CN219031892U - A sulfur autotrophic denitrification moving bed - Google Patents
A sulfur autotrophic denitrification moving bed Download PDFInfo
- Publication number
- CN219031892U CN219031892U CN202222334113.8U CN202222334113U CN219031892U CN 219031892 U CN219031892 U CN 219031892U CN 202222334113 U CN202222334113 U CN 202222334113U CN 219031892 U CN219031892 U CN 219031892U
- Authority
- CN
- China
- Prior art keywords
- reactor
- denitrification
- moving bed
- water inlet
- packing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 54
- 239000011593 sulfur Substances 0.000 title claims abstract description 54
- 230000001651 autotrophic effect Effects 0.000 title claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 99
- 238000012856 packing Methods 0.000 claims abstract description 65
- 239000000945 filler Substances 0.000 claims abstract description 64
- 230000002572 peristaltic effect Effects 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 63
- 238000000034 method Methods 0.000 abstract description 36
- 239000010865 sewage Substances 0.000 abstract description 34
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 31
- 230000008569 process Effects 0.000 abstract description 25
- 238000009825 accumulation Methods 0.000 abstract description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 16
- 238000012546 transfer Methods 0.000 abstract description 10
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 8
- 239000002245 particle Substances 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 5
- 230000006872 improvement Effects 0.000 abstract description 4
- 239000005431 greenhouse gas Substances 0.000 abstract description 3
- 230000001580 bacterial effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 26
- 241000894006 Bacteria Species 0.000 description 19
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 17
- 238000011001 backwashing Methods 0.000 description 16
- 238000009826 distribution Methods 0.000 description 12
- 238000005056 compaction Methods 0.000 description 11
- 239000010963 304 stainless steel Substances 0.000 description 9
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 239000002351 wastewater Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000012851 eutrophication Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 2
- 239000011028 pyrite Substances 0.000 description 2
- 229910052683 pyrite Inorganic materials 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 241001164579 Sulfurimonas Species 0.000 description 1
- 241000605118 Thiobacillus Species 0.000 description 1
- 241001509286 Thiobacillus denitrificans Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000005422 algal bloom Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及污水深度脱氮技术领域,具体涉及硫自养反硝化填充式床层滤池脱氮方法。The utility model relates to the technical field of deep denitrification of sewage, in particular to a denitrification method for a sulfur autotrophic denitrification packed bed filter.
背景技术Background technique
近年来,随着我国经济的发展和对水资源保护的重视,监管部门及各行业对水处理标准都在逐渐提高,主要表现在对给水水质和废水排放的高要求,这使得对水处理系统的投资和需求都大幅增加。与此同时,各类废水和生活污水的排放不断增加,水域环境严重污染,使得河流、湖泊等水域中的营养元素过多使其趋于富营养化。水体富营养化能够引起水华、赤潮等藻类恶性爆发事件,进而造成一系列诸如水体缺氧、浊度增加、恶臭散发、藻毒素水平提升等问题,严重影响着水环境质量和水生态安全。其中氮污染物既是水体营养水平的关键评价指标又是水华爆发的关键诱因。因此,从源头上深度削减总氮是控制城市水体富营养化、保障生态用水安全的重要途径。In recent years, with the development of my country's economy and the emphasis on water resources protection, the regulatory authorities and various industries have gradually increased the water treatment standards, mainly in the high requirements for water supply quality and wastewater discharge, which makes the water treatment system Both investment and demand have increased significantly. At the same time, the discharge of various types of wastewater and domestic sewage continues to increase, and the water environment is seriously polluted, making rivers, lakes and other waters more nutrient elements, making them tend to be eutrophic. Eutrophication of water body can cause vicious algae outbreaks such as algal blooms and red tides, and then cause a series of problems such as water hypoxia, increased turbidity, odor emission, and increased levels of algal toxins, which seriously affect the quality of the water environment and the safety of water ecology. Among them, nitrogen pollutants are not only the key evaluation index of water nutrient level but also the key cause of algal bloom outbreak. Therefore, the deep reduction of total nitrogen from the source is an important way to control the eutrophication of urban water bodies and ensure the safety of ecological water use.
随着《水污染防治行动计划》的印发,对我国水环境改善和污水处理目标提出了明确且具有时限性的要求,突显出了污水氮污染物深度去除的紧迫性。With the issuance of the "Water Pollution Prevention and Control Action Plan", clear and time-limited requirements have been put forward for my country's water environment improvement and sewage treatment goals, highlighting the urgency of deep removal of nitrogen pollutants in sewage.
传统反硝化滤池采用石英砂、陶粒等载体作为反硝化生物的挂膜介质,利用适量碳源进行反硝化反应,同时利用过滤介质的截留作用去除拦截污水中的悬浮物以及脱落的生物膜。传统反硝化滤池工作原理是反硝化菌在缺氧环境下,将硝酸盐转化为氮气,该反应以有机碳源作为电子供体。为获得较高的反硝化效率,传统的做法是补充碳源,但会增加药剂成本,长远来看对于污水处理厂的运营不利。The traditional denitrification filter uses quartz sand, ceramsite and other carriers as the film-hanging medium of denitrifying organisms, uses an appropriate amount of carbon source for denitrification reaction, and uses the interception effect of the filter medium to remove the suspended solids in the intercepted sewage and the shedding biofilm . The working principle of the traditional denitrification filter is that denitrifying bacteria convert nitrate into nitrogen in an anoxic environment, and the reaction uses organic carbon sources as electron donors. In order to obtain higher denitrification efficiency, the traditional method is to supplement carbon sources, but it will increase the cost of chemicals, which is not good for the operation of sewage treatment plants in the long run.
硫自养反硝化主要是硫自养反硝化菌以硫极其相关还原态化合物为电子供体,将硝酸盐还原为氮气的过程。硫自养反硝化因不需要外加碳源而得到广泛关注。该反应无需外加碳源,且脱氮效率高,是针对低碳源废水脱氮的重要技术。反应过程通常以硫磺颗粒作为填料,提供反应所需的硫源,并添加石灰石平衡硫单质型自养反硝化反应产生的酸。但是传统填料中石灰石的添加可能造成出水硬度增加,且碱量消耗较大,导致硫与石灰石的浪费;近年来,一些硫基复合填料例如硫铁复合填料的出现很好地克服了单独硫自养反硝化过程消耗碱度、单独铁自养反硝化产生碱度的问题,逐渐实现了硫自养反硝化技术的工程化应用。Sulfur autotrophic denitrification is mainly a process in which sulfur autotrophic denitrifying bacteria use sulfur and related reduced compounds as electron donors to reduce nitrate to nitrogen. Sulfur autotrophic denitrification has attracted extensive attention because it does not require external carbon sources. This reaction does not require an external carbon source and has high denitrification efficiency, which is an important technology for denitrification of low-carbon source wastewater. In the reaction process, sulfur particles are usually used as filler to provide the sulfur source required for the reaction, and limestone is added to balance the acid produced by the autotrophic denitrification reaction of sulfur element. However, the addition of limestone in traditional fillers may increase the hardness of effluent water, and consume a large amount of alkali, resulting in waste of sulfur and limestone; in recent years, the emergence of some sulfur-based composite fillers such as sulfur-iron composite fillers has overcome the natural The problem of alkalinity consumption during denitrification and alkalinity produced by iron autotrophic denitrification has gradually realized the engineering application of sulfur autotrophic denitrification technology.
目前该工艺反应器主要采用固定床形式,在固定床反应器中,固体颗粒物料层始终处于静止状态,随着反应器的连续运行,氮气的不断产生会占据填料之间的空隙,导致反应器实际空隙变小,水力停留时间变短,反应器传质效率变低,不能稳定地高效运行。而填料表面不断累积沉淀物质,生物膜过厚结团,活死细菌比例失衡,死细菌增多,导致填料间的空隙逐渐变小,形成板结造成堵塞。At present, the process reactor mainly adopts the fixed bed form. In the fixed bed reactor, the solid particle material layer is always in a static state. With the continuous operation of the reactor, the continuous generation of nitrogen will occupy the gaps between the fillers, causing the reactor The actual gap becomes smaller, the hydraulic retention time becomes shorter, the mass transfer efficiency of the reactor becomes lower, and it cannot operate stably and efficiently. However, the surface of the filler continuously accumulates sediment, the biofilm is too thick and agglomerated, the proportion of living and dead bacteria is unbalanced, and the number of dead bacteria increases, resulting in the gradual reduction of the gaps between the fillers, forming compaction and blockage.
目前解决以上硫自养反硝化固定床反应体系问题的方法主要是反冲洗:At present, the method to solve the above problems of sulfur autotrophic denitrification fixed bed reaction system is mainly backwashing:
(1)专利202021404064.5公开了一种硫铁复合双层滤料反硝化滤池,该滤池包括自上而下依次分布的硫自养反硝化层、中间水层、铁自养反硝化层和卵石承托层。该滤池将硫自养反硝化过程和铁自养反硝化过程相结合,平衡了出水的碱度,通过在硫填料层和铁填料层下方分别安装反冲洗管也解决了填料长期使用后发生堵塞的问题。该方法所需的建设成本过大,且反冲洗管的维护与运行操作复杂。(1) Patent 202021404064.5 discloses a sulfur-iron composite double-layer denitrification filter, which includes a sulfur autotrophic denitrification layer, an intermediate water layer, an iron autotrophic denitrification layer and Pebble support layer. The filter combines the sulfur autotrophic denitrification process and the iron autotrophic denitrification process to balance the alkalinity of the effluent. By installing backwash pipes under the sulfur packing layer and the iron packing layer respectively, it also solves the problem that occurs after the packing has been used for a long time. clogging problem. The construction cost required by this method is too large, and the maintenance and operation of the backwashing pipe are complicated.
(2)专利CN202110452114.X描述了一种硫自养反硝化生物脱氮的渗滤床反应装置,将反冲洗系统连接于反应池底端,填料层连接于反应池内部,解决了填料脱膜后易堵塞的问题,实现不停机反洗进程。该方法需要定期反冲洗,但需要额外增设一个反冲洗提示装置,提醒工作人员反冲维护,增加了建造成本、管理成本。(2) Patent CN202110452114.X describes a percolation bed reaction device for sulfur autotrophic denitrification biological denitrification. The backwash system is connected to the bottom of the reaction tank, and the packing layer is connected to the inside of the reaction tank, which solves the problem of packing stripping The problem of easy clogging after the end is realized, and the non-stop backwashing process is realized. This method requires regular backwashing, but an additional backwashing reminder device is required to remind the staff of backwashing maintenance, which increases construction costs and management costs.
(3)文献(Wang Y,Bott C,Nerenberg R.Sulfur-based denitrification:Effectof biofilm development on denitrification fluxes.Water Research,2016,100(sep.1):184-193.)描述了一种以硫磺薄片为载体的升流式反应器,实验结果显示随着生物膜不断增厚,体系传质效率在不断下降,其中二号反应装置表现明显,在其运行至50d后,脱氮负荷开始出现下降趋势。(3) Literature (Wang Y, Bott C, Nerenberg R. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes. Water Research, 2016, 100(sep.1): 184-193.) describes a sulfur flake The experimental results show that as the biofilm thickens, the mass transfer efficiency of the system continues to decline, and the No. 2 reaction device is obvious. After its operation for 50 days, the denitrification load begins to show a downward trend. .
在实际滤池维护应用中,反冲洗往往分为气洗、水洗、气水联合洗三种方式。普通水洗的强度较小,一般用作填料层内氮气的去除,以驱氮作用为主;而气洗给填料带来的冲击较大,可以有效去除板结。反冲洗是目前解决深床滤池板结、氮气积累的主要方式,但对填料来说也存在一些负面作用:(1)反硝化过程是一个厌氧的过程,而气洗会引入大量氧气,破坏滤层已有的厌氧环境。(2)由于反冲洗过程的存在,滤池运行方式和本身结构会发生变动,降低了滤池的产水率。(3)气洗和水洗所产生的水流和气泡都会优先通过滤料层中阻力较小的空隙,而冲击阻力较小的空隙通道,并不能全面地打散板结,因此深床滤池的反冲洗往往不能够彻底。In actual filter maintenance applications, backwashing is often divided into three methods: air washing, water washing, and air-water combined washing. The strength of ordinary water washing is small, and it is generally used for the removal of nitrogen in the packing layer, mainly for nitrogen driving; while air washing has a greater impact on the packing, which can effectively remove compaction. Backwashing is currently the main way to solve deep bed filter hardening and nitrogen accumulation, but it also has some negative effects on fillers: (1) The denitrification process is an anaerobic process, and air washing will introduce a large amount of oxygen, destroying The existing anaerobic environment of the filter layer. (2) Due to the existence of the backwashing process, the operation mode and structure of the filter will change, reducing the water production rate of the filter. (3) The water flow and air bubbles generated by air washing and water washing will preferentially pass through the voids with less resistance in the filter material layer, and the void channels with less impact resistance cannot completely break up the compaction, so the reflection of the deep bed filter Rinsing is often not thorough.
实用新型内容Utility model content
基于上述技术背景,本发明人进行了锐意进取,结果发现:通过在硫自养反硝化移动床的填料层中安装螺旋输送杆件,填料在螺旋输送杆件的转动下自下而上缓慢移动,当移动至螺旋杆件有效程末端时,填料向四周紧贴反应器内壁回落,形成循环,有效减少反硝化产生的氮气泡在填料层的积累,填料层中生物膜的厚度也会在填料颗粒间的相互摩擦下降低,无需反冲洗即可防止填料板结,同时提高基质传质效率及污水实际接触停留时间,提高污水处理效果、处理效率和硝态氮去除负荷。与此同时,消除填料板结带来的负面影响后,随着填料颗粒之间的摩擦,填料表面的生物膜厚度得到了有效控制,生物膜厚度的降低促进了生物膜的更新,提升了有效活细菌的比例,更帮助硫自养反硝化细菌成为优势菌种。同时,氮气在填料摩擦过程中不断被排出,有效提高基质传质效率及污水实际接触停留时间,提升污水处理效果,降低了亚硝酸盐的积累和温室气体N2O的排放。此外,随着脱氮效能的提升,有效减少池体体积的初始填料使用量,极大的降低了运行管理成本,在污水处理方面具有良好的应用前景,从而完成本实用新型。Based on the above-mentioned technical background, the present inventor has made great progress and found that: by installing a screw conveying rod in the packing layer of the sulfur autotrophic denitrification moving bed, the packing slowly moves from bottom to top under the rotation of the screw conveying rod , when moving to the end of the effective stroke of the screw rod, the filler will fall back to the surrounding wall close to the inner wall of the reactor, forming a cycle, which can effectively reduce the accumulation of nitrogen bubbles generated by denitrification in the filler layer, and the thickness of the biofilm in the filler layer will also increase. The mutual friction between the particles is reduced, and the compaction of the packing can be prevented without backwashing. At the same time, the mass transfer efficiency of the matrix and the actual contact residence time of the sewage are improved, and the sewage treatment effect, treatment efficiency and nitrate nitrogen removal load are improved. At the same time, after eliminating the negative impact of filler compaction, the thickness of the biofilm on the surface of the filler is effectively controlled with the friction between the filler particles. The reduction of the biofilm thickness promotes the renewal of the biofilm and improves the effective activity. The proportion of bacteria helps sulfur autotrophic denitrifying bacteria to become the dominant species. At the same time, nitrogen is continuously discharged during the friction process of the filler, which effectively improves the mass transfer efficiency of the matrix and the actual contact residence time of the sewage, improves the sewage treatment effect, and reduces the accumulation of nitrite and the emission of greenhouse gas N 2 O. In addition, with the improvement of denitrification efficiency, the initial filler usage of the tank volume is effectively reduced, the operation and management costs are greatly reduced, and the utility model has a good application prospect in sewage treatment, thus completing the utility model.
本实用新型第一方面在于提供一种硫自养反硝化移动床,该反硝化移动床包括反应器进水端2、均匀布水孔板4、承托层区域5、填料层区域6、螺旋输送杆件7和反应器出水端9;The first aspect of the utility model is to provide a sulfur autotrophic denitrification moving bed. The denitrification moving bed includes a
螺旋输送杆件7垂直安装在填料层区域6的中间位置,其包括直杆和螺旋部件,螺旋部件呈螺旋状,直杆位于螺旋部件的中间位置,螺旋部件的首端和末端固定在直杆上。The
附图说明Description of drawings
图1示出本实用新型一种优选实施方式地硫自养反硝化移动床示意图;Fig. 1 shows a kind of preferred embodiment of the present invention sulfur autotrophic denitrification moving bed schematic diagram;
图2示出本实用新型一种优选实施方式地脉动床反应器的结构示意图;Fig. 2 shows the structural representation of the pulsating bed reactor of a kind of preferred embodiment of the utility model;
图3示出本实用新型一种优选实施方式地脉动床反应器的俯视图。Fig. 3 shows a top view of a pulsating bed reactor in a preferred embodiment of the present invention.
附图标号说明Explanation of reference numbers
1-进水蠕动泵;1-Inlet peristaltic pump;
2-反应器进水端;2- Reactor water inlet;
3-数显压力表;3-Digital display pressure gauge;
4-进水筛板;4-Inlet sieve plate;
5-填料层区域;5- packing layer area;
6-螺旋输送杆件;6-Screw conveying rod;
7-反应器出水端;7- Reactor water outlet;
8-电机;8 - motor;
9-转速调频器。9-speed tuner.
12-进水端;12 - water inlet;
14-布水板;14-water distribution board;
15-承托层;15-supporting layer;
16-填料层;16 - packing layer;
17-螺旋杆件;17-screw rod;
18-自动导轨;18-automatic guide rail;
19-出水管。19-outlet pipe.
具体实施方式Detailed ways
下面将对本实用新型进行详细说明,本实用新型的特点和优点将随着这些说明而变得更为清楚、明确。The utility model will be described in detail below, and the features and advantages of the utility model will become clearer and clearer along with these descriptions.
本实用新型第一方面在于提供一种硫自养反硝化移动床,该反硝化移动床包括反应器进水端2、进水筛板4、填料层区域5、螺旋输送杆件6和反应器出水端7,进水筛板4位于反硝化移动床底部的中间位置,反硝化移动床底部围绕进水筛板4向下倾斜,整体呈漏斗状,如图1所示,有利于螺旋输送杆件6在移动床中转动时,位于移动床底部的填料发生“流动”,避免填料板结。The first aspect of the utility model is to provide a sulfur autotrophic denitrification moving bed, the denitrification moving bed includes the
反硝化移动床底部与其侧面之间的夹角为钝角,优选夹角角度为95~150°,更优选为95~120°。The included angle between the bottom of the denitrifying moving bed and its side is an obtuse angle, preferably 95-150°, more preferably 95-120°.
传统的硫自养反硝化固定床中,随着反硝化过程的进行,产生的氮气会积累在填料层空隙中,生物在挂膜成功后会在填料表面不断生长,当生物膜积累过厚时会影响基质向填料表面扩散,同时不断生长的生物膜还会相互连结,形成板结。由于填料板结,导致污水与生物的传质受到影响,造成反应器脱氮效能的下降。与此同时,随着生物膜增厚,板结大量累计,部分细菌由于难以接触到硫基填料表面,不断死亡,这也导致了生物膜内的死细菌比例升高。In the traditional sulfur autotrophic denitrification fixed bed, as the denitrification process proceeds, the nitrogen gas produced will accumulate in the gaps of the filler layer, and the organisms will continue to grow on the surface of the filler after the successful film formation. When the biofilm accumulation is too thick It will affect the diffusion of the matrix to the surface of the filler, and at the same time, the growing biofilm will also connect with each other to form a compaction. Due to the packing compaction, the mass transfer between sewage and organisms is affected, resulting in a decrease in the denitrification efficiency of the reactor. At the same time, with the thickening of the biofilm, a large amount of compaction accumulated, and some bacteria continued to die due to the difficulty in contacting the surface of the sulfur-based filler, which also led to an increase in the proportion of dead bacteria in the biofilm.
本实用新型所述的硫自养反硝化移动床设置螺旋输送杆件6,该螺旋输送杆件呈螺旋状,是一种推移物料输送的机械装置,利用电机带动螺旋回转,通过实现填料间的缓慢摩擦移动,使填料缓慢“流动”,可避免填料板结,同时可有效控制生物膜厚度,使得主要功能菌群定向富集,且氮气在填料摩擦过程中被不断排出,有效提高基质传质效率及污水实际接触停留时间,降低了亚硝酸盐的积累和温室气体N2O的排放,使得该反应体系具有较高的反硝化负荷,此外,该螺旋输送杆件还具有结构简单、横截面积小、密封性好、操作方便等优点。The sulfur autotrophic denitrification moving bed described in the utility model is provided with a screw conveying rod 6, which is in a spiral shape and is a mechanical device for pushing material conveying. Slow frictional movement makes the filler slowly "flow", which can avoid the compaction of the filler, and at the same time, it can effectively control the thickness of the biofilm, so that the main functional bacteria are directional enriched, and nitrogen is continuously discharged during the friction process of the filler, effectively improving the mass transfer efficiency of the matrix and the actual contact residence time of sewage, which reduces the accumulation of nitrite and the emission of greenhouse gas N 2 O, so that the reaction system has a higher denitrification load. In addition, the screw conveying rod has a simple structure and a cross-sectional area Small size, good sealing, easy operation and so on.
所述反应器进水端2位于该反硝化移动床的最下端,与进水蠕动泵1相连,将待处理的废水由反应器进水端2输送至反硝化移动床中,螺旋输送杆件6呈螺旋状,垂直安装在填料层区域5的中间位置,反应器出水端7位于填料层区域5上方,进水筛板4位于填料层区域5和反应器进水端2之间,防止填料掉落。The
反应器出水端7与填料层区域5之间的垂直距离为5~300cm,优选垂直距离为7~200cm,更优选为10~200cm。The vertical distance between the
该硫自养反硝化移动床采用升流模式,运行后待处理废水经进水蠕动泵1自反应器进水端2流入移动床中,然后流入填料层区域5中,最后从反应器出水端7中流出。The sulfur autotrophic denitrification moving bed adopts the upflow mode. After operation, the waste water to be treated flows into the moving bed from the
所述螺旋输送杆件6的上端与电机8相连,电机8的另一端与转速调频器9相连,电机8驱动螺旋输送杆件6旋转,填料自螺旋输送杆自下而上缓慢移动,当移动至螺旋杆件有效程末端时,填料向四周紧贴反应器内壁回落,形成循环,反硝化产生的积累氮气气泡随着填料移动至螺旋杆件有效程末端时向上自反应器出水端7排出,填料上过厚的生物膜也在填料颗粒间的相互摩擦下得以脱落漂浮至反应器出水端7排出,减小生物膜厚度,转速调频器9用于对螺旋输送杆件6的转速进行调节。The upper end of the screw conveyor rod 6 is connected to the
经试验发现,螺旋输送杆件6的转动还可以及时更新生物膜,填料之间的相互摩擦可以有效剔除过厚的老化死细菌,提升生物膜整体活细菌比例,使相关适硫菌的比例提高,如脱氮硫杆菌(Thiobacillus)、嗜硫单胞菌(Sulfurimonas)等比例提高。It has been found through experiments that the rotation of the screw conveying rod 6 can also renew the biofilm in time, and the mutual friction between the fillers can effectively remove the over-thick old dead bacteria, increase the proportion of live bacteria in the biofilm as a whole, and increase the proportion of related sulfur suitable bacteria , such as Thiobacillus and Sulfurimonas increased in proportion.
所述螺旋输送杆件6的转速为1~30r/min,优选转速为5~20r/min,更优选转速为6~10r/min。The rotation speed of the screw conveying rod 6 is 1-30r/min, preferably 5-20r/min, more preferably 6-10r/min.
螺旋输送杆件6包括直杆和螺旋部件,螺旋部件呈螺旋状,直杆位于螺旋部件的中间位置,螺旋部件的首端和末端固定在直杆上。The screw conveying rod 6 includes a straight rod and a helical part, the helical part is helical, the straight rod is located in the middle of the helical part, and the head end and the end of the helical part are fixed on the straight rod.
螺旋输送杆件6中直杆和螺旋部件的材质选自尼龙、304不锈钢、302不锈钢、铝合金中的一种或几种,优选为304不锈钢。相同条件下,304不锈钢所制螺杆体积更小,更有利于填料填充。The material of the straight rod and the screw part in the screw conveying rod 6 is selected from one or more of nylon, 304 stainless steel, 302 stainless steel, and aluminum alloy, preferably 304 stainless steel. Under the same conditions, the screw made of 304 stainless steel has a smaller volume and is more conducive to filling.
螺旋输送杆件6螺旋部件的螺距为1~50mm,优选为3~40mm,更优选为5~35mm。The pitch of the helical part of the screw conveying rod 6 is 1-50 mm, preferably 3-40 mm, more preferably 5-35 mm.
所述螺旋部件的倾斜角度为5~20°,优选为8~15°,更优选为10~12°。The inclination angle of the spiral member is 5-20°, preferably 8-15°, more preferably 10-12°.
螺旋部件的直径与反应器直径比为1:1.05~1:5,优选为1:1.2~1:4,更优选为1:1.5~1:3。可保证反应器填料层区域的填料均能在螺旋输送杆件的搅动下“流动”,也可使得螺杆和反应器内壁之间有足够的空隙保证填料流过,同时更是避免部分填料因不能被搅动而产生板结。The ratio of the diameter of the spiral member to the diameter of the reactor is 1:1.05-1:5, preferably 1:1.2-1:4, more preferably 1:1.5-1:3. It can ensure that the filler in the packing layer area of the reactor can "flow" under the agitation of the screw conveying rod, and it can also make there is enough space between the screw and the inner wall of the reactor to ensure the flow of the filler, and at the same time avoid part of the filler due to failure Agitated to produce hardening.
螺旋部件的倾斜角度为上述范围时,有利于填料在螺旋部件的旋转下向上缓慢移动,同时使气泡在上升过程中不断排出,降低氮气泡积累,防止填料板结。When the inclination angle of the spiral part is within the above range, it is beneficial for the packing to slowly move upward under the rotation of the spiral part, and at the same time, the bubbles are continuously discharged during the rising process, reducing the accumulation of nitrogen bubbles and preventing the packing from compacting.
填料层区域5包括硫磺填料、硫铁矿填料和含有硫磺的复合填料中的一种或几种,优选包括硫磺、硫铁复合填料中的一种或两种,更优选包括2~8mm的球形硫磺填料。
填料层区域5的填充高度为20~500cm,优选为30~200cm,更优选为40~70cm。The filling height of the
填料层区域5的孔隙率为37~42%,优选为38~41%,更优选为39~40%。The porosity of the
本实用新型第二方面在于提供一种采用本实用新型第一方面所述硫自养反硝化移动床进行污水脱氮的方法,该方法将废水由反应器进水端2输送入硫自养反硝化移动床中,经进水筛板4然后输送至填料层区域5,最后经处理后由反应器出水端7流出,污水处理过程中螺旋输送杆件6处于间歇转动状态,优选转动0.1~8h,停转0.1~8h,更优选转动6h停止6h。The second aspect of the utility model is to provide a method for denitrification of sewage by using the sulfur autotrophic denitrification moving bed described in the first aspect of the utility model. In the nitrification moving bed, it is transported to the
采用间歇转动的方式不仅可以降低污水处理成本,还可较大幅度的提高污水处理效果,提高传质效果。The intermittent rotation method can not only reduce the cost of sewage treatment, but also greatly improve the sewage treatment effect and the mass transfer effect.
根据实际水质硝氮浓度的去除需求,一般来说,空床停留时间为0.1~6h,优选停留时间为0.3~4h,更优选为0.5~2h。According to the removal requirements of the actual water quality nitrate nitrogen concentration, generally speaking, the empty bed residence time is 0.1-6h, preferably the residence time is 0.3-4h, more preferably 0.5-2h.
污水处理温度为10~40℃,优选处理温度为20~35℃,更优选处理温度为25~30℃。上述处理温度是脱氮硫杆菌最适宜的温度。The sewage treatment temperature is 10-40°C, preferably 20-35°C, more preferably 25-30°C. The above treatment temperature is the most suitable temperature for Thiobacillus denitrificans.
所述螺旋输送杆件6的转速为1~30r/min,优选转速为5~20r/min,更优选转速为6~10r/min。The rotation speed of the screw conveying rod 6 is 1-30r/min, preferably 5-20r/min, more preferably 6-10r/min.
经试验发现,螺旋输送杆件的转速为上述范围时,有利于避免填料板结并将氮气泡从反应器中排出,有效降低出水氮含量,提高污水处理效果。It has been found through tests that when the rotational speed of the screw conveying rods is within the above range, it is beneficial to avoid packing compaction and discharge nitrogen bubbles from the reactor, effectively reduce the nitrogen content of the effluent, and improve the sewage treatment effect.
本实用新型第三方面在于提供一种脉动床反应器,该脉动床反应器呈长方体状。所述脉动床反应器包括螺旋杆件17和自动导轨18,自动导轨18安装在脉动床反应器的顶部,螺旋杆件17安装在自动导轨18上,螺旋杆件17可随自动导轨18沿着脉动床反应器的长边方向与短边方向做往复移动,如图2和图3所示,在螺旋杆件17往复移动的过程中不断进行旋转,不仅可以实现填料的局部扰动,还可使反应器内填料整体充分移动,使其具备更好的工业化放大应用能力。The third aspect of the utility model is to provide a pulsed bed reactor, which is in the shape of a cuboid. Described pulsating bed reactor comprises
经试验发现,机械搅拌能有效维持脉动床反应器的脱氮效果,同时利用自动导轨反复移动,能使反应器中各部分填料搅动更均匀,降低填料层中的氮气泡积累,提升脱氮效果。The test found that mechanical stirring can effectively maintain the denitrification effect of the pulsating bed reactor, and at the same time, the repeated movement of the automatic guide rail can make the filling of each part of the reactor more evenly stirred, reduce the accumulation of nitrogen bubbles in the packing layer, and improve the denitrification effect .
所述自动导轨18安装在脉动床反应器的顶部,自动导轨18呈工字型,如图3所示,包括沿反应器长边安装的长导轨,位于反应器顶部的两侧,还包括安装在两个长导轨之间的短导轨,短导轨与长导轨垂直,如图3所示,长导轨平行于脉动床反应器的长边,短导轨平行于脉动床反应器的短边。Described
螺旋杆件17的转速为5~40r/min,优选为15~30r/min,更优选为15-25r/min。The rotational speed of the
螺旋杆件17在自动导轨18上的水平移动速度为0.01~11cm/s,优选为0.05~5.0cm/s,更优选为0.1~1cm/s。The horizontal moving speed of the
自动导轨的移动速度为上述范围时,有利于使填料整体充分移动,避免脉动床中各部分填料发生黏连、板结,并及时更新生物膜,将生物膜保持在较低厚度,使该反硝化移动床具有较高的脱氮负荷。When the moving speed of the automatic guide rail is within the above range, it is beneficial to fully move the packing as a whole, avoid the adhesion and hardening of various parts of the packing in the pulsating bed, and renew the biofilm in time, keep the biofilm at a low thickness, and make the denitrification The moving bed has a higher nitrogen removal load.
自动导轨18长导轨的长度与脉动床反应器长边的比值为(1~1.3):1,优选比值为(1~1.2):1,更优选比值为(1~1.05):1。The ratio of the length of the
自动导轨18短导轨的长度与脉动床反应器短边的比值为(1~1.3):1,优选比值为(1~1.2):1,更优选比值为(1~1.05):1。The ratio of the length of the short guide rail of the
本发明人发现,自动导轨长导轨与短导轨的长度与脉动床反应器长边与短边的比值为上述范围时,螺旋输送杆件即可最大程度的对整个脉动床中的填料进行搅动,及时更新填料层的生物膜。The present inventors found that when the length of the long guide rail and the short guide rail of the automatic guide rail and the ratio of the long side to the short side of the pulsating bed reactor are within the above range, the screw conveying rod can stir the filler in the entire pulsating bed to the greatest extent. Renew the biofilm in the packing layer in time.
该脉动床反应器还包括进水端12、出水管19、承托层15、填料层16和布水板14,该脉动床反应器采用升流模式,所述进水端12位于脉动床反应器的底部,承托层15和布水板14位于填料层16和进水端12之间,承托层15位于填料层16和布水板14之间,螺旋杆件17呈螺旋状,位于填料层16中,出水管19位于填料层16的上方。The pulsating bed reactor also includes a water inlet 12, an
螺旋杆件17包括直杆和螺旋部件,螺旋部件呈螺旋状,直杆位于螺旋部件的中间位置,螺旋部件的首端和末端固定在直杆上。The
螺旋杆件17直杆的材质选自尼龙或304不锈钢中的一种或两种,优选为304不锈钢。相同条件下,304不锈钢所制螺杆体积更小,更有利于填料填充。The material of the straight rod of the
所述螺旋部件的材质选自尼龙或304不锈钢中的一种或两种,优选为304不锈钢。The material of the spiral member is selected from one or both of nylon and 304 stainless steel, preferably 304 stainless steel.
螺旋杆件17螺旋部件的螺距为1~50mm,优选为3~40mm,更优选为5~35mm。The pitch of the helical part of the
所述螺旋部件的倾斜角度为5~20°,优选为8~15°,更优选为10~15°。The inclination angle of the spiral member is 5-20°, preferably 8-15°, more preferably 10-15°.
由于螺旋杆件17可随自动导轨18沿着脉动床反应器的长边方向与短边方向做往复移动,保证了螺旋杆件17对填料各个点位的影响,可最大范围的“搅动”反应器中的填料,有效避免脉动床中部分填料因未被搅动而发生板结。Since the
所述承托层15的材质为鹅卵石、石头、陶粒和砂子中的一种或几种,优选为鹅卵石和陶粒中的一种或两种,更优选为粒径3~8mm的鹅卵石。The supporting
承托层15的填充高度为3~150cm,优选为5~120cm,更优选为8~100cm。The filling height of the
所述承托层15的孔隙率为30~50%,优选为33~48%,更优选为38~46%。The porosity of the supporting
填料层16包括硫磺填料、硫铁矿填料和含有硫磺的复合填料中的一种或几种,优选包括硫磺,更优选包括粒径3~5mm的球形硫磺。The
所述填料层16的填充高度为5~500cm,优选为10~300cm,更优选为12~250cm。The filling height of the
填料层16的孔隙率为37~42%,优选为38~41%,更优选为39~40%。填料层16的孔隙率为上述范围时,待处理废水在脉动床中的停留时间适宜,脱氮效果和脱氮效率高。The porosity of the
出水管19与填料层16之间的垂直距离为2~50cm,优选垂直距离为6~30cm,更优选为8~20cm。The vertical distance between the
所述布水板14上均匀分布安装短柄滤头,使进水端流入的污水由布水板14上的短柄滤头均匀布水流入承托层15中,所述布水板14上的短柄滤头柄径为0.5~50mm,优选为0.6~40mm,更优选为0.8~30mm。The short-handle filter heads are evenly distributed on the
布水板14上相邻短柄滤头之间的距离相等,从而保证安装的短柄滤头在整体滤池内可布水均匀,相邻短柄滤头之间的距离为0.1~10cm,优选为0.5~8cm,更优选为1~6cm。The distance between the adjacent short-handle filter heads on the
本实用新型第四方面在于提供一种采用本实用新型第三方面所述脉动床反应器污水脱氮的方法,该方法将待处理废水由进水端输送至硫自养反硝化脉动床中,自下而上经均匀布水孔板14、承托层15和填料层16,最后由脉动床反应器出水端19流出。The fourth aspect of the utility model is to provide a method for denitrification of sewage using the pulsating bed reactor described in the third aspect of the utility model. The method transports the waste water to be treated from the water inlet to the sulfur autotrophic denitrification pulsating bed, From bottom to top, it passes through the uniformly distributed
空床停留时间取决于所需处理的污水硝氮浓度,通常为0.1~6hThe empty bed residence time depends on the concentration of nitrate nitrogen in the sewage to be treated, usually 0.1~6h
污水处理温度为8~40℃,优选处理温度为15~35℃,更优选处理温度为20~30℃。The sewage treatment temperature is 8-40°C, preferably 15-35°C, more preferably 20-30°C.
螺旋杆件17的转速为5~40r/min,优选转速为15~30r/min,更优选转速为15~25r/min。持续转动或间歇转动状态。The rotation speed of the
螺旋杆件17在自动导轨上的水平移动速度为0.01~11cm/s,优选为0.05~5.0cm/s,更优选为0.1~1cm/s。持续往复运动或间歇转动状态。The horizontal movement speed of the
本实用新型所具有的有益效果:The beneficial effect that the utility model has:
(1)本实用新型所述反硝化移动床体系,是在已成熟应用的固定床体系中加入了螺旋输送杆件,通过该装置的添加可实现填料的流化和填料间的相互摩擦,即使排出填料层间的氮气,降低生物膜厚度,使填料表面的硫自养反硝化细菌比例提高,可使反应体系维持高效稳定的脱氮性能。将该反硝化移动床体系用于污水脱氮处理,一方面可以提升污水处理的稳定性,另一方面相比于固定床体系,其脱氮速率显著提升,且由于填料的稳定流动,使本工艺无需依赖反冲洗,规避了气洗时氧气对填料层造成的破坏、反洗时造成的产水率下降、反冲洗不均匀不彻底等问题。(1) The denitrification moving bed system described in this utility model is to add a screw conveying rod to the fixed bed system that has been maturely applied. The addition of this device can realize the fluidization of the filler and the mutual friction between the fillers, even if Exhaust the nitrogen between the packing layers, reduce the thickness of the biofilm, increase the proportion of sulfur autotrophic denitrifying bacteria on the surface of the packing, and maintain the efficient and stable denitrification performance of the reaction system. The denitrification moving bed system is used for sewage denitrification treatment. On the one hand, it can improve the stability of sewage treatment. On the other hand, compared with the fixed bed system, its denitrification rate is significantly improved. The process does not need to rely on backwashing, which avoids the damage to the packing layer caused by oxygen during air washing, the decrease in water production rate caused by backwashing, and the uneven and incomplete backwashing.
(2)相较于固定床工艺,本实用新型所述移动床体系能够显著提升脱氮负荷,实验证明整体提升近50%,反硝化反应的顺利进行也大大降低了中间产物N2O的排放,降低温室效应。在相同的应用场景条件下,能够有效减少池体体积的初始填料使用量,占地面积减少20~30%,吨水投资成本可降低30~40%,此外,本实用新型无需依赖反冲洗,极大的降低了运行管理成本。(2) Compared with the fixed bed process, the moving bed system described in the utility model can significantly increase the denitrification load, and the experiment proves that the overall increase is nearly 50%, and the smooth progress of the denitrification reaction also greatly reduces the discharge of the intermediate product N2O , reduce the greenhouse effect. Under the same application scenario conditions, it can effectively reduce the initial filler usage of the pool volume, reduce the floor area by 20-30%, and reduce the investment cost per ton of water by 30-40%. In addition, the utility model does not need to rely on backwashing, Greatly reduced operation and management costs.
(3)本实用新型所述脉动床反应器将螺旋输送杆件安装在滤池上方,并配合制动轨道,在面向大型滤池放大开发时,不仅可实现填料的局部循环流化,通过轨道的设置还可实现填料的整体流动,区别于现有的气冲水冲技术,本实用新型能够更有效的解决现有固定床工艺放大带来的反冲洗产水率低、反冲洗管道管径过大、反冲洗时滤池停止运行等问题。(3) The pulsating bed reactor described in this utility model installs the spiral conveying rod above the filter tank and cooperates with the braking track. When facing the enlarged development of a large filter tank, it can not only realize the local circulation fluidization of the filler, but also pass through the track. The setting can also realize the overall flow of the filler. Different from the existing air flushing and water flushing technology, the utility model can more effectively solve the problem of low backwash water production rate and backwash pipe diameter caused by the enlargement of the existing fixed bed process. Too large, the filter stops running during backwashing, etc.
(4)本实用新型针对现有技术中固定床反应体系存在的脱氮负荷低、依赖反冲洗、脱氮效率缺乏受控调节等问题,创造性的提出螺旋输送杆驱动的移动床工艺,有望在新工艺技术方面产生突破,为解决我国污水处理厂总氮深度削减的迫切需求提供有力支撑。(4) In view of the problems of low denitrification load, reliance on backwashing and lack of controlled regulation of denitrification efficiency in the fixed bed reaction system in the prior art, the utility model creatively proposes a moving bed process driven by a screw conveying rod, which is expected to be used in Breakthroughs in new process technologies have provided strong support for solving the urgent need for deep reduction of total nitrogen in sewage treatment plants in my country.
实施例Example
以下通过具体实例进一步阐述本实用新型,这些实施例仅限于说明本实用新型,而不用于限制本实用新型范围。The utility model is further elaborated below through specific examples, and these embodiments are only limited to illustrate the utility model, and are not intended to limit the scope of the utility model.
实施例1Example 1
硫自养反硝化移动床包括反应器进水端2、进水筛板4、填料层区域5、螺旋输送杆件6和反应器出水端7,进水筛板4位于反硝化移动床底部的中间位置,反硝化移动床底部围绕进水筛板4向下倾斜,呈漏斗状,反硝化移动床底部与其侧面之间的夹角角度为100°,反应器进水端2位于反硝化移动床的最下端,与进水蠕动泵1相连,填料层区域5位于反应器出水端7和反应器进水端2之间,螺旋输送杆件6呈螺旋状,垂直安装在填料层区域5的中间位置,反应器出水端7位于填料层区域5上方。The sulfur autotrophic denitrification moving bed includes the
硫自养反硝化移动床的填料层区域5采用3~5mm的硫磺球形颗粒,填充高度为50cm,孔隙率为40%,反应器出水端7高出填料层区域5 10cm。螺旋输送杆件6包括直杆和螺旋部件,所述螺旋部件的材质为304不锈钢,螺旋部件的螺距为30mm,螺旋部件的倾斜角度为10°,螺旋部件的直径与反应器直径比为1:2,螺旋输送杆件6的转速为10r/min,电机功率为60W,空床停留时间为1h,进水流速为39.25ml/min,模拟废水组分为:NO3 --N 20mg·L-1、NH4 +-N 2mg·L-1、KH2PO4-P 0.5mg·L-1、NaHCO3 0.3mg·L-1、MgCl2·6H2O 0.4mg·L-1、Na2S2O3 50mg·L-1,再按1mL/L的比例加入微量元素液和维生素液,接种厌氧池污泥按填料层体积1000mg/L,启动工艺,连续进水5天后,将空床停留时间调整为0.5h,进水流速提升至78.5ml/min,5天后去掉进水中的Na2S2O3,运行至出水稳定,控制污水处理温度为30℃,待反应器出水硝酸盐氮和亚硝酸盐氮稳定后,视为启动成功。The
实施例2Example 2
脉动床反应器包括进水端12、布水板14、承托层15、填料层16、螺旋杆件17、自动导轨18和出水管19,进水端12位于脉动床反应器的底部,与进水蠕动泵相连,承托层15和布水板14位于填料层16和进水端12之间,承托层15位于填料层16和布水板14之间,螺旋杆件17呈螺旋状,位于填料层16中,出水端19位于填料层16上方,自动导轨18安装在脉动床反应器的顶部,螺旋杆件17安装在自动导轨18上,自动导轨18呈工字型,包括沿反应器长边安装的长导轨,位于反应器顶部的两侧,以及安装在两个长导轨之间的短导轨,短导轨与长导轨垂直,长导轨平行于脉动床反应器的长边,短导轨平行于脉动床反应器的短边。The pulsating bed reactor comprises a water inlet 12, a
脉动床反应器的承托层15包括直径3~5mm的鹅卵石,承托层15的填充高度为10cm,其孔隙率为44%,填料层16采用3~5mm的硫磺球形颗粒,填充高度为30cm,孔隙率为40%,出水管19高出填料层16 15cm。布水板14上的短柄滤头柄径为3cm,相邻短柄滤头之间的距离为5cm,螺旋杆件17包括直杆和螺旋部件,所述直杆和螺旋部件的材质为304不锈钢,螺旋部件的螺距为30mm,螺旋部件的倾斜角度为15°,螺旋部件的直径与脉动床反应器宽度的比为0.533,自动导轨18长导轨的长度与脉动床反应器长边的比值为1:1,自动导轨18短导轨的长度与脉动床反应器短边的比值为1:1,螺旋杆件17的转速为23r/min,螺旋杆件17在自动导轨18上的水平移动速度为0.5cm/s,电机功率为70W,空床停留时间为1h,进水流速为9000ml/min,模拟废水组分为:NO3 --N 20mg·L-1、NH4 +-N 2mg·L-1、KH2PO4-P 0.5mg·L-1、NaHCO3 0.3mg·L-1、MgCl2·6H2O 0.4mg·L-1、Na2S2O3 50mg·L-1,再按1mL/L的比例加入微量元素液和维生素液,接种厌氧池污泥按填料层体积1000mg/L,启动工艺,连续进水5天后,将空床停留时间调整为0.333h,进水流速提升至2250ml/min,5天后去掉进水中的Na2S2O3,运行至出水稳定,控制污水处理温度为30℃,待反应器出水硝酸盐氮和亚硝酸盐氮稳定后,视为启动成功。The
对比例comparative example
对比例1Comparative example 1
以与实施例1相似的方式进行污水脱氮,区别仅在于:硫自养反硝化移动床不包括螺旋输送杆件7。Sewage denitrification is carried out in a manner similar to that of Example 1, the only difference being that the sulfur autotrophic denitrification moving bed does not include the
对比例2Comparative example 2
以与实施例2相似的方式进行污水脱氮,区别仅在于:脉动床不包括螺旋杆件17和自动导轨18。Sewage denitrification is carried out in a manner similar to that of Example 2, the only difference is that the pulsating bed does not include the
实验例Experimental example
实验例1脱氮效果测试Experimental Example 1 Nitrogen removal effect test
对实施例1和对比例1的出水硝态氮、亚硝氮、N2O浓度进行测试,其出水的动态硝态氮浓度如下表1所示。The concentration of nitrate nitrogen, nitrite nitrogen and N 2 O in the effluent of Example 1 and Comparative Example 1 were tested, and the dynamic nitrate nitrogen concentration of the effluent is shown in Table 1 below.
从表1中可以看出,当实施例1和对比例1出水稳定后,选取两者10天的进出水样本,在相同进水流速下,实施例1的出水硝态氮去除浓度稳定在18mg/L左右,去除率达81%左右,远高于对比例1的进出水硝态氮差值11mg/L,去除率61%左右,而且随着反硝化移动床持续运行,对比例1的出水硝态氮浓度还会不断上升,而实施例1的出水硝态氮保持稳定。As can be seen from Table 1, when the effluent of Example 1 and Comparative Example 1 is stable, the influent and effluent samples of the two are selected for 10 days. Under the same influent flow rate, the nitrate nitrogen removal concentration of the effluent of Example 1 is stable at 18mg /L or so, the removal rate is about 81%, which is much higher than the nitrate nitrogen difference in the influent and effluent water of Comparative Example 1, which is 11mg/L, and the removal rate is about 61%. The nitrate nitrogen concentration will continue to rise, while the effluent nitrate nitrogen in Example 1 remains stable.
表1Table 1
同样,实施例1中几乎不存在亚硝酸盐的积累,而对比例1中可以明显地在出水中测到亚硝酸盐,这是由于实施例1中发生的反硝化过程更为顺利,因此实施例1中的亚硝酸盐积累量低。Similarly, there is almost no accumulation of nitrite in Example 1, and nitrite can be clearly detected in the effluent in Comparative Example 1. This is due to the smoother denitrification process that occurred in Example 1, so the implementation of Nitrite accumulation in Example 1 was low.
可见,本实用新型所述的硫自养反硝化移动床具有较高的硝态氮去除负荷。It can be seen that the sulfur autotrophic denitrification moving bed described in the utility model has a relatively high nitrate nitrogen removal load.
实验例2脱氮效果测试Experimental example 2 Nitrogen removal effect test
对实施例2和对比例2的出水硝态氮、亚硝氮、DO值(溶氧量)降低浓度进行测试,其出水的动态硝态氮浓度如下表2所示。The nitrate nitrogen, nitrite nitrogen, and DO value (dissolved oxygen) reduction concentration of the effluent of Example 2 and Comparative Example 2 were tested, and the dynamic nitrate nitrogen concentration of the effluent is shown in Table 2 below.
从表2中可以看出,当实施例2和对比例2出水稳定后,选取两者10天的进出水样本,在相同进水流速下,实施例2的出水硝态氮去除浓度稳定在6mg/L左右,高于对比例2的进出水硝态氮差值4mg/L,而且随着反硝化脉动床持续运行,对比例的出水硝态氮浓度还会不断上升,而实施例2的出水硝态氮保持稳定。As can be seen from Table 2, when the effluent of Example 2 and Comparative Example 2 were stabilized, the influent and effluent samples of the two were selected for 10 days. Under the same influent flow rate, the nitrate nitrogen removal concentration of the effluent of Example 2 was stable at 6mg /L, which is higher than the difference of nitrate nitrogen in the influent and effluent of Comparative Example 2 by 4mg/L, and with the continuous operation of the denitrification pulsating bed, the concentration of nitrate nitrogen in the effluent of the comparative example will continue to rise, while the effluent of Example 2 Nitrate nitrogen remains stable.
表2Table 2
同样,实施例2中几乎不存在亚硝酸盐的积累,而对比例2中可以明显地在出水中检测到亚硝酸盐,这是由于实施例2中发生的反硝化过程更为顺利,因此实施例2中的出水亚硝氮盐浓度更低。Similarly, there is almost no accumulation of nitrite in Example 2, but nitrite can be clearly detected in the effluent in Comparative Example 2. This is due to the smoother denitrification process that occurred in Example 2, so the implementation of The concentration of nitrite nitrogen salt in the effluent in Example 2 is lower.
可见,本实用新型所述的硫自养反硝化脉动床具有较高的硝态氮去除负荷。It can be seen that the sulfur autotrophic denitrification pulsating bed described in the utility model has a relatively high nitrate nitrogen removal load.
实验例3床层堵塞程度分析Experimental example 3 analysis of bed clogging degree
对实施例1和对比例1移动床的氮气积累率进行测试,氮气积累率和实际停留时间如表3所示:The nitrogen accumulation rate of
表3table 3
表3中,实施例1中床层的氮气积累率为14.02%,对比例1中床层的氮气积累率为48.46%,实施例1中床层的氮气积累率远低于对比例1中床层的氮气积累率。相应的,实施例1中的平均实际停留时间为0.264h,对比例1中的平均实际停留时间仅为0.154h。实施例1的有效孔隙率是对比例1的1.668倍,实际停留时间是对比例1的1.714倍,表明本申请所述移动床的氮气积累率降低,污水停留时间延长。In Table 3, the nitrogen accumulation rate of the bed in Example 1 is 14.02%, the nitrogen accumulation rate of the bed in Comparative Example 1 is 48.46%, and the nitrogen accumulation rate of the bed in Example 1 is far lower than that of the bed in Comparative Example 1. layer nitrogen accumulation rate. Correspondingly, the average actual residence time in Example 1 is 0.264h, and the average actual residence time in Comparative Example 1 is only 0.154h. The effective porosity of Example 1 is 1.668 times that of Comparative Example 1, and the actual residence time is 1.714 times that of Comparative Example 1, indicating that the nitrogen accumulation rate of the moving bed described in the present application is reduced and the residence time of sewage is prolonged.
实验例4生物膜厚度测试Experimental Example 4 Biofilm Thickness Test
对实施例1和对比例1填料中的生物膜厚度进行测试,在反应器稳定运行后,取样检测填料挂膜厚度,测试如表4所示:The biofilm thickness in the packing of
表4Table 4
从表4中可以看出,对比例1中的生物膜厚度远高于实施例1的生物膜厚度,可见,对比例1中的生物膜在污水处理过程中不断生长过厚所致,表明本实用新型移动床通过设置螺旋输送杆件,可有效降低生物膜厚度。As can be seen from Table 4, the biofilm thickness in Comparative Example 1 is much higher than that of Example 1. It can be seen that the biofilm in Comparative Example 1 is constantly growing too thick in the sewage treatment process, indicating that this The utility model moving bed can effectively reduce the biofilm thickness by setting the screw conveying rods.
实验例5活细菌比例分析Experimental Example 5 Live Bacteria Ratio Analysis
对实施例1和对比例1填料中的活死细胞染色进行测试,在反应器稳定运行后,取样检测填料表面生物,测试如表5所示:The staining of dead cells in the fillers of Example 1 and Comparative Example 1 was tested. After the reactor was running stably, samples were taken to detect the organisms on the filler surface. The tests were shown in Table 5:
表5table 5
从表5中可以看出,对比例1中的生物膜活细菌占比远低于实施例1,而从细菌总体来说,对比例1远高于实施例1,所以可以看出对比例1生物量多,意味着对比例1的死细菌也远大于实施例1,这为反硝化反应带来了更大的传质阻力,表明采用本实用新型所述的反硝化移动床可有效降低死细菌比例,降低传质阻力。As can be seen from Table 5, the proportion of live bacteria in the biofilm in Comparative Example 1 is much lower than that of Example 1, and from the perspective of bacteria as a whole, Comparative Example 1 is much higher than that of Example 1, so it can be seen that Comparative Example 1 More biomass means that the dead bacteria in Comparative Example 1 are also far greater than in Example 1, which brings greater mass transfer resistance for the denitrification reaction, showing that the denitrification moving bed described in the utility model can effectively reduce the dead bacteria. Bacteria ratio, reducing mass transfer resistance.
以上结合具体实施方式和范例性实例对本实用新型进行了详细说明,不过这些说明并不能理解为对本实用新型的限制。本领域技术人员理解,在不偏离本实用新型精神和范围的情况下,可以对本实用新型技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本实用新型的范围内。本实用新型的保护范围以所附权利要求为准。The utility model has been described in detail above in conjunction with specific implementations and illustrative examples, but these descriptions should not be construed as limiting the utility model. Those skilled in the art understand that without departing from the spirit and scope of the utility model, various equivalent replacements, modifications or improvements can be made to the technical solution of the utility model and its implementation, and these all fall within the scope of the utility model . The scope of protection of the utility model shall be determined by the appended claims.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320790497.6U CN220537600U (en) | 2022-09-01 | 2022-09-01 | Pulsating bed reactor |
CN202222334113.8U CN219031892U (en) | 2022-09-01 | 2022-09-01 | A sulfur autotrophic denitrification moving bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222334113.8U CN219031892U (en) | 2022-09-01 | 2022-09-01 | A sulfur autotrophic denitrification moving bed |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320790497.6U Division CN220537600U (en) | 2022-09-01 | 2022-09-01 | Pulsating bed reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219031892U true CN219031892U (en) | 2023-05-16 |
Family
ID=86275431
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320790497.6U Active CN220537600U (en) | 2022-09-01 | 2022-09-01 | Pulsating bed reactor |
CN202222334113.8U Active CN219031892U (en) | 2022-09-01 | 2022-09-01 | A sulfur autotrophic denitrification moving bed |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320790497.6U Active CN220537600U (en) | 2022-09-01 | 2022-09-01 | Pulsating bed reactor |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN220537600U (en) |
-
2022
- 2022-09-01 CN CN202320790497.6U patent/CN220537600U/en active Active
- 2022-09-01 CN CN202222334113.8U patent/CN219031892U/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN220537600U (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115367871B (en) | Sulfur autotrophic denitrification moving bed and denitrification method | |
CN101977853B (en) | Method and device for the treatment of waste water | |
CN103043870B (en) | Novel automatic-reflux biological sewage processor | |
CN101913732B (en) | Sequencing batch type suspended filler biofilm sewage treatment device | |
CN106904796B (en) | Multistage diversion type SSMBBR sewage treatment system and treatment method | |
CN106927638B (en) | Multistage diversion type MBBR sewage treatment system and treatment method | |
CN203382563U (en) | Integral type sewage treatment device for biological effective accumulative process | |
CN103641241A (en) | Preposed denitrification aeration biofilter and method for treating sewage | |
CN110510815A (en) | Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification | |
CN103723892B (en) | Livestock and poultry wastewater treatment system and treatment method using system | |
CN219031892U (en) | A sulfur autotrophic denitrification moving bed | |
CN1246231C (en) | Reactor of biomembrane of suspended carrier on horizon eddy flow and repairing method on site of water body | |
CN106007176B (en) | A kind of high temperature, high rigidity, the sewage disposal system and technique of high COD, ammonia nitrogen | |
CN105293866B (en) | The swash plate selection cultural method and device of a kind of aerobic particle mud | |
CN204874216U (en) | Industrial waste water advanced treatment unit | |
CN201746430U (en) | Sequencing suspended carriers biomembrane sewage treatment device | |
CN104163497A (en) | Low-dissolved-oxygen magnetic biochemical treatment system and process | |
CN105948411A (en) | Novel industrial wastewater treatment process | |
CN207632598U (en) | Activated sludge wastewater processing equipment | |
CN206069641U (en) | Coking wastewater processing system | |
CN212127682U (en) | A Circulating Mobile Carrier Biofilm Reactor | |
CN201495154U (en) | Biological wastewater treatment system combining biological fluidized bed with biological filter bed | |
CN103936140A (en) | MBBR pretreatment method and system for high-ammonia nitrogen micro-polluted raw water | |
CN102583723A (en) | Local air-water reversing upflow biological aerated filter and sewage treatment method thereof | |
CN202089823U (en) | Flow separate bed bio-reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |