CN219534863U - Miniaturized high-gain ultrahigh frequency antenna and tag - Google Patents
Miniaturized high-gain ultrahigh frequency antenna and tag Download PDFInfo
- Publication number
- CN219534863U CN219534863U CN202320281810.3U CN202320281810U CN219534863U CN 219534863 U CN219534863 U CN 219534863U CN 202320281810 U CN202320281810 U CN 202320281810U CN 219534863 U CN219534863 U CN 219534863U
- Authority
- CN
- China
- Prior art keywords
- folded dipole
- vertical
- horizontal
- folded
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 claims description 56
- 239000002184 metal Substances 0.000 claims description 56
- 230000002457 bidirectional effect Effects 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 18
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 4
- 230000005855 radiation Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241001184547 Agrostis capillaris Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
本实用新型公开了一种小型化高增益超高频天线及标签,包括谐振频点调谐结构以及阻抗匹配调谐结构;所述阻抗匹配调谐结构包括设置在内层的折叠短截线结构,所述谐振频点调谐结构包括水平双向折叠偶极子结构和垂直双向折叠偶极子结构;折叠短截线结构的水平相对两侧分别连接水平双向折叠偶极子结构、垂直相对两侧分别连接垂直双向折叠偶极子结构;该超高频天线不同于传统弯曲偶极子结构,可以在满足小尺寸的条件下,有效解决标签天线小型化、高增益、带宽等设计问题。
The utility model discloses a miniaturized high-gain ultra-high frequency antenna and a tag, which include a resonant frequency point tuning structure and an impedance matching tuning structure; the impedance matching tuning structure includes a folded stub structure arranged in an inner layer, and the The resonant frequency point tuning structure includes a horizontal two-way folded dipole structure and a vertical two-way folded dipole structure; the horizontally opposite sides of the folded stub structure are respectively connected to the horizontal two-way folded dipole structure, and the vertically opposite sides are respectively connected to the vertical two-way Folded dipole structure; the UHF antenna is different from the traditional curved dipole structure, and can effectively solve the design problems of tag antenna miniaturization, high gain, and bandwidth under the condition of small size.
Description
技术领域technical field
本实用新型涉及天线技术领域,尤其涉及一种小型化高增益超高频天线及标签。The utility model relates to the technical field of antennas, in particular to a miniaturized high-gain ultra-high frequency antenna and a label.
背景技术Background technique
无线射频识别(Radio Frequency Identification,RFID),是一种利用射频通信实现的非接触式自动识别技术,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的。它包括电子标签(tag)和读写器(reader)两个主要部分,附有编码的标签和读写器通过天线进行无接触数据传输以完成一定距离的自动识别过程。Radio Frequency Identification (RFID) is a non-contact automatic identification technology realized by radio frequency communication. ) to read and write, so as to achieve the purpose of identifying targets and exchanging data. It includes two main parts: electronic tag (tag) and reader (reader). The coded tag and reader perform non-contact data transmission through the antenna to complete the automatic identification process at a certain distance.
RFID电子标签包括标签天线和芯片两部分,其中,标签天线通过无线电磁波信号与识别系统之间建立通信,接收识别系统的命令和数据,并将电子标签芯片存储的目标物体信息传输给识别系统,从而实现目标物体信息的存储、管理和控制;RFID标签天线由于材质与制造工艺不同,分为金属蚀刻天线、印刷天线、镀铜天线等几种;RFID标签天线作为RFID系统的重要组成部分,在实现数据通讯过程中起着关键性作用,因此天线设计是整个RFlD系统应用的关键。The RFID electronic tag includes two parts: the tag antenna and the chip. The tag antenna establishes communication with the identification system through wireless electromagnetic wave signals, receives commands and data from the identification system, and transmits the target object information stored in the electronic tag chip to the identification system. In order to realize the storage, management and control of target object information; RFID tag antennas are divided into metal etching antennas, printed antennas, and copper-plated antennas due to different materials and manufacturing processes; RFID tag antennas are an important part of the RFID system. It plays a key role in the process of realizing data communication, so the antenna design is the key to the application of the whole RFlD system.
其中UHF-RFID标签天线以其工作频率高、天线与读写器交互数据和能量更多的优点,广泛应用于需收集与交互大量信息的领域,如交通运输、仓储物流、物联网、畜牧业等。并且标签天线的全向性为大量信息交互的效率和准确率提供了稳定保障。同时,电子标签天线要想读取距离远、读取效果好,通常需要将电子标签天线的尺寸做大,但是随着电路集成程度越来越高,封装系统以及天线芯片逐渐小型化,使得与其匹配的标签天线可设计的尺寸越来越小,因此,对于如何提高小型化UHF-RFID标签天线的性能也成为人们关注的问题。Among them, the UHF-RFID tag antenna is widely used in fields that need to collect and exchange a large amount of information, such as transportation, warehousing and logistics, Internet of Things, and animal husbandry, due to its high operating frequency and more data and energy interaction between the antenna and the reader. wait. And the omnidirectionality of the tag antenna provides a stable guarantee for the efficiency and accuracy of a large amount of information interaction. At the same time, if the electronic tag antenna wants to have a long reading distance and a good reading effect, it is usually necessary to increase the size of the electronic tag antenna. However, as the degree of circuit integration becomes higher and higher, the packaging system and the antenna chip are gradually miniaturized. The size of the matching tag antenna can be designed smaller and smaller, therefore, how to improve the performance of the miniaturized UHF-RFID tag antenna has also become a problem of concern.
常见的弯偶极子标签天线是通过传统单向弯折技术来实现小型化的,但是这样单向折叠实现的小型化程度有限,而且会导致天线增益以及辐射效率降低等问题。Common bent dipole tag antennas are miniaturized through traditional one-way bending technology, but the degree of miniaturization achieved by such one-way folding is limited, and it will lead to problems such as reduced antenna gain and radiation efficiency.
实用新型内容Utility model content
基于背景技术存在的技术问题,本实用新型提出了一种小型化高增益超高频天线及标签,可以在满足小尺寸的条件下,具有高增益、带宽和紧凑性等特征。Based on the technical problems in the background technology, the utility model proposes a miniaturized high-gain UHF antenna and tag, which can have the characteristics of high gain, bandwidth and compactness under the condition of small size.
本实用新型提出的一种小型化高增益超高频天线,包括谐振频点调谐结构以及阻抗匹配调谐结构;所述阻抗匹配调谐结构包括设置在内层的折叠短截线结构,所述谐振频点调谐结构包括水平双向折叠偶极子结构和垂直双向折叠偶极子结构;折叠短截线结构的水平相对两侧分别连接水平双向折叠偶极子结构、垂直相对两侧分别连接垂直双向折叠偶极子结构。The utility model proposes a miniaturized high-gain UHF antenna, which includes a resonant frequency point tuning structure and an impedance matching tuning structure; the impedance matching tuning structure includes a folded stub structure arranged on the inner layer, and the resonant frequency The point tuning structure includes a horizontal two-way folded dipole structure and a vertical two-way folded dipole structure; the horizontally opposite sides of the folded stub structure are respectively connected to the horizontal two-way folded dipole structure, and the vertically opposite sides are respectively connected to the vertical two-way folded dipole structure. pole structure.
进一步地,所述阻抗匹配调谐结构还包括水平容性负载和垂直容性负载,水平容性负载与水平双向折叠偶极子结构在远离折叠短截线结构的末端连接,垂直容性负载与垂直双向折叠偶极子结构在远离折叠短截线结构的末端连接。Further, the impedance matching tuning structure also includes a horizontal capacitive load and a vertical capacitive load. The two-way folded dipole structure is connected at the end remote from the folded stub structure.
进一步地,所述谐振频点调谐结构还包括第一金属臂、第二金属臂和第三金属臂,第一金属臂设置于折叠短截线结构下方,用于支撑折叠短截线结构,第二金属臂的两端分别与第一金属臂的水平端部、水平双向折叠偶极子结构的端部连接,第三金属臂的两端分别与第一金属臂的垂直端部、垂直双向折叠偶极子结构的端部连接,芯片设置在第一金属臂上。Further, the resonant frequency point tuning structure further includes a first metal arm, a second metal arm and a third metal arm, the first metal arm is arranged under the folded stub structure to support the folded stub structure, the first metal arm The two ends of the second metal arm are respectively connected to the horizontal end of the first metal arm and the end of the horizontal two-way folded dipole structure, and the two ends of the third metal arm are respectively connected to the vertical end of the first metal arm and the vertical two-way folded dipole structure. The ends of the dipole structure are connected, and the chip is arranged on the first metal arm.
进一步地,所述谐振频点调谐结构还包括第一弧形连接臂和第二弧形连接臂,第一弧形连接臂的两端分别与其中一个第一金属臂在靠近折叠短截线结构端部和其中一个垂直双向折叠偶极子结构的端部连接,第二弧形连接臂分别与其中一个第一金属臂在靠近折叠短截线结构端部和另一个垂直双向折叠偶极子结构的端部连接。Further, the resonant frequency point tuning structure also includes a first arc-shaped connecting arm and a second arc-shaped connecting arm, and the two ends of the first arc-shaped connecting arm are respectively connected to one of the first metal arms close to the folded stub structure The end is connected to the end of one of the vertical two-way folded dipole structures, and the second arc-shaped connecting arm is respectively connected to one of the first metal arms near the end of the folded stub structure and the other vertical two-way folded dipole structure end connections.
进一步地,所述第一金属臂和第二金属臂水平放置。Further, the first metal arm and the second metal arm are placed horizontally.
进一步地,水平双向折叠偶极子结构和垂直双向折叠偶极子结构正交设置。Further, the horizontal two-way folded dipole structure and the vertical two-way folded dipole structure are arranged orthogonally.
进一步地,水平双向折叠偶极子结构由垂直双向折叠偶极子结构旋转90度得到。Furthermore, the horizontal two-way folded dipole structure is obtained by rotating the vertical two-way folded dipole structure by 90 degrees.
进一步地,水平双向折叠偶极子结构和垂直双向折叠偶极子结构均为蛇形堆叠结构。Further, both the horizontal bifold folded dipole structure and the vertical bidirectional folded dipole structure are serpentine stacked structures.
进一步地,一种小型化高增益超高频标签,包括基板、天线层和芯片,天线层和芯片均刻蚀在基板上表面,天线层采用如上所述的超高频天线。Further, a miniaturized high-gain UHF tag includes a substrate, an antenna layer and a chip, the antenna layer and the chip are etched on the upper surface of the substrate, and the antenna layer adopts the UHF antenna as described above.
本实用新型提供的一种小型化高增益超高频天线及标签的优点在于:本实用新型结构中提供的一种小型化高增益超高频天线及标签,水平双向折叠偶极子结构和垂直双向折叠偶极子结构加载容性负载的基本结构实现了天线的小型化,通过先调整谐振频点调谐结构中的各个参数,提供不同的等效电容、电感值,来初步实现需要的天线谐振点;再通过调整阻抗匹配调谐结构中各个结构参数,以同时增加天线的输入电阻和电抗,最终能和芯片达到良好的阻抗匹配,实现了标签天线在超高频下更高的增益、带宽以及阻抗匹配特性,不同于传统弯曲偶极子结构,可以在满足小尺寸的条件下,有效解决标签天线小型化、高增益、带宽等设计问题,其在915MHz下具有最大增益,能实现较远的读取范围因此,该超高频天线具有结构简单、比较对称,易于与芯片进行阻抗匹配等特点。The advantages of the miniaturized high-gain UHF antenna and tag provided by the utility model are: the miniaturized high-gain UHF antenna and tag provided in the structure of the utility model, the horizontal bidirectional folded dipole structure and the vertical The basic structure of bidirectional folded dipole structure loaded with capacitive load realizes the miniaturization of the antenna. By first adjusting the parameters in the resonant frequency point tuning structure and providing different equivalent capacitance and inductance values, the required antenna resonance can be preliminarily realized. point; and then by adjusting the various structural parameters in the impedance matching tuning structure, the input resistance and reactance of the antenna can be increased at the same time, and finally a good impedance matching with the chip can be achieved, achieving higher gain, bandwidth and Impedance matching characteristics, different from the traditional bent dipole structure, can effectively solve the design problems of tag antenna miniaturization, high gain, bandwidth, etc. under the condition of small size, it has the maximum gain at 915MHz, and can achieve a long distance Therefore, the UHF antenna has the characteristics of simple structure, relatively symmetrical, and easy impedance matching with the chip.
附图说明Description of drawings
图1为本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;
图2为本实用新型天线的功率回波系数仿真结果示意图;Fig. 2 is the schematic diagram of the power echo coefficient simulation result of the antenna of the present invention;
图3为本实用新型天线的输入阻抗仿真结果示意图;Fig. 3 is the input impedance simulation result schematic diagram of the utility model antenna;
图4为本实用新型天线在915Mhz下XOY面上(φ=all,θ=90°)的增益辐射方向图,其中,φ表示水平方向的方位角,θ表示垂直方向的俯仰角;Fig. 4 is the gain radiation pattern of the utility model antenna on the XOY surface (φ=all, θ=90°) under 915Mhz, wherein, φ represents the azimuth angle in the horizontal direction, and θ represents the pitch angle in the vertical direction;
图5为本实用新型的标签天线在915Mhz下XOZ面上(φ=0,θ=all)的增益辐射方向图;Fig. 5 is the gain radiation pattern of tag antenna of the present invention on the XOZ surface (φ=0, θ=all) under 915Mhz;
其中,1-基板,2-天线层,3-芯片,21-谐振频点调谐结构,22-阻抗匹配调谐结构,211-水平双向折叠偶极子结构,212-垂直双向折叠偶极子结构,213-第一金属臂,214-第二金属臂,215-第三金属臂,216-第一弧形连接臂,217-第二弧形连接臂,221-折叠短截线结构,222-水平容性负载,223-垂直容性负载。Among them, 1-substrate, 2-antenna layer, 3-chip, 21-resonant frequency point tuning structure, 22-impedance matching tuning structure, 211-horizontal two-way folded dipole structure, 212-vertical two-way folded dipole structure, 213-first metal arm, 214-second metal arm, 215-third metal arm, 216-first arc connecting arm, 217-second arc connecting arm, 221-folding stub structure, 222-horizontal Capacitive load, 223 - vertical capacitive load.
具体实施方式Detailed ways
下面,通过具体实施例对本实用新型的技术方案进行详细说明,在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其他方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施的限制。In the following, the technical solution of the utility model is described in detail through specific embodiments, and many specific details are set forth in the following description so as to fully understand the utility model. However, the utility model can be implemented in many other ways different from those described here, and those skilled in the art can make similar improvements without violating the connotation of the utility model, so the utility model is not limited by the specific implementation disclosed below .
如图1至5所示,本实用新型提出的一种小型化高增益超高频天线,包括谐振频点调谐结构21以及阻抗匹配调谐结构22;As shown in Figures 1 to 5, a miniaturized high-gain UHF antenna proposed by the present invention includes a resonant frequency point tuning structure 21 and an impedance matching tuning structure 22;
所述谐振频点调谐结构21包括水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212,所述阻抗匹配调谐结构22包括设置在内层的折叠短截线结构221;折叠短截线结构221的水平相对两侧分别连接水平双向折叠偶极子结构211、垂直相对两侧分别连接垂直双向折叠偶极子结构212。The resonant frequency point tuning structure 21 includes a horizontal two-way folded dipole structure 211 and a vertical two-way folded dipole structure 212, and the impedance matching tuning structure 22 includes a folded stub structure 221 arranged on the inner layer; the folded stub Horizontally opposite sides of the line structure 221 are respectively connected to the horizontal two-way folded dipole structure 211 , and vertically opposite sides are respectively connected to the vertical two-way folded dipole structure 212 .
谐振频点调谐结构21以及阻抗匹配调谐结构22均位于同一方形平面上(介质基板上表面),利用水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212加载容性负载的基本结构实现了天线的小型化,并在此基础上加载容性负载以及利用折叠短截线结构221匹配网络实现了标签天线在超高频下更高的增益、带宽以及阻抗匹配特性,这种不同于传统弯曲偶极子结构的新型结构有效解决了标签天线小型化、高增益、带宽等设计问题,其在915MHz下具有最大增益,能实现较远的读取范围因此,该超高频天线具有结构简单、比较对称,易于与芯片3进行阻抗匹配等特点。The resonant frequency point tuning structure 21 and the impedance matching tuning structure 22 are all located on the same square plane (the upper surface of the dielectric substrate), and the basic structure of using the horizontal bidirectional folded dipole structure 211 and the vertical bidirectional folded dipole structure 212 to load the capacitive load The miniaturization of the antenna is realized, and on this basis, the capacitive load is loaded and the matching network of the folded stub structure 221 is used to realize the higher gain, bandwidth and impedance matching characteristics of the tag antenna at UHF, which is different from The new structure of the traditional curved dipole structure effectively solves the design problems of miniaturization, high gain, and bandwidth of the tag antenna. It has the maximum gain at 915MHz and can achieve a long reading range. Therefore, the UHF antenna has a structure It is simple, relatively symmetrical, and easy to perform impedance matching with the chip 3 .
利用水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212在中心频率915Mhz下会产生更大的电感耦合,具有最大增益,能实现较远的读取范围,从而实现标签天线的小型化,另外水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212均为蛇形堆叠结构。与传统V型结构相比,蛇形结构可以有效减小电长度,在不增大结构尺寸的情况下,降低谐振频率,满足小型化和紧凑型电路的要求。The use of the horizontal two-way folded dipole structure 211 and the vertical two-way folded dipole structure 212 will generate greater inductive coupling at a center frequency of 915Mhz, which has the largest gain and can achieve a longer reading range, thereby realizing the miniaturization of the tag antenna In addition, the horizontal bifold dipole structure 211 and the vertical bifold dipole structure 212 are both serpentine stack structures. Compared with the traditional V-shaped structure, the serpentine structure can effectively reduce the electrical length, reduce the resonance frequency without increasing the structure size, and meet the requirements of miniaturization and compact circuits.
当天线层2与基板1、芯片3配合组成超高频标签时,天线层2和芯片3均刻蚀在基板1上表面,其中天线层2采用本申请的超高频天线,基板1为柔性介质基板,基板1采用PET作为柔性基板的材料,把天线层2用铝膜覆盖到基材PET上表面来实现,覆盖铝膜天线的厚度设置为0.017mm,PET基材的厚度设置为0.05mm,其相对介电常数为3.5,损耗角正切为0.003,柔性介质基板的上表面为金属辐射天线层2,天线层2的上表面连接有芯片3,芯片3与天线层2电连接并设置于第一金属臂213下部的中间位置,以向天线层2馈电,因而本申请不仅能够实现电子标签小型化,而且在满足电子标签肖小型化的同时,能够保持较好的增益和带宽,以及较好的读取距离。When the antenna layer 2 cooperates with the substrate 1 and the chip 3 to form a UHF tag, both the antenna layer 2 and the chip 3 are etched on the upper surface of the substrate 1, wherein the antenna layer 2 adopts the UHF antenna of the present application, and the substrate 1 is flexible Dielectric substrate, the substrate 1 uses PET as the material of the flexible substrate, and the antenna layer 2 is covered with an aluminum film on the upper surface of the substrate PET. The thickness of the covered aluminum film antenna is set to 0.017mm, and the thickness of the PET substrate is set to 0.05mm , the relative permittivity is 3.5, the loss tangent is 0.003, the upper surface of the flexible dielectric substrate is a metal radiation antenna layer 2, the upper surface of the antenna layer 2 is connected with a chip 3, the chip 3 is electrically connected with the antenna layer 2 and arranged on The middle position of the lower part of the first metal arm 213 is used to feed power to the antenna layer 2. Therefore, the present application can not only realize the miniaturization of the electronic tag, but also maintain better gain and bandwidth while satisfying the miniaturization of the electronic tag, and Good reading distance.
在本实施例中,阻抗匹配调谐结构22还包括水平容性负载222和垂直容性负载223,水平容性负载222与水平双向折叠偶极子结构211在远离折叠短截线结构221的末端连接,垂直容性负载223与垂直双向折叠偶极子结构212在远离折叠短截线结构221的末端连接,水平容性负载222与水平双向折叠偶极子结构211构成LC谐振回路,垂直容性负载223与垂直双向折叠偶极子结构212构成LC谐振回路。In this embodiment, the impedance matching tuning structure 22 further includes a horizontal capacitive load 222 and a vertical capacitive load 223, and the horizontal capacitive load 222 is connected to the end of the horizontal bidirectional folded dipole structure 211 away from the folded stub structure 221 , the vertical capacitive load 223 is connected with the vertical two-way folded dipole structure 212 at the end away from the folded stub structure 221, the horizontal capacitive load 222 and the horizontal two-way folded dipole structure 211 form an LC resonant circuit, and the vertical capacitive load 223 and the vertical bidirectional folded dipole structure 212 form an LC resonant circuit.
由于水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212增大了水平辐射的面积,再将水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212正交放置,水平双向折叠偶极子结构211由垂直双向折叠偶极子结构212旋转90度得到,使得标签天线的增益变大,Since the horizontal two-way folded dipole structure 211 and the vertical two-way folded dipole structure 212 increase the area of horizontal radiation, the horizontal two-way folded dipole structure 211 and the vertical two-way folded dipole structure 212 are placed orthogonally, horizontal The two-way folded dipole structure 211 is obtained by rotating the vertical two-way folded dipole structure 212 by 90 degrees, so that the gain of the tag antenna becomes larger,
通过调节内层的折叠短截线结构221的长度和宽度,以及水平容性负载222和垂直容性负载223的长度和宽度,能够同时调整对天线层2的输入电阻以及电抗,以便其与芯片3达到良好的阻抗匹配,增加芯片3与天线层2之间的信号传输效率,能够同时调整对天线层2的电阻与电抗,以实现良好的阻抗匹配,该实施例不仅能够利于超高频天线的小型化与高增益,还利于在需要的频率下和不同的射频识别芯片做进一步的匹配。By adjusting the length and width of the folded stub structure 221 of the inner layer, and the length and width of the horizontal capacitive load 222 and the vertical capacitive load 223, the input resistance and reactance to the antenna layer 2 can be adjusted at the same time, so that it is compatible with the chip 3 achieve good impedance matching, increase the signal transmission efficiency between the chip 3 and the antenna layer 2, and adjust the resistance and reactance to the antenna layer 2 at the same time to achieve good impedance matching. This embodiment can not only benefit the UHF antenna The miniaturization and high gain are also conducive to further matching with different RFID chips at the required frequency.
另外在本实施例中,谐振频点调谐结构21还包括第一金属臂213、第二金属臂214和第三金属臂215,第一金属臂213设置于折叠短截线结构221下方,用于支撑折叠短截线结构221,第二金属臂214的两端分别与第一金属臂213的水平端部、水平双向折叠偶极子结构211的端部连接,第三金属臂215的两端分别与第一金属臂213的垂直端部、垂直双向折叠偶极子结构212的端部连接,所述谐振频点调谐结构21还包括第一弧形连接臂216和第二弧形连接臂217,第一弧形连接臂216的两端分别与其中一个第一金属臂213在靠近折叠短截线结构221端部和其中一个垂直双向折叠偶极子结构212的端部连接,第二弧形连接臂217分别与其中一个第一金属臂213在靠近折叠短截线结构221端部和另一个垂直双向折叠偶极子结构212的端部连接。In addition, in this embodiment, the resonant frequency point tuning structure 21 further includes a first metal arm 213, a second metal arm 214 and a third metal arm 215, and the first metal arm 213 is arranged under the folded stub structure 221 for Supporting the folded stub structure 221, the two ends of the second metal arm 214 are respectively connected to the horizontal end of the first metal arm 213 and the end of the horizontal bidirectional folded dipole structure 211, and the two ends of the third metal arm 215 are respectively Connected to the vertical end of the first metal arm 213 and the end of the vertical bidirectional folded dipole structure 212, the resonant frequency point tuning structure 21 also includes a first arc-shaped connecting arm 216 and a second arc-shaped connecting arm 217, The two ends of the first arc-shaped connecting arm 216 are respectively connected with one of the first metal arms 213 near the end of the folded stub structure 221 and the end of one of the vertical two-way folded dipole structures 212, and the second arc-shaped connection The arms 217 are respectively connected to one of the first metal arms 213 near the end of the folded stub structure 221 and the end of the other vertical bidirectional folded dipole structure 212 .
其中,第一金属臂213和第二金属臂214水平放置,第一金属臂213、第二金属臂214和第三金属臂215、第一弧形连接臂216和第二弧形连接臂217,在水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212的基础上分别加载水平容性负载222和垂直容性负载223构成了一个LC谐振回路,可以通过调整水平容性负载222或垂直容性负载223的长度、宽度以及切角大小等可调整等效电容值,利用LC谐振回路可以改变天线的谐振点,通过调整第一金属臂213和第二金属臂214水平放置,第一金属臂213、第二金属臂214和第三金属臂215、第一弧形连接臂216、第二弧形连接臂217、水平双向折叠偶极子结构211、垂直双向折叠偶极子结构212的参数可以调整等效电感值,利用LC串联谐振可以改变天线的谐振点。Wherein, the first metal arm 213 and the second metal arm 214 are placed horizontally, the first metal arm 213, the second metal arm 214 and the third metal arm 215, the first arc connecting arm 216 and the second arc connecting arm 217, On the basis of the horizontal two-way folded dipole structure 211 and the vertical two-way folded dipole structure 212, respectively load a horizontal capacitive load 222 and a vertical capacitive load 223 to form an LC resonant circuit, which can be adjusted by adjusting the horizontal capacitive load 222 or The length, width, and cut angle of the vertical capacitive load 223 can adjust the equivalent capacitance value, and the resonance point of the antenna can be changed by using the LC resonant circuit. By adjusting the horizontal placement of the first metal arm 213 and the second metal arm 214, the first The metal arm 213, the second metal arm 214 and the third metal arm 215, the first arc-shaped connecting arm 216, the second arc-shaped connecting arm 217, the horizontal two-way folded dipole structure 211, and the vertical two-way folded dipole structure 212 The parameter can adjust the equivalent inductance value, and the resonance point of the antenna can be changed by using LC series resonance.
在本实施例中,所提出的水平双向折叠偶极子结构211、垂直双向折叠偶极子结构212和折叠短截线结构221的RFID标签天线经仿真验证表明,当折叠短截线结构221匹配网络中结构的宽度为0.33mm,其间距为0.5mm,而双向折叠偶极子的宽度为0.2mm,其间距为0.45mm时,天线的输入阻抗为18.5+j249Ω,与芯片3实现了良好的共轭匹配,另外天线的最大增益达到了-3.2dB,辐射强度此时达到最大。In this embodiment, the proposed RFID tag antenna of the horizontal bidirectional folded dipole structure 211, the vertical bidirectional folded dipole structure 212 and the folded stub structure 221 has been verified by simulation, and when the folded stub structure 221 matches The width of the structure in the network is 0.33mm, and its spacing is 0.5mm. When the width of bidirectional folded dipoles is 0.2mm, and the spacing is 0.45mm, the input impedance of the antenna is 18.5+j249Ω, which achieves a good connection with chip 3. Conjugate matching, and the maximum gain of the antenna reaches -3.2dB, and the radiation intensity reaches the maximum at this time.
如图2所示,本实施例中,采用的芯片3工作在915MHz时,芯片3阻抗为14-j252Ω;芯片3的-3dB功率带宽为35MHz,在这个带宽范围内,由芯片3馈送给天线层2的能量损耗较小;如图3所示,在915MHz下,天线层2的输入阻抗为18.5+j249Ω,与芯片3阻抗14-j252Ω的实部和虚部比较接近,因此与芯片3共轭匹配特性良好。As shown in Figure 2, in the present embodiment, when the chip 3 used works at 915MHz, the impedance of the chip 3 is 14-j252Ω; the -3dB power bandwidth of the chip 3 is 35MHz, within this bandwidth range, the chip 3 is fed to the antenna The energy loss of layer 2 is small; as shown in Figure 3, at 915MHz, the input impedance of antenna layer 2 is 18.5+j249Ω, which is relatively close to the real part and imaginary part of chip 3 impedance 14-j252Ω, so it shares the same value with chip 3. Yoke matching characteristics are good.
本实施例提供的超高频天线尺寸限制在基板1的尺寸之下,基板1的外形为方形结构,尺寸限制在长度为33mm,相比较与以往传统的标签天线,具有更小的尺寸。The size of the UHF antenna provided by this embodiment is limited to the size of the substrate 1. The shape of the substrate 1 is a square structure, and the size is limited to a length of 33mm. Compared with the traditional tag antenna in the past, it has a smaller size.
如图4和5所示,在天线小尺寸的限制条件下(长度33mm),本实施例在XOY面以及XOZ面上仍有最大-3.2dB的增益,在满足小型化的同时具有良好的增益,最大能实现约4.1m的读取距离;同时天线在915Mhz下XOY面上和XOZ面上的增益辐射方向具有全向性,可以有效满足复杂环境下的天线宽角度辐射和远距离探测需求。As shown in Figures 4 and 5, under the limited size of the antenna (length 33mm), this embodiment still has a maximum gain of -3.2dB on the XOY plane and the XOZ plane, and has good gain while meeting miniaturization , which can achieve a maximum reading distance of about 4.1m; at the same time, the gain radiation direction of the antenna on the XOY surface and XOZ surface at 915Mhz is omnidirectional, which can effectively meet the requirements of antenna wide-angle radiation and long-distance detection in complex environments.
综上,本实施例通过水平双向折叠偶极子结构211和垂直双向折叠偶极子结构212、第一金属臂213、第二金属臂214和第三金属臂215、第一弧形连接臂216和第二弧形连接臂217,构成谐振频点调谐结构21;通过折叠短截线结构221、水平容性负载222和垂直容性负载223,构成阻抗匹配调谐结构22;而芯片3位于第一金属臂213下部中间。所以,本实施例可以通过先调整谐振频点调谐结构21中的各个参数,提供不同的等效电容、电感值,来初步实现需要的天线谐振点;再通过调整阻抗匹配调谐结构22中各个结构参数,以同时增加天线的输入电阻和电抗,最终能和芯片3达到良好的阻抗匹配。由此,所提出的天线-3dB带宽为35MHz;而且在只有长度为33mm的方形基板尺寸限制下,该天线层2仍能保持较好的增益与更远的读取距离。To sum up, the present embodiment adopts the horizontal two-way folded dipole structure 211 and the vertical two-way folded dipole structure 212, the first metal arm 213, the second metal arm 214 and the third metal arm 215, and the first arc-shaped connecting arm 216. and the second arc-shaped connecting arm 217 to form a resonant frequency point tuning structure 21; by folding the stub structure 221, a horizontal capacitive load 222 and a vertical capacitive load 223, an impedance matching tuning structure 22 is formed; and the chip 3 is located at the first The metal arm 213 is in the middle of the lower part. Therefore, in this embodiment, the required antenna resonance point can be preliminarily realized by first adjusting the parameters in the resonance frequency point tuning structure 21 and providing different equivalent capacitance and inductance values; parameters, so as to increase the input resistance and reactance of the antenna at the same time, and finally achieve good impedance matching with chip 3. Therefore, the -3dB bandwidth of the proposed antenna is 35MHz; and the antenna layer 2 can still maintain a better gain and a longer reading distance under the limitation of a square substrate with a length of only 33mm.
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,根据本实用新型的技术方案及其实用新型构思加以等同替换或改变,都应涵盖在本实用新型的保护范围之内。The above is only a preferred embodiment of the utility model, but the scope of protection of the utility model is not limited thereto. The equivalent replacement or change of the new technical solution and the concept of the utility model shall be covered by the protection scope of the utility model.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320281810.3U CN219534863U (en) | 2023-02-16 | 2023-02-16 | Miniaturized high-gain ultrahigh frequency antenna and tag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320281810.3U CN219534863U (en) | 2023-02-16 | 2023-02-16 | Miniaturized high-gain ultrahigh frequency antenna and tag |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219534863U true CN219534863U (en) | 2023-08-15 |
Family
ID=87628218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320281810.3U Active CN219534863U (en) | 2023-02-16 | 2023-02-16 | Miniaturized high-gain ultrahigh frequency antenna and tag |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN219534863U (en) |
-
2023
- 2023-02-16 CN CN202320281810.3U patent/CN219534863U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201927700U (en) | A dipole antenna and an RFID tag using the antenna | |
CN101593866B (en) | Dielectric resonance UHF RFID label antenna provided with T-shaped matching network | |
JP4825582B2 (en) | Radio tag and radio tag antenna | |
US7262740B2 (en) | Small planar antenna with enhanced bandwidth and small rectenna for RFID and wireless sensor transponder | |
CN103531889B (en) | Small-sized broadband end-on-fire antenna | |
CN102110872A (en) | Radio frequency identification tag antenna applicable to non-metallic surface | |
CN105514599A (en) | Ultrahigh frequency electronic tag antenna | |
CN110783711B (en) | A multi-frequency microstrip slot antenna with a ground plate loaded with a split ring resonator slot | |
CN112151935A (en) | A liquid-insensitive UHF RFID flexible tag antenna | |
CN108039574A (en) | Based on the double-stranded circular polarisation end-fire RFID reader antenna of flattening | |
CN103337706A (en) | Miniaturized, low-profile and three-ring-shaped RFID tag antenna capable of working under ultra high frequency (UHF) band | |
CN103367879B (en) | A kind of Small-size end-fire directional antenna | |
CN113285206A (en) | Miniaturized omnidirectional UHF-RFID (ultra high frequency-radio frequency identification) tag antenna and preparation method thereof | |
CN201194252Y (en) | Linearly polarized micro-strip antenna | |
CN103022649A (en) | Impedance-adjustable tag antenna applied to UHF (ultrahigh frequency) RFID (radio-frequency identification) system | |
Basat et al. | Design of a novel high-efficiency UHF RFID antenna on flexible LCP substrate with high read-range capability | |
CN219534863U (en) | Miniaturized high-gain ultrahigh frequency antenna and tag | |
CN111478018B (en) | A radio frequency identification tag antenna applied in dense environment | |
CN201117815Y (en) | Low cost broad band small volume high gain linear polarization antenna | |
CN216214084U (en) | Flexible circularly polarized RFID (radio frequency identification) tag antenna and RFID tag | |
CN108039557A (en) | High-gain end-fire RFID reader antenna based on flattening helical structure | |
CN112701449A (en) | Ultrahigh frequency high-gain double dipole tag antenna with low profile | |
CN214153176U (en) | Ultrahigh frequency high-gain double dipole tag antenna with low profile | |
CN116190998A (en) | Miniaturized high-gain ultrahigh frequency antenna and tag | |
CN108847522B (en) | Compact RFID antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |