CN219119371U - 一种集中式地下抽水压气储能电站 - Google Patents

一种集中式地下抽水压气储能电站 Download PDF

Info

Publication number
CN219119371U
CN219119371U CN202223495187.6U CN202223495187U CN219119371U CN 219119371 U CN219119371 U CN 219119371U CN 202223495187 U CN202223495187 U CN 202223495187U CN 219119371 U CN219119371 U CN 219119371U
Authority
CN
China
Prior art keywords
pressure
energy storage
underground
vertical shaft
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202223495187.6U
Other languages
English (en)
Inventor
王鸿振
陈平志
韩月
刘宁
李高会
郑晨一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Huadong Engineering Corp Ltd
Original Assignee
PowerChina Huadong Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Huadong Engineering Corp Ltd filed Critical PowerChina Huadong Engineering Corp Ltd
Priority to CN202223495187.6U priority Critical patent/CN219119371U/zh
Application granted granted Critical
Publication of CN219119371U publication Critical patent/CN219119371U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本实用新型提供了一种集中式地下抽水压气储能电站,包括多组埋设于水库侧边地下的地下储能单元,单组地下储能单元包括高压竖井、水气共容竖井以及连接管道,高压竖井和水气共容竖井下方通过连接管道相互连通,高压竖井的顶部与补气单元连接,水气共容竖井的顶部通过输水管道连接至抽水蓄能机组和水库,所述抽水蓄能机组连接输电单元。本实用新型结合了抽水蓄能和压缩空气储能的优势,减小了高压气体与水面接触面积,并增设补气装置,具有机组技术成熟、储气保压效果好的优点。

Description

一种集中式地下抽水压气储能电站
技术领域
本实用新型涉及新能源储能技术领域,具体涉及一种集中式地下抽水压气储能电站。
背景技术
以光伏、风电为主的清洁新能源在我国电力系统中占据主要地位。但由于太阳能和风力具有波动性大、间歇性强等问题,新能源发电的波动性较大,对电网的消纳能力提出了很大挑战。发展电源侧储能是解决上述问题的关键所在。抽水蓄能电站是一种比较成熟的大规模储能方式,能源转换效率一般可达到75%左右;其主要缺点在于选址难度较大,需要在一定距离内建设两个具有一定高差的水库。压缩空气储能是近年兴起的一种长时储能技术,其对选址的要求较低;但其弊端在于机组设备昂贵,单位装机建设费用和度电成本较高。
为了解决抽水蓄能和压缩空气储能的弊端,中国专利公开号CN 102797613A,公开日2012年11月28日,实用新型创造的名称为一种抽水压缩空气储能系统;该申请案公开了一种通过高压气罐和蓄水池储能的系统,该系统在用电低谷时通过水泵将蓄水池的水压入高压罐内,然后在用电高峰时,高压罐内的气体将水压出,驱动水轮机并带动发电机发电。其不足之处在于高压气体与水面接触面积大,高压空气中的大量氧气、二氧化碳等会部分溶解于水体中,而且高压气罐容积一般较小,而且未设置补气装置,导致难以保持长时间的高压状态,储气效果难以保证。
实用新型内容
针对现有技术中存在的不足,本实用新型的目的在于提供一种集中式地下抽水压气储能电站。本实用新型结合了抽水蓄能和压缩空气储能的优势,减小高压气体与水面接触面积,并增设补气装置,具有机组技术成熟、储气保压效果好的优点。
为解决上述技术问题,本实用新型通过下述技术方案实现:
一种集中式地下抽水压气储能电站,其特征在于:包括多组埋设于水库侧边地下的地下储能单元,单组地下储能单元包括高压竖井、水气共容竖井以及连接管道,高压竖井和水气共容竖井下方通过连接管道相互连通,高压竖井的顶部与补气单元连接,水气共容竖井的顶部通过输水管道连接至抽水蓄能机组和水库,所述抽水蓄能机组连接输电单元。
进一步的:多组地下储能单元在水库的侧边呈放射性排布设置,多组地下储能单元均与补气单元连接,所述抽水蓄能机组设置多组,多组抽水蓄能机组与多组地下储能单元一一对应连接。
进一步的:所述抽水蓄能机组通过电缆连接至变压站,变压站与外部电网连接。
进一步的:所述连接管道中部设有高压控制阀,所述输水管道与所述水气共容竖井连接处设有低压保压阀。
进一步的:所述补气单元包括补气管道、补气监测阀和补气压缩机,所述补气监测阀设置在高压竖井的顶部,并通过补气管道连接至补气压缩机。
进一步的:水库调节库容V1,应满足大于所述N个水气共容竖井的容积V2,即:
V1≥NV2 (1)
所述高压竖井容积为V3,应满足:
V2≥2V3 (2)
进一步的:所述高压竖井的顶部埋深应满足竖井上部圆台的重力大于内压导致的上抬力的3倍,即:
ρgVc>3P2Ac (3)
式中ρ为所述高压竖井的上方岩石平均密度,Vc为所述高压竖井的上方土台的体积,P2为高压保压状态的压强,Ac为所述高压竖井截面积,其中:
Figure BDA0004019576170000021
Figure BDA0004019576170000022
式中D为所述高压竖井的直径,H3为所述高压竖井的埋深。
进一步的:所述地下储能单元所处围岩类别应在II类及以上;各高压竖井之间的间距L应在5倍高压竖井洞径D以上,即:
Lij≥5D i,j=1~N;i≠j (6)
本实用新型与现有技术相比,具有以下优点及有益效果:
(1)本实用新型采用地下竖井进行高压储能,克服了传统抽水蓄能电站选址的地形限制,适用范围广泛。
(2)采用双竖井方式,将高压状态下的气体与水体隔离开,仅通过连接管道和阀门连接,水气接触面积小,高压空气的溶解速度小;同时增设补气单元,确保高压竖井的储气保压效果好。
(3)地下竖井位置选择限制少,所需输水管道长度小,压力损失小,储能效率高。
(4)电站主机采用抽水蓄能机组,降低了压缩空气储能的机组设备成本,且技术更加成熟可靠。
附图说明
图1为本实用新型的一种集中式地下抽水压气储能电站的平面布置示意图;
图2为本实用新型的一种集中式地下抽水压气储能电站的剖面示意图;
图3为本实用新型的一种集中式地下抽水压气储能电站的运行方式示意图;
图4为本实用新型的一种集中式地下抽水压气储能电站的抗抬稳定示意图。
附图标记:1-水库、2-抽水蓄能机组、3-地下储能单位、4-输电单元、5-补气单元、6-输水管道、301-高压竖井、302-水气共容竖井、303-连接管道、304-高压控制阀、305-低压保压阀、401-电缆、402-变压站、501-补气管道、502-补气监测阀、503-补气压缩机。
具体实施方式
为了使本领域的技术人员更好地理解本实用新型的技术方案,下面结合具体实施例对本实用新型的优选实施方案进行描述,但是应当理解,附图仅用于示例性说明,不能理解为对本实用新型的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本实用新型的限制。
下面结合附图和实施例对本实用新型作进一步的说明,但并不作为对本实用新型限制的依据。
如图1至4所示,一种集中式地下抽水压气储能电站,包括多组埋设于水库侧边地下的地下储能单元3,单组地下储能单元3包括高压竖井301、水气共容竖井302以及连接管道303,高压竖井301和水气共容竖井302下方通过连接管道303相互连通,高压竖井301的顶部与补气单元5连接,水气共容竖井302的顶部通过输水管道6连接至抽水蓄能机组2和水库1,所述抽水蓄能机组2连接输电单元4。所述抽水蓄能机组2采用变转速可逆式水轮机组,以满足在不同压力状态下的运行需求。
多组地下储能单元3在水库1的侧边呈放射性排布设置,多组地下储能单元3均与补气单元5连接;所述抽水蓄能机组2设置多组,与多组地下储能单元3一一对应连接。
所述抽水蓄能机组2通过电缆401连接至变压站402,变压站402与外部电网连接。
所述连接管道303中部设有高压控制阀304,所述输水管道6与所述水气共容竖井302连接处设有低压保压阀305。
所述补气单元5包括补气管道501、补气监测阀502和补气压缩机503,所述补气监测阀502设置在高压竖井301的顶部,并通过补气管道501连接至补气压缩机503。
水库调节库容V1,应满足大于所述N个水气共容竖井的容积V2,即:
V1≥NV2 (1)
所述高压竖井容积为V3,应满足:
V2≥2V3 (2)
所述高压竖井的顶部埋深应满足竖井上部圆台的重力大于内压导致的上抬力的3倍,即:
ρgVc>3P2Ac (3)
式中ρ为所述高压竖井的上方岩石平均密度,Vc为所述高压竖井的上方土台的体积,P2为高压保压状态的压强,Ac为所述高压竖井截面积,其中:
Figure BDA0004019576170000041
Figure BDA0004019576170000051
式中D为所述高压竖井的直径,H3为所述高压竖井的埋深。
所述地下储能单元3所处围岩类别应在II类及以上;各高压竖井301之间的间距L应在5倍高压竖井洞径D以上,即:
Lij≥5D i,j=1~N;i≠j (6)
本实用新型还提供了一种集中式地下抽水压气储能电站的运行方式,采用上述任一所述的一种集中式地下抽水压气储能电站,所述运行方式包括四种运行状态:储能运行状态、释能运行状态、低压保压状态和高压保压状态;
设在初始时段,电站处于低压保压状态;在新能源发电高峰时,根据电网调控需求,则启动进入储能运行状态;当达到预定压强后,电站进入高压保压状态;在新能源发电低谷时,根据电网调控需求,启动进入释能运行状态;当达到预定压强后,电站进入低压保压状态;如此循环往复;
(1)高压保压状态:
打开所述高压控制阀304和低压保压阀305,外部电网通过所述变压站402给处于水泵状态的所述抽水蓄能机组2供电,通过所述输水管道6将所述水库1的水体抽至所述水气共容竖井302,此时所述水气共容竖井302和高压竖井301内的空气被压缩,并通过所述连接管道303不断储存至所述高压竖井301,直到水气交界面经过所述高压控制阀304,此时高压竖井301内气体达到预定压强,关闭低压保压阀305和高压控制阀304,系统进入高压保压状态;
(2)低压保压状态:
所述高压竖井301内气体膨胀做功,推动所述水气共容竖井302的水体进入所述输水管道6,带动抽水蓄能机组1发电,并通过所述变压站402进入电网,同时水体注入所述水库1;待气体充满所述水气共容竖井302,水气交界面达到所述输水管道6底部高程,关闭所述低压保压阀门305,进入低压保压状态。
所述的低压保压状态的压强P1,应满足:
P1≥H1-H2 (7)
其中,H1为所述水库的最大水面高程,H2为所述水气共容竖井的顶部高程;
所述的补气监测阀502具有自动监测和开闭功能,当处在高压保压状态的高压竖井301压强下降2%时,自动发出低压预警,启动所述补气压缩机503,通过补气维持高压竖井301内压强。
在本实施例中,所述水库1的调节库容V3为200万m3;所述水气共容竖井302直径24m,高度为220m,容积V2为10万m3;所述高压竖井301直径为12m,总高度220m,容积V3为2.5万m3。所述低压保压状态的压强P1为2MPa,在等温压缩情况下,计算可得所述高压保压状态的压强P2为10MPa。
在本实施例中,一种集中式地下抽水压气储能电站所处围岩类别为I类,五个地下储能单元3高压竖井301之间的间距为80m,大于5倍高压竖井洞径,可满足高压竖井301的抗内压稳定。
在本实施例中,一种集中式地下抽水压气储能电站共有四种运行状态:储能运行状态、释能运行状态、低压保压状态和高压保压状态,如图4所示。在投入运行后,电站处于低压保压状态,P1=2MPa;在新能源发电高峰时,根据电网调控需求,启动进入储能运行状态;当压强增大到10MPa后,电站进入高压保压状态;在新能源发电低谷时,根据电网调控需求,启动进入释能运行状态;当压强下降到2MPa后,电站进入低压保压状态;如此循环往复。
在本实施例中,以地面高程为0高程基准,所述水库1的最大水面高程为-5.00m;所述水气共容竖井302和所述高压竖井301的顶部高程为-120.00m;所述低压保压状态的压强P1为2MPa,可满足在释能状态的运行压力需求。
在本实施例中,高压竖井301的抗抬稳定分析如图3所示,高压竖井301上方埋深H3为120m,上覆岩石平均密度为2400kg/m3;计算可得高压竖井301上部圆台的重力为2.53×107kN,大于内压导致的上抬力1.13×106kN的3倍,可保证抗抬升稳定。
在本实施例中,所述补气阀门502具有自动监测和开闭功能,当高压竖井301在高压保压状态的压强P2由于泄露、溶解等原因下降到9.8MPa以下时,可触发低压预警,补气压缩机503自动启动补气,以维持洞内压强。
依据本实用新型的描述及附图,本领域技术人员很容易制造或使用本实用新型的一种集中式地下抽水压气储能电站,并且能够产生本实用新型所记载的积极效果。
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型做任何形式上的限制,凡是依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本实用新型的保护范围之内。

Claims (8)

1.一种集中式地下抽水压气储能电站,其特征在于:包括多组埋设于水库侧边地下的地下储能单元(3),单组地下储能单元(3)包括高压竖井(301)、水气共容竖井(302)以及连接管道(303),高压竖井(301)和水气共容竖井(302)下方通过连接管道(303)相互连通,高压竖井(301)的顶部与补气单元(5)连接,水气共容竖井(302)的顶部通过输水管道(6)连接至抽水蓄能机组(2)和水库(1),所述抽水蓄能机组(2)连接输电单元(4)。
2.根据权利要求1所述的一种集中式地下抽水压气储能电站,其特征在于:多组地下储能单元(3)在水库(1)的侧边呈放射性排布设置,多组地下储能单元(3)均与补气单元(5)连接,所述抽水蓄能机组(2)设置多组,多组抽水蓄能机组(2)与多组地下储能单元(3)一一对应连接。
3.根据权利要求1所述的一种集中式地下抽水压气储能电站,其特征在于:所述抽水蓄能机组(2)通过电缆(401)连接至变压站(402),变压站(402)与外部电网连接。
4.根据权利要求1所述的一种集中式地下抽水压气储能电站,其特征在于:所述连接管道(303)中部设有高压控制阀(304),所述输水管道(6)与所述水气共容竖井(302)连接处设有低压保压阀(305)。
5.根据权利要求1所述的一种集中式地下抽水压气储能电站,其特征在于:所述补气单元(5)包括补气管道(501)、补气监测阀(502)和补气压缩机(503),所述补气监测阀(502)设置在高压竖井(301)的顶部,并通过补气管道(501)连接至补气压缩机(503)。
6.根据权利要求1~5中任一所述的一种集中式地下抽水压气储能电站,其特征在于:水库调节库容V1,应满足大于N个水气共容竖井的容积V2,其中,N为水气共容竖井的数量,即:
V1≥NV2
所述高压竖井容积为V3,应满足:
V2≥2V3
7.根据权利要求1~5中任一所述的一种集中式地下抽水压气储能电站,其特征在于:所述高压竖井的顶部埋深应满足竖井上部圆台的重力大于内压导致的上抬力的3倍,即:
ρgVc>3P2Ac
式中ρ为所述高压竖井的上方岩石平均密度,Vc为所述高压竖井的上方土台的体积,P2为高压保压状态的压强,Ac为所述高压竖井截面积,其中:
Figure QLYQS_1
Figure QLYQS_2
式中D为所述高压竖井的直径,H3为所述高压竖井顶部的埋深。
8.根据权利要求1~5中任一所述的一种集中式地下抽水压气储能电站,其特征在于:所述地下储能单元(3)所处围岩类别应在II类及以上;各高压竖井(301)之间的间距L应在5倍高压竖井洞径D以上,即:
Lij≥5D i,j=1~N;i≠j。
CN202223495187.6U 2022-12-27 2022-12-27 一种集中式地下抽水压气储能电站 Active CN219119371U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202223495187.6U CN219119371U (zh) 2022-12-27 2022-12-27 一种集中式地下抽水压气储能电站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202223495187.6U CN219119371U (zh) 2022-12-27 2022-12-27 一种集中式地下抽水压气储能电站

Publications (1)

Publication Number Publication Date
CN219119371U true CN219119371U (zh) 2023-06-02

Family

ID=86533015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202223495187.6U Active CN219119371U (zh) 2022-12-27 2022-12-27 一种集中式地下抽水压气储能电站

Country Status (1)

Country Link
CN (1) CN219119371U (zh)

Similar Documents

Publication Publication Date Title
CN108916105B (zh) 一种恒压压缩空气储能装置
CN112065635B (zh) 一种基于废弃矿井的地下恒压压缩空气复合抽水储能系统及方法
CN108757282B (zh) 海上无坝抽水压缩空气储能系统及方法
CN102619668A (zh) 恒压水-气共容舱电力储能系统
CN102434362A (zh) 水-气共容舱电力储能系统
CN112065633B (zh) 一种以废弃矿井为储能容器的地下抽水蓄能系统及方法
CN113931693A (zh) 综合物理储能系统
CN114458572A (zh) 一种重力与压缩空气相结合的储能系统及其工作方法
CN111322113A (zh) 一种后采矿废弃矿井地下水库梯度抽水储能系统
CN219119371U (zh) 一种集中式地下抽水压气储能电站
CN107445250B (zh) 一种水锤泵增压的潮汐聚能反渗透海水淡化系统和方法
CN116085171A (zh) 双洞式抽水压缩空气蓄能系统
JP2015004355A (ja) 浮沈体式動力発生装置
CN116146409A (zh) 一种集中式地下抽水压气储能电站及其运行方式
CN107387303A (zh) 一种组合笼架式海浪发电装置
CN218563790U (zh) 一种废弃矿井抽水蓄能开发利用系统
CN115142831B (zh) 一种利用盐穴储气库卤水余压驱动mvr制盐的方法
CN114542946B (zh) 一种利用地下空间压水储能发电的方法
CN214787795U (zh) 一种漂浮式海浪能动力收集发电平台
CN218844474U (zh) 双洞式抽水压缩空气蓄能系统
CN114961856A (zh) 一种利用废弃淹井煤矿进行水封压气蓄能的方法
CN114629169A (zh) 一种废弃地下空间压缩空气储能系统及方法
CN203717249U (zh) 靠钢结构复合塔体提供稳定电源的风力发电系统
CN206592243U (zh) 一种风力抽水蓄能发电装置
CN217682118U (zh) 一种通过气泵提升水势能的水重力储能装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant