CN219696517U - Multipolar ear cylinder lithium ion battery - Google Patents

Multipolar ear cylinder lithium ion battery Download PDF

Info

Publication number
CN219696517U
CN219696517U CN202321164541.9U CN202321164541U CN219696517U CN 219696517 U CN219696517 U CN 219696517U CN 202321164541 U CN202321164541 U CN 202321164541U CN 219696517 U CN219696517 U CN 219696517U
Authority
CN
China
Prior art keywords
lug
battery
multipolar
positive electrode
steel shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202321164541.9U
Other languages
Chinese (zh)
Inventor
刘进前
杨宪宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Qianliniao New Energy Technology Co ltd
Original Assignee
Huaibei Qianliniao New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Qianliniao New Energy Technology Co ltd filed Critical Huaibei Qianliniao New Energy Technology Co ltd
Priority to CN202321164541.9U priority Critical patent/CN219696517U/en
Application granted granted Critical
Publication of CN219696517U publication Critical patent/CN219696517U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

A multi-lug cylindrical lithium ion battery comprises a steel shell, a battery core, a battery anode cover plate and a sealing piece; the battery cell is provided with a negative electrode multipolar lug which is directly welded on the inner bottom surface of the steel shell by ultrasonic waves; the battery cell is provided with a multipolar lug positive electrode, the multipolar lug positive electrode is electrically connected with a battery positive electrode cover plate, and the sealing piece is arranged between the battery positive electrode cover plate and the upper end of the steel shell. The utility model has the advantages that the cathode multipolar lugs can be completely overlapped together, no flexible flat is needed, and no current collecting sheet is needed.

Description

Multipolar ear cylinder lithium ion battery
Technical Field
The utility model relates to the field of batteries, in particular to a multi-lug cylindrical lithium ion battery.
Background
The current cylindrical lithium ion battery has fewer lugs to cause battery heating, the capacity of the battery is increased, the diameter of the battery is increased, and the heating is more serious. Therefore, there is a need for reducing the internal resistance of the battery to reduce heat generation while increasing the diameter of the battery. Currently, the common way to reduce the internal resistance of a battery is to use a multipolar tab and full tab scheme. The full tab scheme can effectively reduce the internal resistance of the battery, but has a plurality of problems in welding and assembly, and is not promoted in a large area. In the prior art, the manufacturing technology of the positive electrode multipolar lug in the cylindrical lithium ion battery is mature, and the general manufacturing method of the negative electrode multipolar lug is as follows: firstly, welding a plurality of lugs on one side of a negative electrode plate, winding the lugs into a battery core in a matched manner with a positive electrode plate and a diaphragm, then flexibly leveling the negative electrode multipolar lugs, then welding a current collecting plate on the flexibly leveled negative electrode multipolar lugs by a laser welding method, loading the battery core welded with the current collecting plate into a steel shell, and welding the current collecting plate with the inner bottom surface of the steel shell by adopting a spot welding mode. The method for manufacturing the anode multipolar lug cylindrical lithium battery has the following problems that after a plurality of anode lugs are wound into a battery core, the anode lugs cannot be fully overlapped together, so that the soft leveling of the anode multipolar lugs is affected, and in addition, slag is easy to generate in the soft leveling process, so that the battery is short-circuited, and the qualification rate of the battery is reduced; secondly, the welding between the anode multipolar lug and the current collecting piece and the welding between the current collecting piece and the inner bottom surface of the steel shell are all possible to be subjected to cold welding, the internal resistance of the battery can be increased due to cold welding, the battery is easy to heat, and the whole battery can be scrapped when serious; thirdly, the current collecting plate occupies the internal space of the battery, so that the capacity of the battery with the same volume and size can be reduced; fourthly, the manufacturing process is complicated, a plurality of lugs are required to be welded, the battery cell is wound, the multipolar lugs are flexible and flat, the current collecting piece is welded on the negative multipolar lugs, and the current collecting piece is welded on the inner bottom surface of the steel shell after the shell is assembled.
Disclosure of Invention
The utility model aims to provide a manufacturing method of a multi-lug cylindrical lithium ion battery with fully overlapped negative electrode multi-lugs, no need of flexible flat and no need of a current collecting piece.
Another object of the utility model is: a lithium ion battery manufactured by the method is provided.
In order to achieve the above purpose, the present utility model adopts the following technical scheme:
the manufacturing method of the multi-lug cylindrical lithium ion battery comprises the following steps:
s1, separating a positive pole piece and a negative pole piece by using a diaphragm, and winding the positive pole piece and the negative pole piece into a cylindrical battery cell, wherein the positive pole end is a multipolar lug positive pole, and the negative pole end is a lug blank negative pole;
s2, cutting the lug blank negative electrode into a group of negative electrode multipolar lugs in a die cutting mode, wherein all the negative electrode multipolar lugs form a neat multilayer laminated structure from the center hole to the outermost layer;
s3, folding and pressing the negative electrode multipolar lug towards the direction of the circle center hole, so that the negative electrode multipolar lug covers the circle center hole;
s4, loading the semi-finished cylindrical battery cell manufactured in the S3 into a steel shell, and enabling the negative electrode multipolar lug to be propped against the inner bottom surface of the steel shell;
s5, inserting a welding needle of an ultrasonic welder from a center hole of the positive end of the semi-finished cylindrical battery cell, so that a welding needle head of the welding needle presses the negative electrode multipolar lug on the inner bottom surface of the steel shell; starting an ultrasonic welder to weld the negative electrode multipolar lug on the inner bottom surface of the steel shell;
and S6, electrically connecting the multi-lug positive electrode with a battery positive electrode cover plate, and arranging a sealing piece between the battery positive electrode cover plate and the upper end of the steel shell to form the multi-lug cylindrical lithium ion battery.
As an improvement to the utility model, the die cutting mode adopts a longitudinal blade to cut the cathode of the tab blank into a left part, a middle part and a right part along the axial direction of the battery cell, wherein the width of the middle part is larger than or equal to the diameter of a center hole, and the middle part is opposite to the center hole; cutting off left and right parts along the radial direction of the battery cell by adopting a transverse blade; and a transverse blade is adopted to cut off one half of the middle part along the radial direction of the battery cell, and only the other half of the middle part is reserved.
As an improvement of the utility model, the diameter of the circle center hole is selected from more than or equal to 4mm and less than or equal to 10 mm.
As an improvement of the utility model, the diameter of the center hole is selected between 5mm and 9mm.
As an improvement of the utility model, the power of the ultrasonic welder is more than or equal to 200 watts and less than or equal to 2000 watts; the vibration frequency is 40KHz or more and 410KHz or less.
As an improvement of the utility model, the length of the welding needle of the ultrasonic welder is more than or equal to 90mm and less than or equal to 200mm; the diameter of the welding needle is more than or equal to 2.5mm and less than or equal to 9mm; the end face of the free end of the welding needle head of the welding needle is provided with patterns.
As an improvement of the utility model, the pattern is raised ball points or raised grid patterns.
The utility model also provides a multi-lug cylindrical lithium ion battery which is manufactured by the manufacturing method of the multi-lug cylindrical lithium ion battery.
The utility model also provides a multipolar ear cylindrical lithium ion battery, which comprises a steel shell, an electric core, a battery anode cover plate and a sealing piece; the battery cell is provided with a negative electrode multipolar lug which is directly welded on the inner bottom surface of the steel shell by ultrasonic waves; the battery cell is provided with a multipolar lug positive electrode, the multipolar lug positive electrode is electrically connected with a battery positive electrode cover plate, and the sealing piece is arranged between the battery positive electrode cover plate and the upper end of the steel shell.
As an improvement to the utility model, the seal is an annular seal.
The pole piece is wound to form the pole lug blank negative electrode, and then the negative electrode multipolar lug is manufactured in a die cutting mode, so that the negative electrode multipolar lug can be ensured to be completely overlapped; the folded negative electrode multipolar lugs are directly welded on the inner bottom of the steel shell by adopting ultrasonic waves, so that a soft leveling process is not needed, and slag generated in the soft leveling process is avoided; the utility model omits the current collecting piece, and avoids the problem of cold joint between the cathode multipolar lug and the current collecting sign. Therefore, the utility model has the advantages that the cathode multipolar lugs can be completely overlapped together, no flexible flat is needed, and no current collecting sheet is needed.
Drawings
FIG. 1 is a block diagram of one embodiment of the method of the present utility model.
Fig. 2 is a schematic diagram of a stacked structure of a positive electrode sheet, a separator and a negative electrode sheet according to the method of the present utility model.
Fig. 3 is a schematic view of the structure of fig. 2 after winding.
Fig. 4 is a schematic view of the structure of the full tab of fig. 3 after being cut into multiple tabs.
Fig. 5 is a partially cross-sectional structural schematic view of a battery in the present utility model.
Detailed Description
The following description of the technical solutions in the embodiments of the present utility model will be clear and complete, and it is obvious that the described embodiments are only some embodiments of the present utility model, but not all embodiments.
Referring to fig. 1-4, fig. 1-4 disclose a method for manufacturing a multi-pole cylindrical lithium ion battery, comprising the following steps:
s1, separating a positive pole piece 10 and a negative pole piece 20 by a diaphragm 30, and winding into a cylindrical battery cell 2, wherein the positive pole end is a multi-pole lug positive pole 101, and the negative pole end is a pole lug blank negative pole 201;
s2, cutting the tab blank negative electrode 201 into a group of negative electrode multipolar lugs 21 in a die cutting mode, wherein all the negative electrode multipolar lugs 21 form a neat multilayer laminated structure from a circle center hole 23 (see fig. 5, the same description below) to the outermost layer; specifically, the die cutting mode in this embodiment adopts a longitudinal blade to reciprocate along the axial direction of the battery core, and cuts the tab blank cathode 201 into three parts, namely a left part, a middle part and a right part, wherein the width of the middle part is greater than or equal to the diameter of the center hole, and the middle part is opposite to the center hole; a transverse blade is adopted to reciprocate along the radial direction of the battery cell to cut off the left part and the right part; and a transverse blade is adopted to reciprocate along the radial direction of the battery cell to cut off one half of the middle part, and only the other half of the middle part is reserved;
s3, folding and pressing the negative electrode multipolar lug 21 towards the direction of the circle center hole to enable the negative electrode multipolar lug to cover the circle center hole; the negative electrode multipolar lug 21 can be folded and pressed manually or mechanically towards the direction of the center hole;
s4, loading the semi-finished cylindrical battery cell manufactured in the S3 into a steel shell, and enabling the negative electrode multipolar lug to be propped against the inner bottom surface of the steel shell;
s5, inserting a welding needle of an ultrasonic welder from a center hole of the positive end of the semi-finished cylindrical battery cell, so that a welding needle head of the welding needle presses the negative electrode multipolar lug on the inner bottom surface of the steel shell; starting an ultrasonic welder to weld the negative electrode multipolar lug on the inner bottom surface of the steel shell; in the embodiment, the power of the ultrasonic welder is more than or equal to 200 watts and less than or equal to 2000 watts; the vibration frequency is 40KHz or more and 410KHz or less. The length of the welding needle of the ultrasonic welder is more than or equal to 90mm and less than or equal to 200mm; the diameter of the welding needle is more than or equal to 2.5mm and less than or equal to 6mm; the end face of the free end of the welding needle head of the welding needle is provided with patterns. The patterns are raised ball points or raised grid patterns.
And S6, electrically connecting the multi-lug positive electrode with a battery positive electrode cover plate, and arranging a sealing piece between the battery positive electrode cover plate and the upper end of the steel shell to form the multi-lug cylindrical lithium ion battery.
In the present utility model, before step S3, that is, before the negative electrode multipolar lug 21 is folded, the slag preventing sheet 24 may be placed at the lower end of the center hole, and then the negative electrode multipolar lug 21 may be folded.
In the present utility model, or before step S5, that is, before inserting the welding pin of the ultrasonic welder, the slag preventing piece 24 may be placed at the upper end of the center hole, then the welding pin of the ultrasonic welder is inserted, and the slag preventing piece 24 is pushed to the lower end of the center hole by the welding pin, and then the welding is performed. The slag preventing sheet 24 may be a nickel sheet or a copper sheet, and the diameter of the slag preventing sheet 24 is equal to or slightly smaller than or slightly larger than the diameter of the center hole.
Preferably, the diameter of the center hole is selected from more than or equal to 4mm and less than or equal to 10 mm. The diameter of the center hole is proportional to the diameter of the battery, and the larger the diameter of the battery is, the larger the diameter of the center hole is.
Preferably, the diameter of the center hole can be selected between 5mm and 9mm, such as 5mm or 6mm or 7mm or 8mm or 9mm.
The utility model also provides a multi-lug cylindrical lithium ion battery which is manufactured by the manufacturing method of the multi-lug cylindrical lithium ion battery.
Referring to fig. 5, the present utility model further provides a multi-pole cylindrical lithium ion battery, which comprises a steel shell 1, a battery core 2, a battery anode cover plate 3 and a sealing member 4; the battery cell 2 is provided with a negative electrode multipolar lug 21, and the negative electrode multipolar lug 21 is directly welded on the inner bottom surface of the steel shell 1 by ultrasonic waves; the battery cell 2 is provided with a multi-lug positive electrode 22 (broken line in fig. 5), the multi-lug positive electrode 22 is electrically connected with the battery positive electrode cover plate 3, and the sealing piece 4 is arranged between the battery positive electrode cover plate 3 and the upper end of the steel shell 1.
Preferably, the center of the battery core 2 is provided with a center hole 23, the center hole 23 is provided with a slag preventing piece 24, the slag preventing piece 24 is welded together with the negative electrode multipolar lug 21 on the inner bottom surface of the steel shell 1, and the slag preventing piece 24 in the embodiment is used for preventing the negative electrode multipolar lug 21 from generating slag and entering the center hole 23 to cause the risk of short circuit of the battery in the ultrasonic welding process. The slag preventing plate 24 may be a nickel plate or a copper plate.
Preferably, the seal 4 is an annular seal; the annular seal may be of silicone or rubber.
The foregoing is only a preferred embodiment of the present utility model, but the scope of the present utility model is not limited thereto, and any person skilled in the art, who is within the scope of the present utility model, should make equivalent substitutions or modifications according to the technical scheme of the present utility model and the inventive concept thereof, and should be covered by the scope of the present utility model.

Claims (3)

1. The multi-lug cylindrical lithium ion battery is characterized by comprising a steel shell (1), an electric core (2), a battery anode cover plate (3) and a sealing piece (4); the battery cell (2) is provided with a negative electrode multipolar lug (21), and the negative electrode multipolar lug (21) is directly welded on the inner bottom surface of the steel shell (1) by ultrasonic waves; the battery cell (2) is provided with a multi-lug positive electrode (22), the multi-lug positive electrode (22) is electrically connected with the battery positive electrode cover plate (3), and the sealing piece (4) is arranged between the battery positive electrode cover plate (3) and the upper end of the steel shell (1).
2. The multi-lug cylindrical lithium ion battery of claim 1, wherein the sealing member (4) is an annular sealing member.
3. The multi-polar cylindrical lithium-ion battery of claim 2, wherein the annular seal is made of silicone or rubber.
CN202321164541.9U 2023-05-16 2023-05-16 Multipolar ear cylinder lithium ion battery Active CN219696517U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202321164541.9U CN219696517U (en) 2023-05-16 2023-05-16 Multipolar ear cylinder lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202321164541.9U CN219696517U (en) 2023-05-16 2023-05-16 Multipolar ear cylinder lithium ion battery

Publications (1)

Publication Number Publication Date
CN219696517U true CN219696517U (en) 2023-09-15

Family

ID=87965732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202321164541.9U Active CN219696517U (en) 2023-05-16 2023-05-16 Multipolar ear cylinder lithium ion battery

Country Status (1)

Country Link
CN (1) CN219696517U (en)

Similar Documents

Publication Publication Date Title
JP4526996B2 (en) Lithium ion secondary battery
CN114628866A (en) High-energy-density cylindrical battery and assembly process thereof
CN111370635B (en) Production method of button cell without welding trace and prepared button cell
CN112909445A (en) Single-head bipolar multi-tab cylindrical lithium ion battery
CN108461757B (en) Cylindrical battery and electrode current collecting assembly and manufacturing method thereof
CN111463395B (en) Button cell production method capable of reducing false welding rate and button cell produced by button cell production method
CN111370636A (en) Production method of button battery without welding trace and button battery manufactured by same
CN111370637B (en) Production method of button cell without welding trace and prepared button cell
CN111354914B (en) Button cell electrode shell and electrode lug traceless welding method, welding structure and product
CN112054236A (en) Storage battery and manufacturing method thereof
CN217239703U (en) High energy density cylinder type battery
CN111354910A (en) Button battery pole shell and electrode lug traceless welding method, welding structure and product
CN112349949A (en) Battery welded without electrode lug and preparation method
CN213520071U (en) Battery welded without electrode lug
CN112928401A (en) Multi-tab cylindrical lithium ion battery
JP2002270148A (en) Manufacturing method of cylinder sealing type lithium secondary battery and lithium secondary battery
CN111354909B (en) Button cell electrode shell and electrode lug traceless welding method, welding structure and product
CN211578867U (en) Button cell without welding trace
CN111354911A (en) Button battery pole shell and electrode lug traceless welding method, welding structure and product
CN219696517U (en) Multipolar ear cylinder lithium ion battery
CN116417689B (en) Manufacturing method of multi-pole cylindrical lithium ion battery and lithium ion battery
JP2008066048A (en) Lithium-ion secondary battery
CN115939685A (en) Current collecting disc, battery cover plate assembly, cylindrical battery and assembly process
CN211578868U (en) Button cell pole shell and electrode lug seamless welding structure
CN211957808U (en) Button cell with no trace welded structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant