CN220667652U - All-electric speed regulating system - Google Patents

All-electric speed regulating system Download PDF

Info

Publication number
CN220667652U
CN220667652U CN202322448751.7U CN202322448751U CN220667652U CN 220667652 U CN220667652 U CN 220667652U CN 202322448751 U CN202322448751 U CN 202322448751U CN 220667652 U CN220667652 U CN 220667652U
Authority
CN
China
Prior art keywords
linear motor
speed
control
rotor
servo driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202322448751.7U
Other languages
Chinese (zh)
Inventor
刘忠诚
李一兴
张鲲羽
王蕴嘉
许涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
704th Research Institute of CSIC
Original Assignee
704th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 704th Research Institute of CSIC filed Critical 704th Research Institute of CSIC
Priority to CN202322448751.7U priority Critical patent/CN220667652U/en
Application granted granted Critical
Publication of CN220667652U publication Critical patent/CN220667652U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Linear Motors (AREA)

Abstract

The utility model relates to an all-electric speed regulating system, wherein a rotating speed sensor is arranged at a steam turbine and is used for detecting the rotating speed of the steam turbine; the speed regulation controller is connected with the rotating speed sensor and the servo driver and is used for realizing closed-loop control of the rotating speed of the steam turbine and outputting a control instruction to the servo driver; the linear displacement sensor of the linear motor is connected with the servo driver and is used for realizing the position and speed feedback of the rotor component of the linear motor; the linear motor rotor is connected with the regulating valve through a lever or a direct connection mode, so that the position of the regulating valve is controlled; the servo driver is used for realizing closed-loop control of the position and the speed of the linear motor rotor. The utility model uses the electric actuator to replace the traditional hydraulic actuator, thereby omitting the original hydraulic system, reducing the occupied volume of a speed regulating system, reducing the vibration and noise caused by hydraulic systems such as a hydraulic oil pump, a pipeline and the like, and reducing the manufacturing difficulty and the maintenance requirement. Meanwhile, the full-electric speed regulating system has no electrohydraulic signal conversion, and the control mode is more flexible.

Description

All-electric speed regulating system
Technical Field
The utility model relates to a turbine speed regulating system, in particular to an all-electric speed regulating system suitable for a turbine.
Background
The turbine speed regulating system generates a control signal according to the deviation between a control target instruction and a turbine rotating speed feedback value, and the control signal acts on the regulating valve through the actuating mechanism to realize the switch change of the position of the regulating valve, so that the turbine inlet flow is controlled to realize the adjustment of the rotating speed or load of the turbine.
The performance simulation of the turbine speed regulating system is that the turbine speed regulating system is widely used from an early mechanical speed regulator, a mechanical hydraulic speed regulator and an analog electro-hydraulic speed regulator to the present digital electro-hydraulic speed regulator.
The mechanical governor uses a mechanical part such as a centrifugal weight as a rotation speed sensing mechanism, and as shown in fig. 1, the load force of the regulating valve is directly driven by the change of the acting force generated by the change of the rotation speed to realize the position control of the regulating valve. Because the energy of the speed regulator is limited, only a relatively small regulating valve can be driven, and the application range is limited.
The mechanical hydraulic speed regulator is an improvement on the basis of the mechanical speed regulator, as shown in fig. 2, the mechanical speed regulator utilizes the amplifying action of the wrong throttle, the force generated by the mechanical rotating speed sensing mechanism drives the middle wrong throttle mechanism, the middle wrong throttle changes the hydraulic oil entering the oil cylinder, and the hydraulic pressure is utilized to finally drive the regulating valve to realize position control. Because the mechanical hydraulic speed regulator utilizes mechanical components as feedback and setting of the rotating speed, the control precision is poor, and the flexibility of the control mode is not high.
The analog and digital electrohydraulic speed regulating system is based on mechanical hydraulic speed regulator, and as shown in figure 3, the mechanical speed feedback and setting mechanism is replaced with electronic sensor and circuit. The deviation operation of the rotating speed set value and feedback is realized by the electronic component, an electric signal with a control function is generated, the electric signal with the control is converted into a hydraulic driving signal by the electrohydraulic servo valve with electrohydraulic conversion function, and the hydraulic components such as a control oil cylinder and the like finally realize the position control of the regulating valve. The mode well utilizes the characteristics of flexible and convenient electronic control technology, but the mode also needs to convert the control signal of the electronic driver into a hydraulic control signal, an intermediate conversion link is added, and systematic control precision and response are subject to electrohydraulic conversion. In addition, the electrohydraulic speed regulating system needs to be provided with hydraulic equipment, and the system is complex in configuration and difficult to maintain.
The existing analog and digital electro-hydraulic speed regulating systems well utilize the characteristics of flexible and convenient electronic control technology, but the existing analog and digital electro-hydraulic speed regulating systems also need to convert control signals of an electronic driver into hydraulic control signals, an intermediate conversion link is added, and systematic control accuracy and response are subject to electro-hydraulic conversion. In addition, the electrohydraulic speed regulating system needs to be provided with hydraulic equipment, and has complex system configuration and difficult maintenance
Disclosure of Invention
In order to realize high-precision simulation of the speed regulation performance of the steam turbine, verify the functions and performances of a steam turbine regulation control system and reduce the test resource requirements of the regulation control system, the utility model provides a novel all-electric speed regulation system.
In order to achieve the above purpose, the technical scheme of the utility model is as follows: an all-electric speed regulating system comprises a speed regulating controller, a servo driver, a linear motor and a rotating speed sensor, wherein the rotating speed sensor is arranged at a steam turbine and used for detecting the rotating speed of the steam turbine; the speed regulation controller is connected with the rotating speed sensor and the servo driver, and is used for realizing closed-loop control of the rotating speed of the steam turbine and outputting a control instruction to the servo driver; the linear displacement sensor of the linear motor is connected with the servo driver and is used for realizing the position and speed feedback of the rotor component of the linear motor; the rotor of the linear motor is connected with the regulating valve through a lever or a direct connection mode, so that the position of the regulating valve is controlled; the servo driver is used for realizing closed-loop control of the position and the speed of the linear motor rotor.
Further, the rotating speed sensor adopts a Hall type sensor, a square wave pulse signal is output and input into the speed regulating controller, and the speed regulating controller calculates the rotating speed through recording the frequency and the number of the pulses.
Furthermore, the speed regulating controller adopts an embedded programmable logic controller, the execution period of the speed regulating controller is shortest 5ms, the speed regulating controller integrates an input interface and an output interface of pulse signal input, current signal and switching value signal, the rotating speed and power signal of the turbine are collected in real time, the valve position control command of the turbine is regulated and output, meanwhile, the speed regulating controller increases the thrust control output and is used for outputting a thrust deviation regulating command of the transient working condition by judging the transient working condition of the turbine, and the control enhancement of the thrust of the linear motor under the dynamic state is realized and the response to the transient working condition is enhanced.
Furthermore, the speed regulation controller is provided with a network communication interface, is in communication connection with the upper computer, and has the functions of monitoring and data storage.
Further, the servo driver comprises a control part and a power device, the control part adopts high-performance-based DSP controller hardware, an outer ring and an inner ring control ring are adopted, the outer ring control ring comprises a position ring and a speed ring, the outer ring control ring generates a target value of inner ring thrust control according to feedback and setting of position and speed, and the inner ring control ring generates a control signal of a frequency switch according to an instruction generated by the outer ring control ring and a transient working condition thrust deviation adjusting instruction input from a speed regulation controller; the power device realizes the AC-DC-AC conversion process according to the frequency switch signal generated by the control component and is used for realizing the variable frequency and variable voltage control of the linear motor power supply.
Further, the servo driver outputs three-phase symmetrical sinusoidal current, and the sinusoidal current is used for generating a traveling wave magnetic field by the stator of the linear motor under the action of the current, the magnetic field interacts with a permanent magnet magnetic field on the rotor of the linear motor to generate electromagnetic thrust, and when a stator component of the linear motor is fixed, the rotor of the linear motor generates displacement under the action of electromagnetic force.
Furthermore, the linear motor adopts a water cooling heat dissipation mode, and cooling water is provided outside to realize the cooling of the stator of the linear motor through the water cooling pipe.
Further, the stator of the linear motor adopts a double-sided structure and is used for resisting demagnetizing pull force, so that the strength requirement on a rotor supporting platform is reduced, the structural weight of a rotor component is lightened, and the response characteristic of a rotor is improved; and improving the power density, and reducing the volume size of the linear motor while meeting the output thrust index.
Further, the stator winding of the linear motor adopts an up-down lamination mode, so that the magnetic flux density can be enhanced, the power density can be improved, a cooling mode of water cooling the yoke part of the stator core is adopted, and the water cooling pipe is embedded in the core by adopting a U-shaped structure and is used for improving the heat dissipation efficiency and meeting the heat dissipation requirement of the high-power density linear motor.
Further, the mover component of the linear motor adopts the permanent magnet magnetic pole encapsulated by epoxy resin, is externally fixed by a T-shaped aluminum alloy frame, is connected with a guide rail, and is used for guiding the mover to perform linear displacement, and a non-contact linear displacement sensor is integrated in the guide rail to realize sensing detection of the position of the mover.
The beneficial effects of the utility model are as follows:
the full-electric speed regulating system uses the electric actuator to replace the traditional hydraulic actuator, so that the original hydraulic system is omitted, the occupied volume of the speed regulating system is reduced, vibration and noise caused by hydraulic systems such as a hydraulic oil pump, a pipeline and the like are reduced, and the manufacturing difficulty and the maintenance requirement are reduced. Meanwhile, the full-electric speed regulating system has no electrohydraulic signal conversion, and the control mode is more flexible.
Drawings
FIG. 1 is a schematic diagram of a mechanical governor system;
FIG. 2 is a schematic diagram of a machine liquid speed regulating system;
FIG. 3 is a schematic diagram of the electro-hydraulic speed regulation system;
FIG. 4 is a schematic diagram of an all-electric governor system of the present utility model;
FIG. 5 is a schematic diagram of the control loop of the electric governor system of the present utility model;
FIG. 6 is a schematic diagram of a linear motor;
FIG. 7 is a block diagram of a double sided linear motor;
fig. 8 is a view showing a mover structure of a linear motor.
Detailed Description
The utility model will be further described with reference to the drawings and examples.
As shown in fig. 4 and 5, the novel all-electric speed regulating system provided by the embodiment of the utility model is composed of a rotation speed sensor 10, a speed regulating controller 11, a servo driver 12, a linear motor 14 and the like.
The rotation speed sensor 10 is used for detecting the rotation speed of the steam turbine, and the speed regulation controller 11 is used for realizing closed-loop control of the rotation speed of the steam turbine and outputting a control command to the servo driver 12. The linear displacement sensor 13 of the linear motor realizes the position and speed feedback of the rotor component of the linear motor, the servo driver 12 realizes the closed-loop control of the position and speed of the rotor of the linear motor through the three-loop control action of the position loop, the speed loop and the thrust, the servo driver outputs three-phase symmetrical sinusoidal current through control signals, the linear motor stator generates a traveling wave magnetic field under the action of the current, the magnetic field interacts with a permanent magnet magnetic field on the rotor of the linear motor to generate electromagnetic thrust, and when the stator component of the linear motor is fixed, the rotor of the linear motor 14 generates displacement under the action of electromagnetic force. The mover of the linear motor 14 is connected with the regulating valve 15 through a lever or a direct connection manner, thereby realizing the control of the position of the regulating valve.
The linear motor 14 adopts a water cooling heat dissipation mode, and cooling water is externally provided to realize the cooling of the linear motor stator through a water cooling pipe.
The rotating speed sensor 10 adopts a Hall type sensor, and changes of a magnetic field of the rotating speed sensor are caused when the speed measuring gear rotates along with the steam turbine, so that the rotating speed sensor 10 outputs square wave pulse signals, the speed regulating controller 11 calculates the rotating speed by recording the frequency and the number of pulses, the system is configured with three rotating speed sensors 10 for redundancy optimization, any two rotating speed sensors 10 have faults, and the system can continue to operate.
The speed regulation controller 11 adopts an embedded programmable logic controller, the execution period of the shortest 5ms can be realized, the controller integrates input and output interfaces of pulse signal input, current signal, switching value signal and other types, the signals of the rotating speed, the power and the like of the turbine can be collected in real time, and a valve position control instruction of the turbine is regulated and output through a programmable logic algorithm, meanwhile, the speed regulation controller 11 increases thrust control output, and the thrust deviation regulation instruction of the transient working condition is output through judging the transient working condition of the turbine, so that the response to the transient working condition is enhanced through the control of the thrust of the linear motor under the dynamic state. The regulation controller 11 has a network communication interface, can be in communication connection with an upper computer, and realizes functions of monitoring, data storage and the like based on upper computer software.
The servo driver 12 mainly comprises a control part and a power device, wherein the control part is based on high-performance DSP controller hardware and mainly comprises a DSP, a current and voltage detection protection circuit, a driving stage protection circuit, a communication circuit, a display module and the like. The controller component adopts a three-ring control strategy, the outer ring comprises a position ring and a speed ring, and the target value of the thrust control of the inner ring is generated according to feedback and setting of the position and the speed. The innermost thrust control ring uses a space vector direct thrust control algorithm to generate a control signal of the frequency switch according to an instruction generated by outer ring control and a transient operating condition thrust deviation adjusting instruction input from an adjusting controller. The power device mainly comprises a rectifying circuit, a filtering circuit and an inverter circuit, and realizes the alternating current-direct current-alternating current conversion process according to the frequency switching signal generated by the control component, thereby realizing the variable frequency and variable voltage control of the linear motor power supply.
Because the speed regulating actuator of the steam turbine has the requirements of large thrust, high frequency response and small size, the linear motor 14 as the actuator adopts a flat-plate permanent magnet synchronous motor structure, as shown in fig. 6, and mainly consists of a stator 1 and a rotor 2.
The stator 1 adopts a double-sided structure (see fig. 7), so that on one hand, magnetic pulling force can be counteracted, the strength requirement on a rotor supporting platform is reduced, the structural weight of a rotor component is reduced, and the response characteristic of a rotor is improved; on the other hand, the bilateral structure can improve the power density, and reduce the volume size of the linear motor while meeting the output thrust index. The stator winding adopts an upper-lower lamination mode, so that the magnetic flux density is further enhanced, and the power density is improved. The cooling mode of water cooling of the yoke part of the stator core is adopted, the water cooling pipe is embedded in the core by adopting a U-shaped structure, the heat dissipation efficiency is improved, and the heat dissipation requirement of the high-power density linear motor is met.
In order to meet the requirement of the frequency response index, the mover component adopts a lightweight design, as shown in fig. 8, back iron for fixing the permanent magnet 3 in a normal structure is canceled, the permanent magnet magnetic poles are encapsulated by epoxy resin, a T-shaped aluminum alloy frame 4 is externally added for fixing, the mover component is connected with a guide rail, and the guide rail is used for guiding the mover to perform linear displacement. And the non-contact linear displacement sensor is integrated in the guide rail, so that the sensing detection of the position of the rotor is realized. Compared with the conventional rotor structure with back iron, the weight of the rotor structure can be reduced by more than 2/3. The structure with the same electromagnetic performance can improve the acceleration of the rotor by more than 2/3.

Claims (10)

1. An all-electric speed regulating system is characterized in that: the device comprises a speed regulation controller, a servo driver, a linear motor and a rotating speed sensor, wherein the rotating speed sensor is arranged at a steam turbine and is used for detecting the rotating speed of the steam turbine; the speed regulation controller is connected with the rotating speed sensor and the servo driver, and is used for realizing closed-loop control of the rotating speed of the steam turbine and outputting a control instruction to the servo driver; the linear displacement sensor of the linear motor is connected with the servo driver and is used for realizing the position and speed feedback of the rotor component of the linear motor; the rotor of the linear motor is connected with the regulating valve through a lever or a direct connection mode, so that the position of the regulating valve is controlled; the servo driver is used for realizing closed-loop control of the position and the speed of the linear motor rotor.
2. The all-electric speed regulation system of claim 1, wherein: the rotating speed sensor adopts a Hall type sensor, a square wave pulse signal is output and input into the speed regulating controller, and the speed regulating controller calculates the rotating speed through recording the frequency and the number of the pulses.
3. The all-electric speed regulation system of claim 1, wherein: the speed regulating controller adopts an embedded programmable logic controller, can realize the execution period of the shortest 5ms, integrates an input interface and an output interface of pulse signal input, current signal and switching value signal, acquires the rotating speed and power signal of the turbine in real time, regulates and outputs a valve position control instruction of the turbine, and simultaneously increases thrust control output for outputting a thrust deviation regulating instruction of the transient working condition by judging the transient working condition of the turbine, thereby realizing the control of the thrust of the linear motor under dynamic condition and enhancing the response to the transient working condition.
4. The all-electric speed regulation system of claim 1, wherein: the speed regulation controller is provided with a network communication interface, is in communication connection with the upper computer, and has the functions of monitoring and data storage.
5. The all-electric speed regulation system of claim 1, wherein: the servo driver comprises a control part and a power device, wherein the control part adopts high-performance-based DSP controller hardware, adopts an outer ring and an inner ring control ring, the outer ring control ring comprises a position ring and a speed ring, the outer ring control ring generates a target value of inner ring thrust control according to feedback and setting of the position and the speed, and the inner ring control ring generates a control signal of a frequency switch according to an instruction generated by the outer ring control ring and a transient working condition thrust deviation adjusting instruction input from a speed regulation controller; the power device realizes the AC-DC-AC conversion process according to the frequency switch signal generated by the control component and is used for realizing the variable frequency and variable voltage control of the linear motor power supply.
6. The all-electric speed regulation system of claim 5, wherein: the servo driver outputs three-phase symmetrical sinusoidal current and is used for generating a traveling wave magnetic field by the stator of the linear motor under the action of the current, the magnetic field interacts with a permanent magnet magnetic field on the rotor of the linear motor to generate electromagnetic thrust, and when a stator component of the linear motor is fixed, the rotor of the linear motor generates displacement under the action of electromagnetic force.
7. The all-electric speed regulation system of claim 1, wherein: the linear motor adopts a water cooling heat dissipation mode, and cooling water is provided outside to realize the cooling of the stator of the linear motor through a water cooling pipe.
8. The all-electric speed regulation system of claim 1, wherein: the stator of the linear motor adopts a double-sided structure and is used for resisting demagnetizing pull force, so that the strength requirement on a rotor supporting platform is reduced, the structural weight of a rotor component is lightened, and the response characteristic of a rotor is improved; and improving the power density, and reducing the volume size of the linear motor while meeting the output thrust index.
9. The all-electric speed regulation system of claim 1, wherein: the stator winding of the linear motor adopts an up-down lamination mode, so that the magnetic flux density can be enhanced, the power density is improved, a cooling mode of water cooling of the yoke part of the stator core is adopted, and the water cooling pipe is embedded in the core by adopting a U-shaped structure and is used for improving the heat dissipation efficiency and meeting the heat dissipation requirement of the linear motor with high power density.
10. The all-electric speed regulation system of claim 1, wherein: the mover component of the linear motor adopts the permanent magnet magnetic pole encapsulated by epoxy resin, is externally fixed by a T-shaped aluminum alloy frame, is connected with a guide rail, and is used for guiding the mover to perform linear displacement, and a non-contact linear displacement sensor is integrated in the guide rail to realize sensing detection of the position of the mover.
CN202322448751.7U 2023-09-08 2023-09-08 All-electric speed regulating system Active CN220667652U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202322448751.7U CN220667652U (en) 2023-09-08 2023-09-08 All-electric speed regulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202322448751.7U CN220667652U (en) 2023-09-08 2023-09-08 All-electric speed regulating system

Publications (1)

Publication Number Publication Date
CN220667652U true CN220667652U (en) 2024-03-26

Family

ID=90343614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202322448751.7U Active CN220667652U (en) 2023-09-08 2023-09-08 All-electric speed regulating system

Country Status (1)

Country Link
CN (1) CN220667652U (en)

Similar Documents

Publication Publication Date Title
CN204652078U (en) A kind of wind electricity change paddle permanent magnet synchronous servo motor and control device thereof
KR101325852B1 (en) Compact electromechanical actuator
CN101734379B (en) FPGA-based highly-integrated high-precision control system for micro flywheel
CN102624315A (en) High-precision permanent magnetic servo motor three-closed-loop control system and method
CN206041865U (en) Switched reluctance motor direct torque control system based on commutation district space voltage vector
CN102427325A (en) Minimum loss control system and method for linear motor based on system loss model method
Bu et al. Rotor position tracking control for low speed operation of direct-drive PMSM servo system
Zhang et al. The Brushless DC motor control system Based on neural network fuzzy PID control of power electronics technology
CN101299586B (en) Non-velocity transducer inverse control variable frequency speed regulator of permanent magnetism synchronous machine and construction method
CN112910359A (en) Improved permanent magnet synchronous linear motor model prediction current control method
CN220667652U (en) All-electric speed regulating system
CN104393808A (en) Active-disturbance-rejection controller for high-voltage circuit breaker linear motor operation mechanism
CN117090648A (en) All-electric speed regulating system
CN103580561A (en) Control device and control method of high-voltage circuit-breaker coil exciting direct-current motor mechanism
CN203562984U (en) Control device for coil excitation DC motor mechanism of high-voltage breaker
Hagnestål A low cost and highly efficient TFM generator for wave power
CN202273763U (en) Dual-pulse speed regulator
CN204392118U (en) A kind of three pole magnetic bearing operating control devices based on matrix converter
CN103715951B (en) Energy consumption type bimorph transducer Passive Torque servo system
CN101383573A (en) Direct suspending power control method for permanent magnet type non-bearing motor
CN112953321B (en) Heavy load starting control method and system
Xu et al. Suspending force control of a novel 12/14 hybrid stator pole type bearingless SRM
CN204392131U (en) Based on the AC magnetism bearing electric chief axis operating control device of matrix converter
Bruzzese et al. An innovative environmentally-friendly full-electric drive solution for the actuation of shipboard loads: Analysis based on prototype testing results
CN112994567A (en) Motor control method and motor control device without current sensor, and servo device

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant