CN219144703U - A Novel Whispering Gallery Mode Microlaser with Stable Structure - Google Patents
A Novel Whispering Gallery Mode Microlaser with Stable Structure Download PDFInfo
- Publication number
- CN219144703U CN219144703U CN202222725979.1U CN202222725979U CN219144703U CN 219144703 U CN219144703 U CN 219144703U CN 202222725979 U CN202222725979 U CN 202222725979U CN 219144703 U CN219144703 U CN 219144703U
- Authority
- CN
- China
- Prior art keywords
- mode
- fiber
- laser
- whispering gallery
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims abstract description 37
- 239000004005 microsphere Substances 0.000 claims abstract description 28
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 238000005253 cladding Methods 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims 2
- 238000003466 welding Methods 0.000 abstract description 5
- 239000003292 glue Substances 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 239000013307 optical fiber Substances 0.000 description 21
- 230000004927 fusion Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002430 laser surgery Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本实用新型专利涉及光纤激光器领域,具体涉及一种结构稳定的新型回音壁模式微激光器,尤其涉及一种用于回音壁模式微激光器的同时可作为光纤传感器件的制备。The utility model patent relates to the field of fiber lasers, in particular to a novel whispering gallery mode micro-laser with stable structure, and especially to a preparation of a whispering gallery mode micro-laser that can be used as an optical fiber sensor.
背景技术Background technique
激光在人们的日常生活中以及工作中都有着非常多的应用,例如激光手术、激光加工、激光测量、激光雷达等。在很多严峻的工作环境下,都需要时刻监测周围空间的温度湿度变化情况,以防止危险的发生;而对于一些精密小型产品的加工,同样也离不开激光。激光器以不同的形式出现在我们生活中的方方面面,给我们的生活带来便利和安全。Laser has many applications in people's daily life and work, such as laser surgery, laser processing, laser measurement, laser radar, etc. In many severe working environments, it is necessary to monitor the temperature and humidity changes in the surrounding space at all times to prevent danger; and for the processing of some precision and small products, lasers are also inseparable. Lasers appear in all aspects of our lives in different forms, bringing convenience and safety to our lives.
随着越来越多的人开始关注激光器领域,不断涌出各种各样的光纤激光器结构。其中,结构的稳定性和高质量因子也引起了不少科研人的追求。目前,基于回音壁模式的微激光器可以实现高质量因子这一特性,但由于有些结构是将微球放置在开放腔中,导致球的位置稍一变动,便会造成激光的性能劣化,不易稳定输出激光。而本实用新型专利提出的利用飞秒激光在单模光纤端面刻槽,并将荧光微球塞入槽中,最后通过熔接机熔接便可形成一个较为稳定的微腔结构,大大提高了器件的稳定性。As more and more people start to pay attention to the field of lasers, various fiber laser structures continue to emerge. Among them, the stability and high quality factor of the structure have also attracted the pursuit of many researchers. At present, micro lasers based on whispering gallery mode can achieve the characteristic of high quality factor, but because some structures place microspheres in open cavities, a slight change in the position of the balls will cause the performance of the laser to deteriorate, making it difficult to stabilize Laser output. However, the utility model patent proposes to use a femtosecond laser to carve grooves on the end face of a single-mode optical fiber, and insert fluorescent microspheres into the grooves. Finally, a relatively stable microcavity structure can be formed by welding with a welding machine, which greatly improves the reliability of the device. stability.
实用新型内容Utility model content
本实用新型针对现有技术不足,提供一种结构稳定的新型回音壁模式微激光器,并克服光纤传输损耗大的问题。在制备材料方面,使用价格低廉的单模光纤和聚乙烯荧光微球,降低了研究的成本。其次,基于微球对温度敏感这一特性,该装置还可用于温度传感器。The utility model aims at the deficiencies of the prior art, provides a novel whispering gallery mode micro-laser with stable structure, and overcomes the problem of large optical fiber transmission loss. In terms of materials preparation, the use of low-cost single-mode optical fibers and polyethylene fluorescent microspheres reduces the cost of research. Second, based on the temperature-sensitive properties of the microspheres, the device can also be used as a temperature sensor.
为了实现上述目的,本实用新型通过下述技术方案加以实现:In order to achieve the above object, the utility model is realized through the following technical solutions:
一种结构稳定的新型回音壁模式微激光器,包括半导体泵浦源和微腔结构;所述半导体泵浦源为固体激光器,波长为405nm;所述微腔结构包括单模光纤、正方体槽、荧光微球;所述单模光纤为普通单模光纤,包括单模光纤4和单模光纤7;所述正方体槽在单模光纤4端面位于纤芯上侧紧邻纤芯处用飞秒激光刻出;所述荧光微球为聚乙烯材质,利用熔接机的步进操作,可以将荧光微球慢慢送至正方体槽中,并用紫外(UV)胶将其固定,随后用紫外灯照射30分钟使荧光微球固定在正方体槽内。A novel whispering gallery mode micro-laser with stable structure, including a semiconductor pump source and a microcavity structure; the semiconductor pump source is a solid-state laser with a wavelength of 405nm; the microcavity structure includes a single-mode fiber, a cube groove, a fluorescent microspheres; the single-mode fiber is an ordinary single-mode fiber, including a single-
所述单模光纤其纤芯直径和光纤直径分别为9μm和125μm。The core diameter and fiber diameter of the single-mode optical fiber are 9 μm and 125 μm, respectively.
飞秒激光在单模光纤端面纤芯上侧紧邻纤芯处刻出的正方体槽的长宽高分别在35μm-45μm范围内。The length, width and height of the square grooves carved by the femtosecond laser on the upper side of the core of the single-mode fiber end face and adjacent to the core are respectively in the range of 35 μm-45 μm.
所述荧光聚乙烯微球的直径大小在27μm-32μm范围内。The diameter of the fluorescent polyethylene microspheres is in the range of 27 μm-32 μm.
所述荧光聚乙烯微球的发射波长大约在515nm。The emission wavelength of the fluorescent polyethylene microspheres is about 515nm.
本实用新型与现有技术相比的有益效果是:The beneficial effects of the utility model compared with the prior art are:
1、微腔结构选用价格低廉的普通单模光纤和聚乙烯荧光微球,具有制作简单,成本低和结构稳定的优点。基于荧光微球对温度敏感这一特性,该装置还可用于温度传感器。1. The microcavity structure adopts low-cost ordinary single-mode optical fiber and polyethylene fluorescent microspheres, which have the advantages of simple fabrication, low cost and stable structure. Based on the characteristic that the fluorescent microspheres are sensitive to temperature, the device can also be used as a temperature sensor.
2、利用飞秒激光刻槽并将微球置于槽中,再与另一根普通单模光纤进行放电熔接形成的回音壁模式微激光器,具有操作简便,原理突出,易同其他应用结合的特点。又因回音壁模式具有超高的质量因子(Q)值和较小的模式体积,且通带较窄,数据常常有着较高的准确性。2. Using a femtosecond laser to carve grooves and place microspheres in the grooves, and then discharge and weld with another ordinary single-mode fiber to form a whispering gallery mode micro-laser, which is easy to operate, outstanding in principle, and easy to combine with other applications features. And because the whispering gallery mode has an ultra-high quality factor (Q) value, a small mode volume, and a narrow passband, the data often have high accuracy.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或技术方案,下面结合附图对本实用新型作进一步说明。In order to illustrate the embodiments or technical solutions of the utility model more clearly, the utility model will be further described below in conjunction with the accompanying drawings.
图1为本实用新型的实施应用系统示意图。Fig. 1 is a schematic diagram of the implementation and application system of the utility model.
图2为本实用新型回音壁模式微激光器结构示意图。Fig. 2 is a structural schematic diagram of the whispering gallery mode micro-laser of the present invention.
图3为本实用新型飞秒开槽后的腐蚀抛光型单模光纤示意图。Fig. 3 is a schematic diagram of the corroded and polished single-mode optical fiber after femtosecond slotting of the utility model.
图中,1.半导体泵浦源,2.微腔结构,3.光谱分析仪,4.单模光纤,4(a).单模光纤包层,4(b).单模光纤纤芯,5.飞秒激光在单模光纤一端刻出的正方体槽,6.荧光微球,7.单模光纤,7(a).单模光纤包层,7(b).单模光纤纤芯。In the figure, 1. Semiconductor pump source, 2. Microcavity structure, 3. Spectrum analyzer, 4. Single-mode fiber, 4(a). Single-mode fiber cladding, 4(b). Single-mode fiber core, 5. Cube groove carved by femtosecond laser at one end of single-mode fiber, 6. Fluorescent microspheres, 7. Single-mode fiber, 7(a). Single-mode fiber cladding, 7(b). Single-mode fiber core.
具体实施方式Detailed ways
下面结合附图及具体实施例对本实用新型进行详细说明,但不作为对本实用新型的限定。The utility model will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the utility model.
本实用新型的实施应用系统如图1所示,1为半导体泵浦源、2为微腔结构、3为光谱分析仪。其连接方式为:半导体泵浦源1与微腔结构2的一端连接,微腔结构2的另一端与光谱分析仪3相连接。The implementation and application system of the utility model is shown in Figure 1, 1 is a semiconductor pump source, 2 is a microcavity structure, and 3 is a spectrum analyzer. The connection method is as follows: the
图2所示为本实用新型回音壁模式微激光器结构示意图,由单模光纤4、微槽5、荧光微球6、单模光纤7构成。其中,单模光纤4包括单模光纤包层4(a),单模光纤纤芯4(b)。其中微槽5的长宽高大小要比荧光微球6的直径大,单模光纤7包括单模光纤包层7(a),单模光纤纤芯7(b)。FIG. 2 is a schematic structural diagram of the whispering gallery mode micro-laser of the present invention, which is composed of a single-mode
图3所示为本实用新型飞秒开槽后的腐蚀抛光型单模光纤示意图,由单模光纤4、微槽5构成。其中,单模光纤4包括单模光纤包层4(a),单模光纤纤芯4(b)。FIG. 3 is a schematic diagram of a corroded and polished single-mode optical fiber after femtosecond slotting of the utility model, which is composed of a single-mode
所述回音壁模式微激光器的制作方式及步骤是:第一步:先用飞秒激光在单模光纤纤芯端面的上侧紧邻纤芯处刻一个正方体槽,在刻槽期间,飞秒激光的能量调至500nJ,功率调成5mW,刻槽完成后将氢氟酸(HF)滴在微槽处,待腐蚀1分钟左右,用清水冲洗干净,便可获得一个比较光滑的微槽通道5,如图3所示;第二步:将刻好的微槽通道结构放置在熔接机的一端,将沾有荧光微球6的锥形尖端光纤放置在熔接机的另一端,利用熔接机的步进操作,可以将荧光微球慢慢送至微槽中,并用紫外(UV)胶将球固定,随后用紫外灯照射30分钟使结构固化;第三步:取下锥形光纤尖端,将另一根单模光纤7放置在熔接机的另一端,借助熔接机将载有荧光微球的微槽结构与另一根单模光纤7进行放电熔接,熔接完成后便可形成完整的微激光器结构,如图2所示;其中熔接机的放电量调节为“60bit”模式,放电时间为1300ms。The manufacturing method and steps of the whispering gallery mode micro-laser are: the first step: first use a femtosecond laser to engrave a cube groove next to the fiber core on the upper side of the end face of the single-mode optical fiber core, and during the groove, the femtosecond laser The energy is adjusted to 500nJ, the power is adjusted to 5mW, after the groove is completed, drop hydrofluoric acid (HF) on the microgroove, wait for about 1 minute to corrode, rinse with clean water, and a relatively smooth microgroove channel can be obtained5 , as shown in Figure 3; the second step: place the engraved microgroove channel structure on one end of the fusion splicer, place the tapered tip optical fiber coated with fluorescent microspheres 6 on the other end of the fusion splicer, and use the fusion splicer Step-by-step operation, the fluorescent microspheres can be slowly sent to the microgroove, and the balls are fixed with ultraviolet (UV) glue, and then irradiated with a UV lamp for 30 minutes to cure the structure; the third step: remove the tapered fiber tip, and place the Another single-mode
结合图1至图3,介绍具体的工作原理:将半导体泵浦源接入微腔结构后,在单模光纤4纤芯中传播的光会通过倏逝场耦合到荧光微球中,荧光微球不仅充当谐振器的角色,而且荧光微球中的增益介质在405nm的光泵浦下,会使基态的电子跃迁至激发态,这时处于激发态的电子受到外界信号光的作用,进行受激辐射跃迁至基态。在此过程中释放出与入射信号光子特性相同的光子,最终使得光信号的放大,会发射出大约在515nm的激光。Combined with Figure 1 to Figure 3, the specific working principle is introduced: after the semiconductor pump source is connected to the microcavity structure, the light propagating in the single-
以上所述的具体实施例,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,应被理解的是,以上所述仅为本实用新型的具体实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the utility model in detail. It should be understood that the above descriptions are only specific embodiments of the utility model and are not intended to limit the utility model. For the utility model, any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the utility model shall be included in the protection scope of the utility model.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222725979.1U CN219144703U (en) | 2022-10-17 | 2022-10-17 | A Novel Whispering Gallery Mode Microlaser with Stable Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222725979.1U CN219144703U (en) | 2022-10-17 | 2022-10-17 | A Novel Whispering Gallery Mode Microlaser with Stable Structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219144703U true CN219144703U (en) | 2023-06-06 |
Family
ID=86565265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202222725979.1U Active CN219144703U (en) | 2022-10-17 | 2022-10-17 | A Novel Whispering Gallery Mode Microlaser with Stable Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN219144703U (en) |
-
2022
- 2022-10-17 CN CN202222725979.1U patent/CN219144703U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101770132B (en) | Visible light enhanced supercontinuum laser system with all-fiber structure | |
US20100103958A1 (en) | Optical fiber with multi section core | |
CN203617539U (en) | Passively Q-switched picosecond laser seed light source | |
CN103825164A (en) | High average power full optical fiber intermediate infrared supercontinuum light source | |
CN100428585C (en) | Dual Wavelength Pulsed Fiber Laser System | |
CN101436748A (en) | Optical waveguide laser, optical waveguide amplifier and preparation method thereof | |
CN101552425A (en) | Lasers that output radially polarized beams | |
CN104092087A (en) | A High Energy Short Pulse Fiber Laser Amplifier | |
CN107370012A (en) | Two-dimension nano materials mode-locked all-fiber laser with end face reflection structure | |
CN100480829C (en) | Double covered optical fiber side-pumping coupler grating and realization method thereof | |
CN111580216B (en) | A planar optical waveguide chip and waveguide type single-mode fiber laser | |
CN219144703U (en) | A Novel Whispering Gallery Mode Microlaser with Stable Structure | |
CN104852261A (en) | High-power all-fiber MOPA structure superfluorescence fiber light source based on tandem pumping | |
CN107946893A (en) | The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode | |
CN100428588C (en) | Microfiber Ring Junction Dye Laser Using Evanescent Wave Coupling Gain | |
CN1581607A (en) | Wavelength tunable dual-cladding-layer optical fiber laser | |
US6427491B1 (en) | Method for making fibers having cores with non-circular cross-sections | |
CN101329490A (en) | High Power Frequency Converter of Small-Core Bundled Highly Nonlinear Photonic Crystal Fibers | |
CN109814207B (en) | Echo wall resonator with optical fiber embedded with microsphere on side surface | |
CN104577652A (en) | Array fiber laser device, amplifier and manufacturing methods of multi-core fiber | |
CN209298558U (en) | A hundred-watt high-power fully polarization-maintaining optical fiber amplifier | |
CN112563873A (en) | Solution of high-energy Q-switched mode-locked multimode fiber laser | |
CN112117628A (en) | Optical fiber laser amplifier with high stimulated Brillouin scattering threshold value and high conversion efficiency | |
CN201038594Y (en) | Micro optical fiber ring junction dye laser using evanescent wave coupling gain | |
JP2017073577A (en) | Element for amplification of light and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |