CN219907707U - Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose - Google Patents

Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose Download PDF

Info

Publication number
CN219907707U
CN219907707U CN202321316133.0U CN202321316133U CN219907707U CN 219907707 U CN219907707 U CN 219907707U CN 202321316133 U CN202321316133 U CN 202321316133U CN 219907707 U CN219907707 U CN 219907707U
Authority
CN
China
Prior art keywords
evaporator
xylose
storage tank
communicated
temporary storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202321316133.0U
Other languages
Chinese (zh)
Inventor
吴限智
黄钱威
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Yahua Biology Co ltd
Original Assignee
Sichuan Yahua Biology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Yahua Biology Co ltd filed Critical Sichuan Yahua Biology Co ltd
Priority to CN202321316133.0U priority Critical patent/CN219907707U/en
Application granted granted Critical
Publication of CN219907707U publication Critical patent/CN219907707U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The utility model provides a purifying system suitable for xylose solution prepared by hemicellulose-containing waste lye, which comprises an electrodialysis device, a neutralization device, a first evaporator, a decoloring device, a second evaporator, a crystallization tank and a centrifuge; the hydrolyzed xylose solution is subjected to electrodialysis deacidification and desalination, alkali neutralization to pH4-7, primary evaporation to refractive index of 44-60, decolorization, secondary evaporation to refractive index of 79-81, cooling crystallization and centrifugation to obtain xylose mother liquor and finished xylose, wherein the xylose mother liquor is subjected to simple treatment and then is reused in an electrodialysis process, and recycling treatment is performed to reduce the purity of xylose in the discharged mother liquor, namely reduce environmental protection pressure. In the purification process, the ion exchange purification is not performed, and a large amount of ion exchange wastewater, resin consumption and xylose loss are not formed any more in the modes of direct evaporation, decolorization, crystallization and the like, so that the process can effectively improve the economic benefit, realize green production and realize environmental protection and economy.

Description

Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose
Technical Field
The utility model relates to a xylose solution purification system, in particular to a xylose solution purification system applicable to preparation of waste alkali liquor containing hemicellulose, and belongs to the technical field of xylose production.
Background
The viscose is a chemical fiber which is processed by using natural cellulose-containing polymer materials such as wood pulp, cotton pulp and the like through chemical and mechanical methods. The preparation process of the viscose fiber can be divided into five working sections of pulp preparation, viscose preparation, spinning, fiber forming and post-treatment. In the viscose preparation section, a high-concentration (about 20%) sodium hydroxide solution is added into pulp, and cellulose reacts with sodium hydroxide to generate alkali cellulose, so that hemicellulose is dissolved out; at the same time, the pulp swells and hemicellulose and other impurities in the pulp are dissolved out. In the subsequent pressing process, the alkali cellulose is pressed and filtered by using a plate-and-frame filter press, the obtained solid alkali cellulose is used for the next production, and the filtrate is alkali liquor in which hemicellulose is dissolved. The sodium hydroxide content in the alkali liquor is about 150-200g/L, and the hemicellulose content is more than or equal to 35g/L; and then, recycling most of sodium hydroxide through a bipolar membrane to finally obtain the waste alkali liquor containing hemicellulose, wherein the content of the sodium hydroxide is about 35-45g/L and the content of the hemicellulose is about 65-75g/L. The waste alkali liquor containing hemicellulose has the characteristics of high COD, large turbidity, high alkali content and the like, and a large amount of acid is consumed for neutralization in the direct treatment and discharge, and meanwhile, environmental pollution and resource waste are caused. Therefore, hemicellulose is considered to be separated and hydrolyzed to prepare xylose, so that waste is changed into valuable.
At present, the raw materials for preparing xylose by hemicellulose hydrolysis mainly comprise two types: one is to use corncob as raw material; the other is to use waste alkali liquor containing hemicellulose from chemical fiber factory (such as CN102643935A, CN109112233A, CN112195209A and CN 110564898A). Compared with corncob, the waste alkali liquor containing hemicellulose is more dominant in purchasing and transporting cost, but the dealkalization and desalination cost is higher.
In the process for preparing xylose by taking waste alkali liquor containing hemicellulose as a raw material, the main working procedures comprise: hydrolysis, decolorization, electrodialysis, ion exchange, evaporation, crystallization and the like, wherein the existence of the ion exchange process is mainly used for further purifying xylose so as to ensure the subsequent crystallization quality, and the problems of large load, high sugar loss, frequent resin replacement, more cleaning wastewater and the like of the ion exchange process in the actual operation process are caused by various byproducts such as organic acid and the like generated in the hydrolysis process. With the current practical operation example, the service life of the ion exchange resin is basically lower than one year, the resin cleaning water consumption is approximately 30 times of the resin volume, and meanwhile, the xylose loss is basically stabilized at about 15 percent, namely, the economic benefit and the environmental benefit are poor.
Disclosure of Invention
In order to solve the problems of high load, high sugar loss, frequent resin replacement, more washing wastewater and the like in the ion exchange process in the existing xylose solution purification process, a purification system suitable for preparing the xylose solution by using the hemicellulose-containing waste lye is provided, and the purification system is matched with the corresponding purification process to ensure that the hydrolyzed hemicellulose-containing waste lye (crude xylose solution) is subjected to electrodialysis deacidification, alkali neutralization, primary evaporation, decoloration, secondary evaporation, cooling crystallization and centrifugation to obtain the finished xylose with the purity of more than 98 percent.
In the purification system, the ion exchange process is not involved, and a large amount of ion exchange wastewater, resin consumption and xylose loss are not formed any more in the modes of direct evaporation, decolorization, crystallization and the like, so that the process can effectively improve the economic benefit, realize green production and realize environmental protection and economy.
In order to achieve the technical purpose, the following technical scheme is provided:
the purifying system suitable for xylose solution prepared by the hemicellulose-containing waste lye comprises an electrodialysis device, a neutralization device, a first evaporator, a decoloring device, a second evaporator, a crystallization tank and a centrifuge, wherein the electrodialysis device is arranged at the front side of a station of the neutralization device, a high sugar solution outlet of the electrodialysis device is communicated with a feed inlet of the neutralization device, and the neutralization device is communicated with an alkali liquor storage tank;
the first evaporator is arranged at the rear side of a station of the neutralization device, a discharge hole of the neutralization device is communicated with a feed inlet of the first evaporator, and the first evaporator is connected with a steam pipeline;
the decoloring device is arranged at the rear side of the station of the first evaporator, a discharge hole of the first evaporator is communicated with a feed inlet of the decoloring device, and the decoloring device is connected with a condensing pipeline;
the second evaporator is arranged at the rear side of a station of the decoloring device, a discharge port of the decoloring device is communicated with a feed port of the second evaporator, and the first evaporator is connected with a steam pipeline;
the crystallization tank is arranged at the rear side of the station of the second evaporator, the discharge hole of the second evaporator is communicated with the feed inlet of the crystallization tank, and the crystallization tank is connected with a condensation pipeline;
the centrifugal machine is arranged at the rear side of a station of the crystallization tank, and a discharge hole of the crystallization tank is communicated with a feed hole of the centrifugal machine;
and a continuous path for purifying the xylose solution is formed among the electrodialysis device, the neutralization device, the first evaporator, the decoloring device, the second evaporator, the crystallization tank and the centrifuge.
Further, active carbon is arranged in the decolorizing column in the decolorizing device, and the decolorizing device is connected with an alkali liquor storage tank.
Further, a high-sugar liquor temporary storage tank is arranged between the electrodialysis device and the neutralization device, a high-sugar liquor outlet of the electrodialysis device is communicated with a feeding port of the high-sugar liquor temporary storage tank, and a discharging port of the high-sugar liquor temporary storage tank is communicated with a feeding port of the neutralization device.
Further, a neutralization liquid temporary storage tank is arranged between the neutralization device and the first evaporator, a discharge hole of the neutralization device is communicated with a feed hole of the neutralization liquid temporary storage tank, and the discharge hole of the neutralization liquid temporary storage tank is communicated with the feed hole of the first evaporator.
Further, a first evaporation liquid temporary storage tank is arranged between the first evaporator and the decoloring device, a discharge hole of the first evaporator is communicated with a feed inlet of the first evaporation liquid temporary storage tank, and a discharge hole of the first evaporation liquid temporary storage tank is communicated with a feed inlet of the decoloring device.
Further, a temporary decolorizing liquid storage tank is arranged between the decolorizing device and the second evaporator, a discharge port of the decolorizing device is communicated with a feed port of the temporary decolorizing liquid storage tank, and the discharge port of the temporary decolorizing liquid storage tank is communicated with a feed port of the second evaporator.
Further, a filter device is arranged between the decoloring device and the second evaporator, a discharge port of the decoloring device is communicated with a feed inlet of the filter device, and a filtrate outlet of the filter device is communicated with the feed inlet of the second evaporator.
Further, a second evaporation liquid temporary storage tank is arranged between the second evaporator and the crystallization tank, a discharge hole of the second evaporator is communicated with a feed inlet of the second evaporation liquid temporary storage tank, and a discharge hole of the second evaporation liquid temporary storage tank is communicated with a feed inlet of the crystallization tank.
Further, a xylose crystallization liquid temporary storage tank is arranged between the crystallization tank and the centrifuge, a crystallization tank discharge port is communicated with a xylose crystallization liquid temporary storage tank feed inlet, and the xylose crystallization liquid temporary storage tank discharge port is communicated with the centrifuge feed inlet.
Further, the centrifuge is connected with a xylose mother liquor storage tank, and the xylose mother liquor storage tank is connected with an electrodialysis device.
In the technical scheme, according to actual requirements, each device also comprises a matched cleaning system, and specifically comprises a cleaning tank, various cleaning agent adding devices, a matched pipeline and the like. Each of the transport pipes is provided with a flowmeter, a control valve, an automatic control device, and the like according to actual demands.
In this technical scheme, with the evaporimeter evaporation, relate to theory of operation and include:
the principle of the MVR evaporator is to utilize an energy-efficient vapor compressor to compress and evaporate secondary vapor generated by evaporation, so as to improve the pressure and the temperature of the secondary vapor. The secondary steam with the heat energy increased is pumped into the evaporator to heat the solution again, and the heated solution is continuously evaporated to generate secondary steam, so that a continuous evaporation state is realized. The condensed hot water exchanges heat with the solution, so that heat is further recovered, full utilization of latent heat is realized, evaporation energy consumption is reduced, and operation cost is saved.
By adopting the technical scheme, the beneficial technical effects brought are as follows:
1. according to the utility model, through the arrangement of the electrodialysis device, the neutralization device, the first evaporator, the decoloring device, the second evaporator, the crystallization tank, the centrifugal machine and the like, a continuous path for purifying the xylose solution is formed among the electrodialysis device, the neutralization device, the first evaporator, the decoloring device, the second evaporator, the crystallization tank and the centrifugal machine, so that the smooth, stable and controllable implementation of the xylose solution purifying process is realized, and the xylose solution purifying efficiency and quality are improved;
2. in the present utility model, the ion exchange system function is completely replaced by electrodialysis and decolorization procedures. Sugar loss (at least reducing xylose loss by 15%) and resin consumption (80 m n/year of resin consumption is effectively saved by 250 ten thousand yuan/year) caused by an ion exchange system are avoided, so that the production cost is effectively saved;
3. in the utility model, after replacing the ion exchange system, a large amount of ion exchange wastewater is not formed, the discharge of high COD xylose wastewater of about 2000 sides can be reduced every day, green production is realized, and the utility model contributes to environmental protection.
4. In the utility model, after replacing the ion exchange system, the defects of unstable operation of the ion exchange system and the like are effectively avoided, the stability of the xylose crystallization purification process is increased, and the cost of equipment consumption is reduced.
Drawings
FIG. 1 is a diagram of a logical connection of a manufacturing system according to the present utility model;
FIG. 2 is a diagram of a logical connection of a manufacturing system according to the present utility model;
FIG. 3 is a workflow diagram of the present utility model;
FIG. 4 is a schematic view of MVR flow in accordance with the present utility model;
FIG. 5 is a schematic diagram of the decoloring process according to the present utility model;
wherein, in the figure: 1. electrodialysis device, 2, neutralization device, 3, first evaporimeter, 4, decoloration device, 5, the second evaporimeter, 6, the crystallization tank, 7, centrifuge, 8, alkali lye storage tank, 9, steam line, 10, the condensing line, 11, the high sugar liquid temporary storage tank, 12, neutralization liquid temporary storage tank, 13, first evaporation liquid temporary storage tank, 14, decoloration liquid temporary storage tank, 15, filter equipment, 16, second evaporation liquid temporary storage tank, 17, xylose crystallization liquid temporary storage tank, 18, xylose mother liquor storage tank.
Detailed Description
In the following, it is obvious that the embodiments described are only some embodiments of the present utility model, but not all embodiments, by clearly and completely describing the technical solutions in the embodiments of the present utility model. All other embodiments, which can be made by those skilled in the art based on the embodiments of the utility model without making any inventive effort, are intended to be within the scope of the utility model.
Example 1
This example presents a purification system suitable for xylose solutions prepared with waste lye containing hemicellulose, as shown in figure 1:
the device comprises an electrodialysis device 1, a neutralization device 2, a first evaporator 3, a decoloring device 4, a second evaporator 5, a crystallization tank 6 and a centrifuge 7, wherein the electrodialysis device 1 is arranged at the front side of a station of the neutralization device 2, a high sugar liquid outlet of the electrodialysis device 1 is communicated with a feed inlet of the neutralization device 2, and the neutralization device 2 is communicated with an alkali liquid storage tank 8; the first evaporator 3 is arranged at the rear side of a station of the neutralization device 2, a discharge port of the neutralization device 2 is communicated with a feed port of the first evaporator 3, and the first evaporator 3 is connected with a steam pipeline 9; the decoloring device 4 is arranged at the rear side of the station of the first evaporator 3, a discharge port of the first evaporator 3 is communicated with a feed port of the decoloring device 4, and the decoloring device 4 is connected with a condensing pipeline 10; the second evaporator 5 is arranged at the rear side of the station of the decoloring device 4, the discharge port of the decoloring device 4 is communicated with the feed port of the second evaporator 5, and the first evaporator 3 is connected with a steam pipeline 9; the crystallization tank 6 is arranged at the rear side of the station of the second evaporator 5, the discharge port of the second evaporator 5 is communicated with the feed port of the crystallization tank 6, and the crystallization tank 6 is connected with a condensation pipeline 10; the centrifugal machine 7 is arranged at the rear side of the station of the crystallization tank 6, and the discharge port of the crystallization tank 6 is communicated with the feed port of the centrifugal machine 7;
continuous paths for purifying xylose solution are formed among the electrodialysis device 1, the neutralization device 2, the first evaporator 3, the decoloring device 4, the second evaporator 5, the crystallization tank 6 and the centrifuge 7.
The first evaporator 3 is an MVR evaporator (fig. 4) or a coil evaporator, and the second evaporator 5 is an MVR evaporator (fig. 4) or a coil evaporator.
Example 2
In this example, the decoloring device 4 is further limited on the basis of example 1, and this technical scheme will be further described.
Activated carbon (as shown in figure 5) is arranged in a decolorizing column in the decolorizing device 4, and the decolorizing device 4 is connected with an alkali liquor storage tank 8 to realize activated carbon regeneration.
Wherein, preferably, the activated carbon is granular activated carbon (xylose is food-grade raw material, physical decolorization is preferred, and nanofiltration membrane separation can be adopted due to the larger molecular weight of pigment). The feed liquid slowly flows through the activated carbon decoloring column, and when the discharged light transmittance is lower than a certain value, alkali can be adopted for regeneration and cleaning, and then the activated carbon decoloring column is reused. In the decoloring process, the activated carbon has more micropores on the surface, has better adsorption effect and can remove colored macromolecular substances and colloid.
Example 3
On the basis of the embodiments 1-2, in order to improve the stability and controllability of the purification process on the corresponding production line, the embodiment is provided with the corresponding temporary storage tank at the rear side of the station of the corresponding equipment so as to realize the sustainability of the corresponding process. Such as:
as shown in fig. 2: a high sugar liquor temporary storage tank 11 is arranged between the electrodialysis device 1 and the neutralization device 2, a high sugar liquor outlet of the electrodialysis device 1 is communicated with a feed inlet of the high sugar liquor temporary storage tank 11, and a discharge outlet of the high sugar liquor temporary storage tank 11 is communicated with a feed inlet of the neutralization device 2.
A neutralization liquid temporary storage tank 12 is arranged between the neutralization device 2 and the first evaporator 3, a discharge port of the neutralization device 2 is communicated with a feed port of the neutralization liquid temporary storage tank 12, and a discharge port of the neutralization liquid temporary storage tank 12 is communicated with a feed port of the first evaporator 3.
A first evaporation liquid temporary storage tank 13 is arranged between the first evaporator 3 and the decoloring device 4, a discharge port of the first evaporator 3 is communicated with a feed port of the first evaporation liquid temporary storage tank 13, and a discharge port of the first evaporation liquid temporary storage tank 13 is communicated with a feed port of the decoloring device 4.
A temporary decolorizing liquid storage tank 14 is arranged between the decolorizing device 4 and the second evaporator 5, a discharge port of the decolorizing device 4 is communicated with a feed port of the temporary decolorizing liquid storage tank 14, and a discharge port of the temporary decolorizing liquid storage tank 14 is communicated with a feed port of the second evaporator 5.
A filter device 15 is arranged between the decoloring device 4 and the second evaporator 5, a discharge port of the decoloring device 4 is communicated with a feed port of the filter device 15, and a filtrate outlet of the filter device 15 is communicated with a feed port of the second evaporator 5.
A second evaporation liquid temporary storage tank 16 is arranged between the second evaporator 5 and the crystallization tank 6, a discharge hole of the second evaporator 5 is communicated with a feed hole of the second evaporation liquid temporary storage tank 16, and a discharge hole of the second evaporation liquid temporary storage tank 16 is communicated with a feed hole of the crystallization tank 6.
A xylose crystallization liquid temporary storage tank 17 is arranged between the crystallization tank 6 and the centrifuge 7, a discharge port of the crystallization tank 6 is communicated with a feed port of the xylose crystallization liquid temporary storage tank 17, and a discharge port of the xylose crystallization liquid temporary storage tank 17 is communicated with a feed port of the centrifuge 7.
And, in order to realize the reutilization of xylose mother liquor, setting: the centrifuge 7 is connected with a xylose mother liquor storage tank 18, and the xylose mother liquor storage tank 18 is connected with the electrodialysis device 1. Not only improves the recovery rate of xylose, but also reduces the discharge of waste liquid, etc.
Example 4
On the basis of examples 1-3, this example provides a purification process for xylose solutions prepared from waste lye containing hemicellulose, as shown in fig. 3, comprising the steps of:
A. electrodialysis: deacidifying and desalting the hydrolyzed hemicellulose-containing waste alkali liquor by adopting an electrodialysis membrane, and controlling to obtain a high-sugar liquid with refraction of 15 and light transmittance of 75%;
B. and (3) neutralization: neutralizing the high sugar solution to pH 5, and controlling to obtain a neutralization solution with light transmittance of 50%;
C. first evaporation: introducing the neutralization solution into a first evaporator 3, evaporating and concentrating until the refraction is 50, and controlling to obtain a first evaporation solution with the light transmittance of 25%;
D. decoloring: introducing the first evaporation liquid into a decoloring device 4, decoloring, and controlling to obtain a decoloring liquid with the light transmittance of 50%;
E. and (3) filtering: introducing the decolorized solution into a filtering device 15, and filtering to obtain filtrate;
F. second evaporation: introducing the filtrate into a second evaporator 5, evaporating and concentrating until the refraction is 80, and controlling the light transmittance to be 70-80% of the second evaporation liquid;
G. cooling and crystallizing: introducing the second evaporation liquid into a crystallization tank 6 for crystallization to obtain xylose crystal liquid;
wherein, the crystallization is carried out for 75 hours, the feeding temperature of the crystallization tank 6 is controlled to be 80 ℃, and the discharging temperature of the crystallization tank 6 is controlled to be 29 ℃;
H. and (3) centrifuging: and (3) introducing the xylose crystal into a centrifugal machine 7, and centrifuging to obtain xylose mother liquor and xylose products with purity more than 98%.
In the neutralization step B, control: the feeding flow is 20m3/h, and the temperature in the neutralization device 2 is controlled to be 35 ℃; in the first evaporation step of step C, control: the feeding flow is 20m3/h, the discharging flow is 6m 2/h, and the running temperature is 70 ℃; in the decoloring step D, control: the feeding flow is 6 m/h, the discharging flow is 6 m/h, and the running temperature is 55 ℃; in the second evaporation step of step F, control: the feeding flow is 6-8 m/h, the discharging flow is 2.8 m/h, and the operating temperature is 75 ℃.
Finally, a xylose product is obtained: xylose purity > 98% and pH > 5; xylose mother liquor: xylose purity < 60% and xylose content < 550g/L.
Example 5
On the basis of examples 1-3, this example further provides a purification process for xylose solutions prepared from waste lye containing hemicellulose, comprising the steps of:
comprising the following steps:
A. electrodialysis: deacidifying and desalting the hydrolyzed hemicellulose-containing waste alkali solution (crude xylose solution) by adopting an electrodialysis membrane to obtain high sugar solution;
wherein, conventional equipment and control conditions are adopted in the electrodialysis process. The high sugar solution has refraction of 14-16, conductivity of 2500-3500 mu s/cm, pH of 1.8-2.2, light transmittance of 70-80%, xylose content of 105-115g/L, and xylose purity of 71-74%;
B. and (3) neutralization: neutralizing the high sugar solution to pH4-7 to obtain a neutralized solution;
wherein, the pH value of the neutralization solution is increased after neutralization by adding alkali, the light transmittance of the neutralization solution is reduced along with the increase of ph value, wherein, most of the color developing agent is organic weak acid and is influenced by acid effect, the effective concentration of the color developing agent is reduced, the concentration of the color developing agent is increased along with the weakening of the acid, and the color development of the pigment is started) and the electric conductivity is 3000-4000 mu s/cm. In the neutralization process, the high sugar solution contains sulfuric acid and sodium sulfate, so that sodium hydroxide is used for neutralization, hydrogen ions are effectively neutralized by hydroxyl ions by utilizing an acid-base reaction principle, sulfate ions and sodium ions generate sodium sulfate, and new ions are not introduced;
regarding the control of the pH value, if the pH value is less than 4, the corrosion to equipment in the subsequent working procedure is large, and meanwhile, the pH value of the subsequent xylose product is low, so that the subsequent xylose product is unqualified; if the pH value is more than 7, the alkali reacts with xylose, a plurality of byproducts are generated while consuming the xylose, the quality of subsequent crystallization and xylose finished products is seriously influenced, and the high sugar solution is controlled to be neutralized to pH 4-7;
C. first evaporation: introducing the neutralization solution into a first evaporator 3, evaporating and concentrating until the refraction is 44-60 to obtain a first evaporation solution;
the first evaporator 3 is an MVR evaporator (evaporation cost can be saved. The evaporation procedure is actually a process of removing water in xylose solution, so that other kinds of evaporators can be selected under the condition of not changing components of the xylose solution, the MVR evaporator has simpler operation principle and high stability, and the evaporation temperature is mainly controlled), and the light transmittance of the first evaporation solution is 20-30%. Regarding the control of refraction, if the refraction is too high, the difficulty of post-decoloring and filtering is increased; if the refraction is too low, the subsequent second evaporation load will increase substantially. The refraction of the xylose product is not influenced by the refraction;
D. decoloring: introducing the first evaporation liquid into a decoloring device 4 for decoloring to obtain a decoloring liquid;
wherein, activated carbon, preferably granular activated carbon (xylose is food-grade raw material, preferably physical decolorization is selected, and nanofiltration membrane separation can be adopted due to the larger molecular weight of pigment) is arranged in the decolorizing column of the decolorizing device 4. The feed liquid slowly flows through the activated carbon decoloring column, and when the discharged light transmittance is lower than a certain value, alkali can be adopted for regeneration and cleaning, and then the activated carbon decoloring column is reused. The light transmittance of the decolorized solution is 45-55%, and in the decolorization process, the surface of the activated carbon has more micropores and better adsorption effect, so that colored macromolecular substances and colloids can be removed;
E. and (3) filtering: introducing the decolorized solution into a filtering device 15, and filtering to obtain filtrate;
wherein, a bag filter can be adopted, mainly used for intercepting the active carbon flowing out of the decoloring device 4, and the control conditions are conventional;
F. second evaporation: introducing the filtrate into a second evaporator 5, evaporating and concentrating until the refraction is 79-81 to obtain a second evaporation solution;
wherein the second evaporator 5 is an MVR evaporator or a coil evaporator, and the light transmittance of the second evaporation liquid is 70-80%. Here, the control of refraction balances the yield of the subsequent centrifugation process and the xylose product, i.e., if the refractive index is smaller than that, the subsequent centrifugation difficulty is reduced, but the yield is lower; if the refractive index is larger than the refractive index, the subsequent centrifugation difficulty is greatly increased, and the purity of the xylose product is also affected, so that the refractive index is controlled to be 79-81;
G. cooling and crystallizing: introducing the second evaporation liquid into a crystallization tank 6 for crystallization to obtain xylose crystal liquid;
wherein the crystallization tank 6 comprises a crystallization cylinder with the volume of 25m < w > -80h for crystallization, the feeding temperature is 75-85 ℃, and the discharging temperature is 28-30 ℃. Along with the gradual reduction of the temperature of the second evaporation liquid, the solubility of xylose in the solution is reduced, and insoluble xylose is separated out to form xylose crystals. In this step, the temperature was mainly controlled, and the temperature of the feed was lowered to the end point (discharge temperature) at 1 ℃/h. The volume of the crystallization cylinder mainly depends on the production capacity, so long as the production efficiency can be ensured, and the corresponding limitations of crystallization time and feeding and discharging temperature can effectively reduce the solution viscosity after crystallization, improve the yield of xylose crystals and the size of the crystals;
H. and (3) centrifuging: introducing the xylose crystal solution into a centrifuge 7, and centrifuging to obtain a xylose product and xylose mother liquor;
wherein, the centrifugal machine 7 can be an upper suspension type centrifugal machine 7, the rotating speed is controlled to be 1100rpm/min, and the centrifugal time is controlled to be 15min. Xylose product: xylose purity > 98% and pH > 5; xylose mother liquor: xylose purity < 60% and xylose content < 550g/L.

Claims (10)

1. The purifying system suitable for the xylose solution prepared by the waste alkali liquor containing hemicellulose is characterized in that: the device comprises an electrodialysis device (1), a neutralization device (2), a first evaporator (3), a decoloring device (4), a second evaporator (5), a crystallization tank (6) and a centrifuge (7), wherein the electrodialysis device (1) is arranged at the front side of a station of the neutralization device (2), a high-sugar liquid outlet of the electrodialysis device (1) is communicated with a feed inlet of the neutralization device (2), and the neutralization device (2) is communicated with an alkali liquid storage tank (8);
the first evaporator (3) is arranged at the rear side of a station of the neutralization device (2), a discharge hole of the neutralization device (2) is communicated with a feed hole of the first evaporator (3), and the first evaporator (3) is connected with a steam pipeline (9);
the decoloring device (4) is arranged at the rear side of a station of the first evaporator (3), a discharge port of the first evaporator (3) is communicated with a feed port of the decoloring device (4), and the decoloring device (4) is connected with a condensing pipeline (10);
the second evaporator (5) is arranged at the rear side of a station of the decoloring device (4), a discharge port of the decoloring device (4) is communicated with a feed port of the second evaporator (5), and the first evaporator (3) is connected with a steam pipeline (9);
the crystallization tank (6) is arranged at the rear side of a station of the second evaporator (5), a discharge hole of the second evaporator (5) is communicated with a feed inlet of the crystallization tank (6), and the crystallization tank (6) is connected with a condensation pipeline (10);
the centrifugal machine (7) is arranged at the rear side of a station of the crystallization tank (6), and a discharge hole of the crystallization tank (6) is communicated with a feed hole of the centrifugal machine (7);
a continuous path for purifying xylose solution is formed among the electrodialysis device (1), the neutralization device (2), the first evaporator (3), the decoloring device (4), the second evaporator (5), the crystallization tank (6) and the centrifuge (7).
2. The purification system for xylose solutions suitable for the preparation with waste lye containing hemicellulose according to claim 1, characterized by: activated carbon is arranged in a decolorizing column in the decolorizing device (4), and the decolorizing device (4) is connected with an alkali liquor storage tank (8).
3. The purification system for xylose solutions suitable for the preparation with waste lye containing hemicellulose according to claim 1, characterized by: the high-sugar liquor temporary storage tank (11) is arranged between the electrodialysis device (1) and the neutralization device (2), a high-sugar liquor outlet of the electrodialysis device (1) is communicated with a feeding port of the high-sugar liquor temporary storage tank (11), and a discharging port of the high-sugar liquor temporary storage tank (11) is communicated with a feeding port of the neutralization device (2).
4. The purification system for xylose solutions suitable for the preparation with waste lye containing hemicellulose according to claim 1 or 2 or 3, characterized in that: a neutralization liquid temporary storage tank (12) is arranged between the neutralization device (2) and the first evaporator (3), a discharge port of the neutralization device (2) is communicated with a feed port of the neutralization liquid temporary storage tank (12), and a discharge port of the neutralization liquid temporary storage tank (12) is communicated with a feed port of the first evaporator (3); wherein the first evaporator (3) is an MVR evaporator or a coil evaporator.
5. The purification system for xylose solutions, suitable for the preparation with waste lye containing hemicellulose, according to claim 4, characterized by: a first evaporation liquid temporary storage tank (13) is arranged between the first evaporator (3) and the decoloring device (4), a discharge port of the first evaporator (3) is communicated with a feed port of the first evaporation liquid temporary storage tank (13), and a discharge port of the first evaporation liquid temporary storage tank (13) is communicated with a feed port of the decoloring device (4).
6. The purification system for xylose solutions, suitable for the preparation with waste lye containing hemicellulose, according to claim 5, characterized by: a decolorizing liquid temporary storage tank (14) is arranged between the decolorizing device (4) and the second evaporator (5), a discharging port of the decolorizing device (4) is communicated with a feeding port of the decolorizing liquid temporary storage tank (14), and a discharging port of the decolorizing liquid temporary storage tank (14) is communicated with a feeding port of the second evaporator (5); wherein the second evaporator (5) is an MVR evaporator or a coil evaporator.
7. The purification system for xylose solutions, suitable for the preparation with waste lye containing hemicellulose, according to claim 5, characterized by: a filter device (15) is arranged between the decoloring device (4) and the second evaporator (5), a discharge port of the decoloring device (4) is communicated with a feed port of the filter device (15), and a filtrate outlet of the filter device (15) is communicated with a feed port of the second evaporator (5); wherein the second evaporator (5) is an MVR evaporator or a coil evaporator.
8. The purification system for xylose solutions suitable for the preparation of waste lye containing hemicellulose according to claim 7, characterized by: a second evaporation liquid temporary storage tank (16) is arranged between the second evaporator (5) and the crystallization tank (6), a discharge hole of the second evaporator (5) is communicated with a feed hole of the second evaporation liquid temporary storage tank (16), and a discharge hole of the second evaporation liquid temporary storage tank (16) is communicated with a feed hole of the crystallization tank (6).
9. The purification system for xylose solutions suitable for the preparation of waste lye containing hemicellulose according to claim 8, characterized by: a xylose crystallization liquid temporary storage tank (17) is arranged between the crystallization tank (6) and the centrifugal machine (7), a discharge hole of the crystallization tank (6) is communicated with a feed inlet of the xylose crystallization liquid temporary storage tank (17), and a discharge hole of the xylose crystallization liquid temporary storage tank (17) is communicated with a feed inlet of the centrifugal machine (7).
10. The purification system for xylose solutions suitable for the preparation with waste lye containing hemicellulose according to claim 1, characterized by: the centrifuge (7) is connected with a xylose mother liquor storage tank (18), and the xylose mother liquor storage tank (18) is connected with the electrodialysis device (1).
CN202321316133.0U 2023-05-29 2023-05-29 Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose Active CN219907707U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202321316133.0U CN219907707U (en) 2023-05-29 2023-05-29 Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202321316133.0U CN219907707U (en) 2023-05-29 2023-05-29 Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose

Publications (1)

Publication Number Publication Date
CN219907707U true CN219907707U (en) 2023-10-27

Family

ID=88421451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202321316133.0U Active CN219907707U (en) 2023-05-29 2023-05-29 Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose

Country Status (1)

Country Link
CN (1) CN219907707U (en)

Similar Documents

Publication Publication Date Title
CN104498640B (en) A kind of technique using plant refuse as raw material coproduction xylose, microcrystalline cellulose and sodium lignin sulfonate
CN102676707B (en) Efficient and energy-saving xylose producing process
CN102452898B (en) Method for producing crystalline xylitol by using membrane technology and indirect electroreduction method
CN101280476A (en) Recovery method for NMMO solvent in fibre production by solvent method
CN104017917A (en) Xylose production process
CN105219892A (en) A kind of xylose production process
CN110423192A (en) A kind of recovery method of spandex DMAC/ acetic acid organic liquid waste
WO2023155797A1 (en) Method for purifying l-lactic acid
CN109439807A (en) A kind of xylose production process
CN108455754A (en) A kind of method that hydro-thermal acidolysis is used to handle plant material pre-hydrolyzed solution
CN103669069B (en) Spentsulfiteliquor process recovery process
CN210481411U (en) Separation system for preparing xylose
WO2023066140A1 (en) Continuous membrane filtration system and filtration method for erythritol fermentation liquor
CN105969916A (en) Method for preparing xylose by taking squeezed alkali liquid obtained in production of viscose as raw material
CN219907707U (en) Purification system suitable for xylose solution prepared from waste alkali liquor containing hemicellulose
CN101870639A (en) Method for producing kelp mannitol with low energy consumption
CN112593016A (en) Process for preparing high-quality white granulated sugar and fulvic acid dry powder from beet
WO2024119730A1 (en) System and method for co-production of premium-grade xylose and high-end caramel pigment using corncobs
CN110564898B (en) Electrodialysis and chromatography combined process for preparing xylose
CN109355440B (en) System and process for producing beet sugar by continuous film
CN116656883A (en) Purification process of xylose solution prepared from waste alkali liquor containing hemicellulose
CN103074796A (en) Alkali recovery process for paper-making black liquid
CN111018213A (en) Non-wood plant papermaking black liquor recycling treatment system and treatment process
CN115198038B (en) Process for recycling semi-fiber xylose-making electrodialysis sugar-containing wastewater
CN220887244U (en) Waste liquid treatment system in xylose preparation technology

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant