所述冷却水W'可通过所述壳体11的所述端口112输送至一外部设备,作为冷却或空气调节用途。The gas and water molecule mixture M is formed by using the multiple bubbles B and the water W to generate turbulent motion and the cooling water W' is obtained by lowering the temperature of the water W. In some embodiments, the cooling water W' can be delivered to an external device through the port 112 of the housing 11 for cooling or air conditioning purposes.
在一些实施例中,如图4A及图4B所示,水份解吸后的所述第一解吸部32(图4A)可作为一第二吸附部31'(图4B),而吸附水份后的所述第一吸附部31(图4A)可作为一第二解吸部32'(图4B)。In some embodiments, as shown in FIG. 4A and FIG. 4B , the first desorption section 32 ( FIG. 4A ) after water desorption can be used as a second adsorption section 31 ′ ( FIG. 4B ), and the first adsorption section 31 ( FIG. 4A ) after water adsorption can be used as a second desorption section 32 ′ ( FIG. 4B ).
[第二运作循环][Second operation cycle]
参阅图1,开启所述调节阀85、所述第二阀72及所述第四阀74,其余阀关闭;Referring to FIG. 1 , the regulating valve 85 , the second valve 72 and the fourth valve 74 are opened, and the remaining valves are closed;
参阅图1及图4B,启动所述鼓风机20,以排出所述壳体11内的所述气体与水分子混合物M,并将所述气体与水分子混合物M通过所述第二阀72送入所述气体干燥器30的所述第二吸附部31'(图4B)中;1 and 4B , the blower 20 is started to discharge the gas and water molecule mixture M in the housing 11 , and the gas and water molecule mixture M is sent into the second adsorption part 31 ′ ( FIG. 4B ) of the gas dryer 30 through the second valve 72 ;
通过所述第二吸附部31'中的所述可再生干燥剂35(例如,分子筛、硅胶或石墨烯氧化物)吸附所述气体与水分子混合物M中的水份而得所述干燥气体A,所述鼓风机20再输送所述干燥气体A通过所述第四阀74、经所述热交换器40的所述热部42至所述气体分散器12(例如,所述中空外壳120),以产生所述多个气泡B。此外,所述第二吸附部31'产生的吸附热可通过所述热交换部33传导至所述第二解吸部32'(图4B),以将所述第二解吸部32'中的水份(例如,所述可再生干燥剂35吸附的水份)解吸。且可在适当的时机,开启所述第二调节阀82及所述第三调节阀83,以使一小部分(小于10%)的所述干燥气体A通过所述第二调节阀82进入所述第二解吸部32',将所述第二解吸部32'中解吸的水分子通过所述第三调节阀83排出至所述外部环境;以及The dry gas A is obtained by adsorbing the water in the mixture M of gas and water molecules through the regenerable desiccant 35 (e.g., molecular sieve, silica gel, or graphene oxide) in the second adsorption section 31', and the blower 20 then transports the dry gas A through the fourth valve 74 and the hot section 42 of the heat exchanger 40 to the gas disperser 12 (e.g., the hollow shell 120) to generate the plurality of bubbles B. In addition, the adsorption heat generated by the second adsorption section 31' can be conducted to the second desorption section 32' (FIG. 4B) through the heat exchange section 33 to desorb the water in the second desorption section 32' (e.g., the water adsorbed by the regenerable desiccant 35). The second regulating valve 82 and the third regulating valve 83 can be opened at an appropriate time to allow a small portion (less than 10%) of the dry gas A to enter the second desorption section 32' through the second regulating valve 82, and the water molecules desorbed in the second desorption section 32' are discharged to the external environment through the third regulating valve 83; and
利用所述多个气泡B与所述水W产生湍流运动而形成所述气体与水分子混合物M及降低所述水W的温度而得所述冷却水W'。The gas and water molecule mixture M is formed by utilizing the multiple bubbles B and the water W to generate turbulent motion and the temperature of the water W is reduced to obtain the cooling water W′.
在图1至图4B所示的实施例中,所述冷水机1的致冷媒介仅使用水与气体,完全没有使用冷媒,因此,不会对环境造成污染及加速气候暖化。且本实用新型仅使用低耗电量的所述鼓风机20,其碳排放量(carbon emissions)远低于现有使用的压缩机。此外,本实用新型使用所述鼓风机20、水及气体致冷的性能系数(COP)可达到15以上,明显优于现有使用压缩机及冷媒的COP。In the embodiment shown in FIG. 1 to FIG. 4B , the cooling medium of the water chiller 1 only uses water and gas, and no refrigerant is used at all, so it will not pollute the environment and accelerate global warming. Moreover, the utility model only uses the blower 20 with low power consumption, and its carbon emissions are much lower than the compressor used in the prior art. In addition, the coefficient of performance (COP) of the utility model using the blower 20, water and gas refrigeration can reach more than 15, which is significantly better than the COP of the prior art using compressors and refrigerants.
图5显示根据本实用新型的一些实施例的空气调节系统5的示意图。参阅图5,本实用新型的空气调节系统5可包括一冷水机1、一风机盘管单元(fan coil unit)50以及一水泵(water pump)58。FIG5 is a schematic diagram of an air conditioning system 5 according to some embodiments of the present invention. Referring to FIG5 , the air conditioning system 5 of the present invention may include a chiller 1 , a fan coil unit 50 , and a water pump 58 .
图5的所述冷水机1可相同于图1的所述冷水机1。因此,图5的所述冷水机1可包括一气泡汽化器10、一热交换器40、一气体干燥器30以及一鼓风机20。图5的所述气泡汽化器10可相同于图1的所述气泡汽化器10。图5的所述热交换器40可相同于图1的所述热交换器40。图5的所述气体干燥器30可相同于图1的所述气体干燥器30。图5的所述鼓风机20可相同于图1的所述鼓风机20。The chiller 1 of FIG5 may be the same as the chiller 1 of FIG1. Therefore, the chiller 1 of FIG5 may include a bubble vaporizer 10, a heat exchanger 40, a gas dryer 30 and a blower 20. The bubble vaporizer 10 of FIG5 may be the same as the bubble vaporizer 10 of FIG1. The heat exchanger 40 of FIG5 may be the same as the heat exchanger 40 of FIG1. The gas dryer 30 of FIG5 may be the same as the gas dryer 30 of FIG1. The blower 20 of FIG5 may be the same as the blower 20 of FIG1.
所述风机盘管单元50连接所述冷水机1,且配置为接收所述冷却水W'。在一些实施例中,如图5所示,所述风机盘管单元50可包括一空气过滤器(air filter)51、一盘管(coil)52以及一风机(fan)53。所述空气过滤器51可配置为过滤空气。所述盘管52可配置为供所述冷却水W'通过,以冷却过滤后的空气。所述风机53可配置为将所述过滤后的空气吹向所述盘管52。在一些实施例中,所述盘管52的一端(例如,出口端)可连接所述壳体11的一端口113。在一些实施例中,所述端口113的海拔高度(elevation)可不同于所述端口112的海拔高度。在一些实施例中,所述端口113可设置于所述壳体11的所述中间部11c。The fan coil unit 50 is connected to the chiller 1 and is configured to receive the cooling water W'. In some embodiments, as shown in FIG5 , the fan coil unit 50 may include an air filter 51, a coil 52, and a fan 53. The air filter 51 may be configured to filter air. The coil 52 may be configured to allow the cooling water W' to pass through to cool the filtered air. The fan 53 may be configured to blow the filtered air toward the coil 52. In some embodiments, one end (e.g., the outlet end) of the coil 52 may be connected to a port 113 of the housing 11. In some embodiments, the elevation of the port 113 may be different from the elevation of the port 112. In some embodiments, the port 113 may be disposed in the middle portion 11c of the housing 11.
所述水泵58的两端可分别连接所述风机盘管单元50(例如,所述盘管52)及所述冷水机1(例如,所述壳体11的所述端口112),用以或配置为驱动所述冷却水W'进出所述风机盘管单元50(例如,所述盘管52),以使所述风机盘管单元50产生一冷风。The two ends of the water pump 58 can be respectively connected to the fan coil unit 50 (e.g., the coil 52) and the chiller 1 (e.g., the port 112 of the shell 11), and are used or configured to drive the cooling water W' in and out of the fan coil unit 50 (e.g., the coil 52) so that the fan coil unit 50 generates a cold wind.
配合参阅图1及图4A,本实用新型的水冷却方法可包括:With reference to FIG. 1 and FIG. 4A , the water cooling method of the present invention may include:
通过一气体分散器12于水W中产生多个气泡B,并利用所述多个气泡B与所述水W产生湍流运动而形成一气体与水分子混合物M及降低所述水W的温度而得一冷却水W';A gas disperser 12 is used to generate a plurality of bubbles B in the water W, and the bubbles B and the water W are used to generate turbulent motion to form a mixture of gas and water molecules M and to reduce the temperature of the water W to obtain cooling water W';
通过一鼓风机20将所述气体与水分子混合物M送入一气体干燥器30中,以去除所述气体与水分子混合物M中的水份而得一干燥气体A。在一些实施例中,所述气体干燥器30可包括一第一吸附部31、一第一解吸部32及一热交换部33。所述第一吸附部31及所述第一解吸部32可包含可再生干燥剂35,且所述第一吸附部31可通过所述热交换部33连接所述第一解吸部32。在一些实施例中,所述水冷却方法可进一步包括:通过所述鼓风机20将所述气体与水分子混合物M送入所述气体干燥器30的所述第一吸附部31;及通过所述热交换部33将所述第一吸附部31产生的吸附热传导至所述第一解吸部32,以将所述第一解吸部32中的水份解吸;以及The mixture M of gas and water molecules is sent into a gas dryer 30 by a blower 20 to remove the water in the mixture M of gas and water molecules to obtain a dry gas A. In some embodiments, the gas dryer 30 may include a first adsorption section 31, a first desorption section 32 and a heat exchange section 33. The first adsorption section 31 and the first desorption section 32 may include a regenerable desiccant 35, and the first adsorption section 31 may be connected to the first desorption section 32 via the heat exchange section 33. In some embodiments, the water cooling method may further include: sending the mixture M of gas and water molecules into the first adsorption section 31 of the gas dryer 30 by the blower 20; and conducting the adsorption heat generated by the first adsorption section 31 to the first desorption section 32 through the heat exchange section 33 to desorb the water in the first desorption section 32; and
将所述干燥气体A输送至所述气体分散器12,以产生所述多个气泡B。在一些实施例中,所述水冷却方法可进一步包括:通过一热交换器40将所述干燥气体A与所述气体与水分子混合物M进行热交换,以降低所述干燥气体A的温度。在一些实施例中,通过所述热交换器40后的所述干燥气体A的温度可小于35℃。The dry gas A is delivered to the gas disperser 12 to generate the plurality of bubbles B. In some embodiments, the water cooling method may further include: exchanging heat between the dry gas A and the gas and water molecule mixture M through a heat exchanger 40 to reduce the temperature of the dry gas A. In some embodiments, the temperature of the dry gas A after passing through the heat exchanger 40 may be less than 35°C.
上述实施例中,所述“连接”可包括例如“通过一管路连接”或“通过多管路连接”。在一些实施例中,所述管路可包括但不限于气相管路、液相管路或气液混合管路。In the above embodiments, the “connection” may include, for example, “connection through a pipeline” or “connection through multiple pipelines.” In some embodiments, the pipeline may include, but is not limited to, a gas phase pipeline, a liquid phase pipeline, or a gas-liquid mixed pipeline.
上述实施例仅为说明本实用新型的原理及其功效,而非限制本实用新型。本领域技术人员对上述实施例所做的修改及变化仍不违背本实用新型的精神。本实用新型的权利范围应如附上的权利要求所列。The above embodiments are only for explaining the principle and efficacy of the present utility model, but not for limiting the present utility model. The modifications and changes made by those skilled in the art to the above embodiments still do not violate the spirit of the present utility model. The scope of rights of the present utility model shall be as listed in the attached claims.
Claims (33)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322636644.7U CN220958671U (en) | 2023-09-27 | 2023-09-27 | Water chiller and air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322636644.7U CN220958671U (en) | 2023-09-27 | 2023-09-27 | Water chiller and air conditioning system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN220958671U true CN220958671U (en) | 2024-05-14 |
Family
ID=91020951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202322636644.7U Active CN220958671U (en) | 2023-09-27 | 2023-09-27 | Water chiller and air conditioning system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN220958671U (en) |
-
2023
- 2023-09-27 CN CN202322636644.7U patent/CN220958671U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5068235B2 (en) | Refrigeration air conditioner | |
US6675601B2 (en) | Air conditioner | |
JP2001241693A (en) | Air conditioner | |
JPH10288486A (en) | Air-conditioning system and its operating method | |
CN104596143B (en) | The wet decoupling of heat based on non-azeotropic working medium processes air conditioning system | |
JP3606854B2 (en) | High humidity fuel gas compression supply device | |
JP2012052782A (en) | Desiccant type ventilation fan | |
CN104676760A (en) | Air conditioning system without dew point control | |
JP2002310465A (en) | Air conditioner | |
CN220958671U (en) | Water chiller and air conditioning system | |
JP2000257907A (en) | Dehumidifying apparatus | |
WO2015125249A1 (en) | Air-conditioning device | |
JP7573680B2 (en) | Carbon Dioxide Capture System | |
JPH11132500A (en) | Dehumidifying air conditioner | |
CN106500205A (en) | The trans critical cycle air treatment system compound with two-stage solution dehumidification system | |
CN105674452A (en) | Air ejection humidifying-membrane type and compressing type combined dehumidification and cooling system | |
JP2002250573A (en) | Air conditioner | |
WO2021208397A1 (en) | Dehumidifying and drying apparatus and operating method thereof | |
CN113339905B (en) | Molecular sieve based air conditioner | |
CN201885476U (en) | Dehumidifier and refrigerating system thereof | |
CN218379966U (en) | Refrigeration system assembly based on cold and warm air blower | |
CN219995453U (en) | Runner dehumidification device of self-supply cold source | |
JP4547831B2 (en) | Air conditioner | |
CN219775887U (en) | DC frequency conversion runner dehumidification air conditioning device | |
CN218599892U (en) | Direct expansion type large enthalpy difference air conditioning unit and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |