CN219979017U - Cardiac Afterload Hemodynamic Simulator - Google Patents
Cardiac Afterload Hemodynamic Simulator Download PDFInfo
- Publication number
- CN219979017U CN219979017U CN202321263818.3U CN202321263818U CN219979017U CN 219979017 U CN219979017 U CN 219979017U CN 202321263818 U CN202321263818 U CN 202321263818U CN 219979017 U CN219979017 U CN 219979017U
- Authority
- CN
- China
- Prior art keywords
- module
- circulation
- heart
- pump
- pulmonary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000004 hemodynamic effect Effects 0.000 title claims abstract description 26
- 230000000747 cardiac effect Effects 0.000 title claims description 53
- 210000002216 heart Anatomy 0.000 claims abstract description 48
- 230000004087 circulation Effects 0.000 claims abstract description 43
- 230000037237 body shape Effects 0.000 claims abstract description 3
- 230000004088 pulmonary circulation Effects 0.000 claims description 31
- 229920001296 polysiloxane Polymers 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 15
- 229920003023 plastic Polymers 0.000 claims description 14
- 238000004088 simulation Methods 0.000 claims description 14
- 230000017531 blood circulation Effects 0.000 claims description 12
- 210000001147 pulmonary artery Anatomy 0.000 claims description 10
- 210000002615 epidermis Anatomy 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 210000003492 pulmonary vein Anatomy 0.000 claims description 8
- 210000001631 vena cava inferior Anatomy 0.000 claims description 7
- 210000002620 vena cava superior Anatomy 0.000 claims description 7
- 239000011324 bead Substances 0.000 claims description 6
- 210000001562 sternum Anatomy 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 210000000683 abdominal cavity Anatomy 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 claims description 3
- 210000003516 pericardium Anatomy 0.000 claims description 3
- 210000000115 thoracic cavity Anatomy 0.000 claims description 3
- 238000010146 3D printing Methods 0.000 claims description 2
- 239000008280 blood Substances 0.000 abstract description 17
- 210000004369 blood Anatomy 0.000 abstract description 17
- 230000003836 peripheral circulation Effects 0.000 abstract description 8
- 210000004072 lung Anatomy 0.000 abstract 3
- 230000007423 decrease Effects 0.000 description 12
- 230000036581 peripheral resistance Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 230000002861 ventricular Effects 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 210000000709 aorta Anatomy 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000036593 pulmonary vascular resistance Effects 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 210000005240 left ventricle Anatomy 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 208000002815 pulmonary hypertension Diseases 0.000 description 2
- 210000005241 right ventricle Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 206010014357 Electric shock Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000003698 chordae tendineae Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000004971 interatrial septum Anatomy 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003540 papillary muscle Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000036513 peripheral conductance Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 210000003102 pulmonary valve Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000000591 tricuspid valve Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000000596 ventricular septum Anatomy 0.000 description 1
Landscapes
- Instructional Devices (AREA)
Abstract
Description
技术领域Technical field
本实用新型属于医学领域的动力学辅助装置,具体涉及一种心脏后负荷血流动力学模拟器,主要用于心脏结构模拟、外周循环模拟、循环阻力模拟、肺循环模拟、血液黏度模拟,同时适用于心脏血流动力学理论教学与临床实践应用。The utility model belongs to a dynamic auxiliary device in the medical field, and specifically relates to a cardiac afterload hemodynamics simulator. It is mainly used for cardiac structure simulation, peripheral circulation simulation, circulatory resistance simulation, pulmonary circulation simulation, and blood viscosity simulation. It is also suitable for In the theoretical teaching and clinical practice application of cardiac hemodynamics.
背景技术Background technique
心脏是人体的重要的器官,主要起到向全身输送血液的功能,其收缩和舒张目的是将血液送到外周,能满足组织代谢需要。心脏需要克服后负荷,进行有效的射血。心脏的后负荷是指心脏的压力负荷,主要取决于主动脉的顺应性、外周血管阻力、血液黏度、外周循环容量。对于左心室,引起后负荷增加的因素有全身血管阻力(SVR)增加、左心室容积增加。对于右心室,引起后负荷增加的因素有肺血管阻力(PVR)增加、右心室容积增加。由医学欧姆定律可知后负荷的急剧上升,心肌缩短速度降低,在有限的收缩期,射血减少导致每搏输出量下降和舒张末期容积增加,这导致左室舒张末容积(前负荷)继发性的上升,这种心脏在急性后负荷增加时恢复正常心搏出量的内在能力被称为Anrep效应。后负荷异常将导致患者心悸、气短、恶心、头晕、心脑血管供应不足,过重是引起心衰。The heart is an important organ of the human body. It mainly plays the role of transporting blood to the whole body. The purpose of its contraction and relaxation is to send blood to the periphery to meet the metabolic needs of tissues. The heart needs to overcome the afterload to eject blood efficiently. Cardiac afterload refers to the pressure load of the heart, which mainly depends on the compliance of the aorta, peripheral vascular resistance, blood viscosity, and peripheral circulation capacity. For the left ventricle, factors that cause increased afterload include increased systemic vascular resistance (SVR) and increased left ventricular volume. For the right ventricle, factors that cause increased afterload include increased pulmonary vascular resistance (PVR) and increased right ventricular volume. According to medical Ohm's law, it can be known that the sharp increase in afterload reduces the myocardial shortening speed. In the limited systolic period, the reduced ejection leads to a decrease in stroke volume and an increase in end-diastolic volume, which leads to secondary left ventricular end-diastolic volume (preload). This inherent ability of the heart to restore normal stroke volume during acute afterload increases is known as the Anrep effect. Abnormal afterload will cause patients to have palpitations, shortness of breath, nausea, dizziness, insufficient cardiovascular and cerebrovascular supply, and being overweight can cause heart failure.
临床上,PiCCO血流动力学监测通过血压和心输出量(CO)计算得出后负荷全身血管阻力(SVR)。全身血管阻力指数(SVRI)是全身血管阻力(SVR)与体表面积(BMI)之比,如果SVRI增加,为维持同样的射血量,心脏收缩力必须上升,如果后负荷超出了心肌纤维的承受范围,心脏可能出现代偿表现。围术期容量平衡、血流动力学稳定的管理需要对后负荷平稳进行实时监测。负荷失衡的患者情况危急,及时发现并采取相对应措施维持负荷平衡很重要。对于初级医生而言临床训练机会很少,因此迫切需要一款心脏后负荷血流动力学模拟器,辅助医生对于后负荷的理解。现阶段,临床教学上应用的后负荷模拟器品种少、功能较为单一,不能满足复杂条件下的训练需求。Clinically, PiCCO hemodynamic monitoring calculates afterload systemic vascular resistance (SVR) from blood pressure and cardiac output (CO). Systemic vascular resistance index (SVRI) is the ratio of systemic vascular resistance (SVR) to body surface area (BMI). If SVRI increases, in order to maintain the same ejection volume, cardiac contractility must increase. If the afterload exceeds the capacity of myocardial fibers, range, the heart may have compensatory manifestations. Management of perioperative volume balance and hemodynamic stability requires real-time monitoring of afterload stability. Patients with load imbalance are in critical condition, and it is important to detect them promptly and take corresponding measures to maintain load balance. There are few clinical training opportunities for junior doctors, so there is an urgent need for a cardiac afterload hemodynamics simulator to assist doctors in understanding afterload. At present, the afterload simulators used in clinical teaching have few varieties and single functions, and cannot meet the training needs under complex conditions.
由此可见,目前已有的模拟器不满足于解决当前此领域内“医、教、研”问题,需要设计一种能够反复使用、新颖的一款心脏后负荷血流动力学模拟器。It can be seen that the existing simulators are not satisfied with solving the current "medical, teaching, and research" problems in this field. It is necessary to design a novel cardiac afterload hemodynamics simulator that can be used repeatedly.
发明内容Contents of the invention
针对临床医生的教学需求,辅助临床医对于血流动力学的后负荷稳定的理解,本实用新型的目的在于,提供一种同时具有心脏结构模拟、外周循环模拟、循环阻力模拟、肺循环模拟、血液黏度模拟的心脏后负荷血流动力学模拟器。In view of the teaching needs of clinicians and to assist clinicians in their understanding of hemodynamic afterload stability, the purpose of this utility model is to provide a device that simultaneously simulates cardiac structure, peripheral circulation, circulatory resistance, pulmonary circulation, and blood flow. Viscosity-simulated cardiac afterload hemodynamics simulator.
为了实现上述任务,本实用新型采取如下的技术解决方案:In order to achieve the above tasks, the present utility model adopts the following technical solutions:
一种心脏后负荷血流动力学模拟器,包括类似于人体上半身形体的外壳,外壳通过连接线与电源相连接;其特征在于,在外壳内部设置有心脏模块、肺循环模块和动力泵模块,所述心脏模块、动力泵模块、肺循环模块之间由循环模块相连接,其中:A cardiac afterload hemodynamics simulator includes a shell similar to the upper body shape of the human body, and the shell is connected to the power supply through a connecting wire; it is characterized in that a heart module, a pulmonary circulation module and a power pump module are provided inside the shell, so The heart module, power pump module, and pulmonary circulation module are connected by the circulation module, where:
所述外壳为中空箱体,内部有固定心脏模块、动力泵模块和肺循环模块的支架,箱体正面覆盖可置换表皮,表皮下镶嵌胸骨结构,基座内缘固定有硅胶卡槽,心脏模块固定在胸腔位置,动力泵模块固定在腹腔位置;循环模块用于连接心脏模块、肺循环模块和动力泵模块模块,构成封闭式液体循环系统,循环模块绕箱体内缘布置,置于外壳内缘硅胶卡槽内;The outer shell is a hollow box with a bracket for fixing the heart module, power pump module and pulmonary circulation module inside. The front of the box is covered with a replaceable epidermis, and the sternum structure is embedded under the epidermis. A silicone card slot is fixed on the inner edge of the base, and the heart module is fixed. In the thoracic cavity, the power pump module is fixed in the abdominal cavity; the circulation module is used to connect the heart module, pulmonary circulation module and power pump module to form a closed liquid circulation system. The circulation module is arranged around the inner edge of the box and placed on the silicone card on the inner edge of the shell. inside the tank;
所述循环模块采用塑料软管,软管内镶嵌加热导丝,用于模拟人体血管,连接处为螺旋接口,设置有通用单向阀,可连接心脏模块、动力泵模块和肺循环模块,构成封闭式液体循环系统,通过电动泵转轮摩擦软管,产生匀速单向的模拟血流;The circulation module uses a plastic hose with a heated guide wire embedded in the hose to simulate human blood vessels. The connection is a spiral interface with a universal one-way valve that can connect the heart module, power pump module and pulmonary circulation module to form a closed The liquid circulation system uses the electric pump wheel to rub the hose to produce a uniform one-way simulated blood flow;
所述心脏模块为封装在软硅胶内的一体式心脏模型和心包模型,并与外壳的表皮和胸骨框架紧密贴合;其中:The heart module is an integrated heart model and pericardial model encapsulated in soft silicone, and closely fits the epidermis and sternal frame of the shell; wherein:
所述心脏模型的图像数据取自患者真实CT,材质为硅胶,通过3D打印形成,液体进出口有螺旋接口,与循环模块对接;The image data of the heart model is taken from the patient's real CT. The material is silicone and formed through 3D printing. The liquid inlet and outlet have a spiral interface and are connected to the circulation module;
所述心包模型采用自愈材料制成,触感仿真;The pericardium model is made of self-healing materials and has a simulated touch feel;
所述动力泵模块包括主动脉泵、肺动脉泵、上下腔静脉泵、肺静脉泵,通过螺旋接口连接循环模块,用于实现正常血流模拟,通过所述主动脉泵、肺动脉泵、上下腔静脉泵和肺静脉泵的电动转轮给予循环模块中匀速的血流;The power pump module includes an aortic pump, a pulmonary artery pump, a superior and inferior vena cava pump, and a pulmonary vein pump. It is connected to the circulation module through a spiral interface to realize normal blood flow simulation. Through the aortic pump, pulmonary artery pump, and superior and inferior vena cava pumps, and the electric runner of the pulmonary vein pump to give uniform blood flow in the circulation module;
所述肺循环模块为密闭容器,两端连接循环模块,其中填充导热凝胶小球,用于增大液体与空气接触,减缓液体流动速度,模拟肺循环的作用。The pulmonary circulation module is a sealed container with two ends connected to the circulation module, which is filled with thermally conductive gel beads to increase the contact between liquid and air, slow down the flow rate of the liquid, and simulate the effect of pulmonary circulation.
本实用新型的其它特点是:Other features of this utility model are:
所述软管内流动的液体由聚乙烯醇、甘油、水溶液并加入适量淀粉稀释液组成。The liquid flowing in the hose is composed of polyvinyl alcohol, glycerin, aqueous solution and an appropriate amount of starch diluent.
本实用新型的心脏后负荷血流动力学模拟器,具有心脏结构模拟、模拟外周循环、循环阻力模拟、肺循环模拟、血液黏度模拟的功能,并且具备辅助器械测量各个数值变化功能,是一种多功能式血流动力学动态变化模拟器。The cardiac afterload hemodynamics simulator of this utility model has the functions of cardiac structure simulation, peripheral circulation simulation, circulatory resistance simulation, pulmonary circulation simulation, and blood viscosity simulation, and has the function of auxiliary equipment to measure various numerical changes. It is a multi-functional Functional hemodynamic dynamic change simulator.
附图说明Description of the drawings
图1是本实用新型的心脏后负荷血流动力学模拟器的外壳示意图;Figure 1 is a schematic diagram of the housing of the cardiac afterload hemodynamics simulator of the present invention;
图2是外壳内部分布示意图;Figure 2 is a schematic diagram of the internal distribution of the shell;
图3是循环模块示意图;Figure 3 is a schematic diagram of the circulation module;
图4是肺循环模块结构示意图;Figure 4 is a schematic structural diagram of the pulmonary circulation module;
图5心脏模块结构示意图。Figure 5 Schematic diagram of the structure of the heart module.
图6是本实用新型的心脏后负荷血流动力学模拟器的内部结构细节示意图。Figure 6 is a detailed schematic diagram of the internal structure of the cardiac afterload hemodynamics simulator of the present invention.
以下结合附图和实施例对本实用新型作进一步地详细说明。The utility model will be further described in detail below in conjunction with the accompanying drawings and examples.
具体实施方式Detailed ways
参见图1至图6,本实施例给出一种心脏后负荷血流动力学模拟器,包外壳,外壳通过连接线与电源相连接;在外壳内部设置有心脏模块、肺循环模块和动力泵模块,所述心脏模块、动力泵模块、肺循环模块之间由循环模块相连接。此款心脏后负荷血流动力学模拟器,其中各个模块的特点在于:Referring to Figures 1 to 6, this embodiment provides a cardiac afterload hemodynamics simulator, which includes a casing, and the casing is connected to the power supply through a connecting wire; a heart module, a pulmonary circulation module and a power pump module are provided inside the casing. , the heart module, power pump module, and pulmonary circulation module are connected by a circulation module. The characteristics of each module of this cardiac afterload hemodynamics simulator are:
1、外壳1. Shell
外壳为中空箱体,形状为成年男性上半身模型,内部有固定心脏模块、动力泵模块、肺循环模块的支架。箱体正面覆盖可置换表皮,表皮下镶嵌胸骨结构。基座内缘固定有硅胶卡槽,心脏模块固定在胸腔位置,动力泵模块固定在腹腔位置。循环模块采用软管,用于连接心脏模块、肺循环模块和动力泵模块模块,构成封闭式液体循环系统,软管绕箱体内缘布置,置于外壳内缘硅胶卡槽内。The outer shell is a hollow box, shaped like an adult male upper body model, and has a bracket inside to fix the heart module, power pump module, and pulmonary circulation module. The front of the box is covered with a replaceable skin, and a sternum structure is embedded under the skin. A silicone slot is fixed on the inner edge of the base, the heart module is fixed in the chest cavity, and the power pump module is fixed in the abdominal cavity. The circulation module uses a hose to connect the heart module, pulmonary circulation module and power pump module to form a closed liquid circulation system. The hose is arranged around the inner edge of the box and placed in the silicone slot on the inner edge of the shell.
①表皮:模拟人表层皮肤,由硅胶材料制成,触感仿真,可拆卸、更换、清洗维护;① Epidermis: simulates human surface skin, made of silicone material, simulated touch, and can be disassembled, replaced, cleaned and maintained;
②胸骨:模拟人体胸骨结构,有肋间隙,作用是支撑表皮。骨骼结构可卡扣在基座内缘,可拆卸、更换;②Sternum: Simulates the structure of the human sternum, has intercostal spaces, and functions to support the epidermis. The bone structure can be snapped onto the inner edge of the base and can be removed and replaced;
2、循环模块2. Cycle module
参见图3,循环模块采用塑料软管,用于模拟人体血管,连接处为螺旋接口,设置有通用单向阀,可连接各个模块(如图中的模块A至模块B),构成封闭式液体循环系统。通过动力泵模块的电动泵转轮摩擦塑料软管,产生匀速单向的模拟血流,此部分优势在于“血液”在封闭环境下流动,不需要外带水箱。转轮磨损的塑料软管可替换,也可增加塑料软管长度。塑料软管布线于外壳内缘一周,卡在外壳内缘的硅胶里,硅胶体与外壳表皮,胸骨框架紧密贴合。塑料软管内镶嵌加热导丝,塑料软管内流动的介质(“血液”)采用由聚乙烯醇和甘油、水组成的溶液,再加入少量淀粉稀释液。加热导致淀粉糊化,“血液”黏度增加,模拟外周循环阻力的上升。Refer to Figure 3. The circulation module uses plastic hoses to simulate human blood vessels. The connection is a spiral interface with a universal one-way valve that can connect each module (Module A to Module B in the figure) to form a closed liquid. circulatory system. The electric pump runner of the power pump module rubs the plastic hose to generate a uniform one-way simulated blood flow. The advantage of this part is that the "blood" flows in a closed environment and does not require an external water tank. The worn plastic hose of the runner can be replaced or the length of the plastic hose can be increased. The plastic hose is routed around the inner edge of the shell and stuck in the silicone on the inner edge of the shell. The silicone body fits closely with the skin of the shell and the sternum frame. A heating guide wire is embedded in the plastic hose, and the medium ("blood") flowing in the plastic hose is a solution composed of polyvinyl alcohol, glycerol, and water, and a small amount of starch diluent is added. Heating causes starch to gelatinize and "blood" viscosity increases, simulating an increase in peripheral circulatory resistance.
3、肺循环模块3. Pulmonary circulation module
参见图4,肺循环模块为密闭容器,两端连接循环装置(塑料软管),其中填充导热凝胶小球。“血液”经循环模块进入肺循环模块,增大了液体与空气的接触,适当减缓了血流速度,形象的模拟了肺循环的功效。当“血液”通过循环模块加热到40℃,导热凝胶小球吸水膨胀,小球之间缝隙减小,即肺血管阻力(PVC)增加,生动模拟了肺动脉高压,右心室后负荷增加。同时,外周循环容量下降,心输出量因此而减少。该肺循环模块左端连接心脏肺动脉,右端连接肺静脉。Referring to Figure 4, the pulmonary circulation module is a sealed container with circulation devices (plastic hoses) connected to both ends and filled with thermally conductive gel pellets. "Blood" enters the pulmonary circulation module through the circulation module, which increases the contact between liquid and air, appropriately slows down the blood flow speed, and vividly simulates the effect of pulmonary circulation. When the "blood" is heated to 40°C through the circulation module, the thermally conductive gel beads absorb water and expand, and the gap between the beads decreases, that is, the pulmonary vascular resistance (PVC) increases, which vividly simulates pulmonary hypertension and increases right ventricular afterload. At the same time, peripheral circulation volume decreases and cardiac output decreases as a result. The left end of the pulmonary circulation module is connected to the heart pulmonary artery, and the right end is connected to the pulmonary vein.
4、心脏模块4. Heart module
参见图5,心脏模块主要包括心包(层)、乳头肌、心脏(层)、三尖瓣、肺静脉、主动静脉、主动脉、房间隔、肺动脉、肺动脉瓣、上下腔静脉、腱索、室间隔;Referring to Figure 5, the heart module mainly includes the pericardium (layer), papillary muscles, heart (layer), tricuspid valve, pulmonary vein, aorta vein, aorta, interatrial septum, pulmonary artery, pulmonary valve, superior and inferior vena cava, chordae tendineae, and ventricular septum. ;
①心脏模型:心脏模型图像数据取自患者真实CT,通过MIMICS软件进行3D打印,材质为硅胶,液体进出口有螺旋接口,与塑料软管对接;①Heart model: The heart model image data is taken from the patient's real CT and is 3D printed through MIMICS software. The material is silicone. The liquid inlet and outlet have spiral interfaces and are connected to plastic hoses;
②心包模型:采用本领域常规的自愈材料制成,触感仿真。②Pericardium model: Made of conventional self-healing materials in this field, with tactile simulation.
心脏模块是将心脏模型和心包模型一体式结构整体封装在软硅胶内,可更换,并与外壳的表皮和胸骨框架紧密贴合。The heart module is an integrated structure of the heart model and pericardial model that is encapsulated in soft silicone. It is replaceable and closely fits the skin of the shell and the sternum frame.
5、动力泵模块5. Power pump module
主要包括主动脉泵,肺动脉泵,上下腔静脉泵,肺静脉泵,有螺旋接口连接循环模块(塑料软管),通电使用。通过主动脉泵,肺动脉泵,上下腔静脉泵,肺静脉泵实现正常血流模拟,动力泵模块通过泵的电动转轮给予卡在其中塑料软管匀速的血流,通电后开启开关即可实现。It mainly includes aortic pump, pulmonary artery pump, superior and inferior vena cava pump, and pulmonary vein pump. It has a spiral interface to connect the circulation module (plastic hose) and is powered on. Normal blood flow is simulated through the aortic pump, pulmonary artery pump, superior and inferior vena cava pump, and pulmonary vein pump. The power pump module uses the electric runner of the pump to give uniform blood flow to the plastic hose stuck in it. After powering on, the switch can be turned on.
本实施例的心脏后负荷血流动力学模拟器的内部结构细节如图6所示。其使用过程如下:The internal structural details of the cardiac afterload hemodynamics simulator of this embodiment are shown in Figure 6 . The usage process is as follows:
心脏后负荷血流动力学模拟器通电之前,检查设备是否完整,各个模块之间连接是否紧密、固定,循环模块的加热功能是否正常,肺循环模块的凝胶小球功能是否正常,整个外壳内部是否有漏水情况,避免触电危险。将表皮按照正规流程进行消毒,摆放为仰卧位,确保模拟人体内液体分布均匀。Before powering on the cardiac afterload hemodynamics simulator, check whether the equipment is complete, whether the connections between the various modules are tight and fixed, whether the heating function of the circulation module is normal, whether the gel beads of the pulmonary circulation module function normally, and whether the interior of the entire shell is normal. If there is water leakage, avoid the risk of electric shock. Disinfect the epidermis according to regular procedures and place it in a supine position to ensure even distribution of fluids in the simulated human body.
欧姆定律的生理学应用如果把心输出量(CO)看作电流,并把平均动脉血压(MAP)和中心静脉压(CVP)之差看作电压。其中,MAP测量点为β点,CVP测量点为α点。全身血管阻力指数(SVRI)看作电阻,那么就产生一个公式:SVRI=(MAP-CVP)/CO。肺动脉导管(PAC)是监测心输出量(CO)的金标准,测量点为γ,采用肺动脉导管热稀释法。The physiological application of Ohm's law is to think of cardiac output (CO) as electric current, and the difference between mean arterial blood pressure (MAP) and central venous pressure (CVP) as voltage. Among them, the MAP measurement point is β point, and the CVP measurement point is α point. Systemic vascular resistance index (SVRI) is regarded as resistance, then a formula is generated: SVRI=(MAP-CVP)/CO. Pulmonary artery catheter (PAC) is the gold standard for monitoring cardiac output (CO). The measurement point is γ and the pulmonary artery catheter thermodilution method is used.
规定心动周期T=1s,即心率为60bpm/min。当心率加快时,心动周期尤其是心室舒张期缩短,即(TBC+TAD)-(T* BC+T* AD)<1s,其中T为本次心动周期,T*为下次心动周期,ABCD为各个动力泵的标识。在心室充盈持续时间不变的情况下,即(TBC+TAD)-(T* BC+T* AD)=1s,静脉回流速度越快,即(VBC+VAD)-(V* BC+V* AD)<0,静脉回心血量就越多。其中V为本次周期心率,V*为下个周期心率。It is specified that the cardiac cycle T=1s, that is, the heart rate is 60bpm/min. When the heart rate accelerates, the cardiac cycle, especially the ventricular diastolic period, shortens, that is, (T BC + T AD ) - (T * BC + T * AD ) <1s, where T is the current cardiac cycle and T * is the next cardiac cycle. , ABCD is the identification of each power pump. When the duration of ventricular filling remains unchanged, that is, (T BC +T AD )-(T * BC +T * AD ) = 1s, the faster the venous return velocity, that is, (V BC +V AD )-(V * BC + V * AD ) <0, the greater the venous blood return to the heart. Among them, V is the heart rate of this cycle, and V * is the heart rate of the next cycle.
1)正常模式:1)Normal mode:
心脏后负荷血流动力学模拟器通电,动力泵模块运行,带动循环模块内“血液”单向匀速运动,检查运行过程畅通和各模块连接紧密情况,此时循环模块的加热导丝不工作,整个模拟人环境为室温,后负荷正常,血流动力学平稳。观察并记录心输出量;The cardiac afterload hemodynamics simulator is powered on and the power pump module is running, driving the "blood" in the circulation module to move at a uniform speed in one direction. Check the smooth operation process and the tight connection of each module. At this time, the heating guide wire of the circulation module does not work. The entire simulator environment is at room temperature, with normal afterload and stable hemodynamics. Observe and record cardiac output;
2)外周循环阻力模式:2) Peripheral circulation resistance mode:
保持动力泵模块中的各个泵匀速单向转动,循环模块处于低温环境(外壳内铺冰袋),循环模块采用硅胶软管,其在低温状态下硬化收缩,模拟外周循环阻力增加,后负荷上升,心输出量下降,为维持心输出量不变,心脏收缩力需增加;撤走冰袋恢复室温,后负荷下降,心输出量上升减弱心脏收缩力,恢复心输出量到正常。Keep each pump in the power pump module rotating in one direction at a uniform speed. The circulation module is in a low-temperature environment (ice pack is placed inside the casing). The circulation module uses a silicone hose, which hardens and shrinks at low temperatures, simulating an increase in peripheral circulation resistance and an increase in afterload. The cardiac output decreases. In order to maintain the cardiac output unchanged, the cardiac contractility needs to increase. When the ice pack is removed and the room temperature is restored, the afterload decreases. The increase in cardiac output weakens the cardiac contractility and restores the cardiac output to normal.
3)血液黏度模式3) Blood viscosity mode
保持动力泵模块中的各个泵匀速单向转动,循环模块的加热导丝开始工作,加热导致淀粉稀释液到达糊化临界温度值(60℃),保持温度即可,血液黏度增加导致后负荷加重,打破血流动力学平衡,心输出量下降,为维持心输出量不变,心脏收缩力需增加;恢复室温糊化逆转,后负荷下降,心输出量上升减弱心脏收缩力,恢复心输出量到正常。Keep each pump in the power pump module rotating in one direction at a constant speed, and the heating guide wire of the circulation module starts to work. The heating causes the starch diluent to reach the gelatinization critical temperature value (60°C). Just keep the temperature. The increase in blood viscosity will lead to increased afterload. , breaking the hemodynamic balance, cardiac output decreases, in order to maintain cardiac output unchanged, cardiac contractility needs to increase; restoring room temperature gelatinization reverses, afterload decreases, cardiac output increases, weakens cardiac contractility, and restores cardiac output to normal.
4)主动脉顺应性模式4) Aortic compliance pattern
保持动力泵模块中的各个泵匀速单向转动,心脏模块处于低温环境(基座内铺冰袋),硅胶在低温状态下硬化收缩,心脏模块由主动脉顺应性减弱致后负荷加重,打破血流动力学平衡,心输出量下降,为维持心输出量不变,心脏收缩力需增加;恢复室温顺应性增加,后负荷下降,心输出量上升减弱心脏收缩力,恢复心输出量到正常。Keep each pump in the power pump module rotating in one direction at a uniform speed. The heart module is in a low-temperature environment (ice packs are placed in the base). The silicone hardens and shrinks at low temperatures. The weakened compliance of the aorta in the heart module causes increased afterload, disrupting blood flow. Dynamic balance, cardiac output decreases, in order to maintain cardiac output unchanged, cardiac contractility needs to increase; restoring room temperature compliance increases, afterload decreases, cardiac output increases, weakens cardiac contractility, and restores cardiac output to normal.
5)肺循环模拟5) Pulmonary circulation simulation
保持动力泵模块中的各个泵匀速单向转动,循环模块加热40℃,低于淀粉稀释液糊化临界值(60℃)。正常情况下左右心室功能相辅相成,搏出量相等。肺循环模块内部导热凝胶小球预热膨胀,肺循环阻力增加(模拟临床中的肺动脉高压)打破血流动力学平衡,右心输出量下降。为维持右心输出量不变,心脏收缩力需增加;恢复室温顺应性增加,后负荷下降,右心输出量上升减弱心脏收缩力,恢复右心输出量到正常。Keep each pump in the power pump module rotating in one direction at a constant speed, and the circulation module is heated to 40°C, which is lower than the gelatinization critical value of the starch diluent (60°C). Under normal circumstances, the functions of the left and right ventricles complement each other and the stroke volume is equal. The thermally conductive gel beads inside the pulmonary circulation module preheat and expand, causing the pulmonary circulation resistance to increase (simulating pulmonary hypertension in clinical practice), breaking the hemodynamic balance, and causing the right heart output to decrease. In order to maintain the right cardiac output unchanged, cardiac contractility needs to increase; restoring room temperature compliance increases, afterload decreases, and the increase in right cardiac output weakens cardiac contractility and restores right cardiac output to normal.
6)术后操作6) Postoperative operations
反复加热和降温操作会导致循环模块的塑料软管材料受损,“血液”内容物淀粉变性,需要定期更换。此外,通过使用辅助器械对相关变化量进行监测,应在测量点进行数据收集,以免数据不准确。每次操作结束之后断电,收好电源线装置并归位于干燥通风的环境,检查模拟器内部漏水和松动情况。检查循环模块与各个模块之间接口紧密度,防止漏水。清洁消毒操作按照临床实际步骤进行。Repeated heating and cooling operations will cause damage to the plastic hose material of the circulation module, and the starch content of the "blood" content will be degenerated, requiring regular replacement. In addition, by using auxiliary devices to monitor relevant changes, data collection should be performed at the measurement point to avoid inaccurate data. After each operation, turn off the power, put away the power cord device and place it in a dry and ventilated environment, and check for leaks and looseness inside the simulator. Check the tightness of the interface between the circulation module and each module to prevent water leakage. Cleaning and disinfection operations are carried out according to actual clinical steps.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202321263818.3U CN219979017U (en) | 2023-05-23 | 2023-05-23 | Cardiac Afterload Hemodynamic Simulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202321263818.3U CN219979017U (en) | 2023-05-23 | 2023-05-23 | Cardiac Afterload Hemodynamic Simulator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219979017U true CN219979017U (en) | 2023-11-07 |
Family
ID=88590137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202321263818.3U Active CN219979017U (en) | 2023-05-23 | 2023-05-23 | Cardiac Afterload Hemodynamic Simulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN219979017U (en) |
-
2023
- 2023-05-23 CN CN202321263818.3U patent/CN219979017U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107862963B (en) | An in vitro training and testing system for percutaneous coronary intervention | |
US11682320B2 (en) | Cardiac simulation device | |
JP6570102B2 (en) | Blood circulation simulator with simulated atrium | |
CN102949252B (en) | Can be used for getting involved the in-vitro simulated release of valve and performance testing device | |
CN106033032B (en) | For in-vitro simulated sanguimotor simulation chamber and implementation method | |
Sooriamoorthy et al. | A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform | |
JP2017531838A (en) | Heart simulation device | |
US20210043113A1 (en) | Cardiac simulation device | |
CN114699646A (en) | Ventricular assist device performance test system | |
CN205959518U (en) | Developments heart model | |
CN219979016U (en) | A cardiac preload hemodynamic simulator | |
CN219979017U (en) | Cardiac Afterload Hemodynamic Simulator | |
CN209996542U (en) | A heart valve regurgitation tester | |
CN103366072B (en) | A kind of digital simulation method of mitral valve insufficiency blood reflux | |
Khudzari et al. | Mock circulatory loop for cardiovascular assist device testing | |
Rezaienia et al. | In-vitro investigation of cerebral-perfusion effects of a rotary blood pump installed in the descending aorta | |
CN219979018U (en) | A simulator for transcatheter aortic balloon counterpulsation | |
CN217525511U (en) | In-vitro heart valve testing system comprising water adding buffer part | |
Gawlikowski et al. | The physical parameters estimation of physiologically worked heart prosthesis | |
CN114005344B (en) | Multifunctional combined simulation circulation experiment table | |
CN215117889U (en) | A pericardium + thoracentesis teaching mold | |
CN220604207U (en) | A simulator for ultrasound-guided transcatheter mitral valve clamping | |
Anderson et al. | Analog simulation of left ventricular bypass mode control | |
CN220604212U (en) | Percutaneous intramyocardial septal radiofrequency ablation simulator | |
CN118522207B (en) | Digital simulation human body circulation system for VAD test and training teaching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |