CN218409903U - Power plant thermodynamic cycle system - Google Patents
Power plant thermodynamic cycle system Download PDFInfo
- Publication number
- CN218409903U CN218409903U CN202222639771.8U CN202222639771U CN218409903U CN 218409903 U CN218409903 U CN 218409903U CN 202222639771 U CN202222639771 U CN 202222639771U CN 218409903 U CN218409903 U CN 218409903U
- Authority
- CN
- China
- Prior art keywords
- water
- condenser
- make
- deaerator
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 232
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 90
- 239000001301 oxygen Substances 0.000 claims abstract description 90
- 238000010438 heat treatment Methods 0.000 claims abstract description 32
- 238000005086 pumping Methods 0.000 claims abstract description 5
- 239000007921 spray Substances 0.000 claims description 25
- 239000008400 supply water Substances 0.000 claims description 14
- 238000010248 power generation Methods 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 12
- 238000006392 deoxygenation reaction Methods 0.000 abstract description 4
- 238000004134 energy conservation Methods 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
技术领域technical field
本公开的实施例属于电厂热力循环技术领域,具体涉及一种电厂热力循环系统。The embodiments of the present disclosure belong to the technical field of thermal cycle of power plants, and specifically relate to a thermal cycle system of a power plant.
背景技术Background technique
为保证机组运行的安全、经济和灵活,一般电厂热力循环系统传统设计通常由若干个相互作用、协调工作、并具有不同功能的子系统组成,主要有蒸汽中间再热系统、给水回热系统、对外供热系统等。In order to ensure the safe, economical and flexible operation of the unit, the traditional design of the thermodynamic cycle system of a general power plant is usually composed of several subsystems that interact and coordinate with each other and have different functions, mainly including steam intermediate reheating system, feed water reheating system, External heating system, etc.
给水回热系统由汽轮机不同压力的中间级处抽出部分蒸汽用于加热凝结水和给水的系统。这部分回热用抽汽作的功没有冷源损失,是提高火电厂热经济性的主要措施之一。近代火电厂通常采用7~8级(甚至9级)回热加热系统。Feedwater recuperation system is a system in which part of the steam is extracted from the intermediate stages of different pressures of the steam turbine to heat condensate water and feedwater. This part of heat recovery is done by steam extraction without loss of cold source, which is one of the main measures to improve the thermal economy of thermal power plants. Modern thermal power plants usually use 7-8 (or even 9) regenerative heating systems.
进一步为保证机组连续运行,必须设置补给水单元,但一般情况下补给水单元的脱氧过程是在相对较高压力、较高温度、且排放的热量、排放工质相对较大的工况下完成。Further, in order to ensure the continuous operation of the unit, a make-up water unit must be installed, but in general, the deoxidation process of the make-up water unit is completed under relatively high pressure, high temperature, and relatively large discharge heat and working fluid .
比如,自发电厂形成来,发电厂技术与管理水平不断提高,在发电厂生产过程中的热力系统汽水损失率已降至0.5-1.0%。当前,最大的损失源头是除氧器的排氧门的工质排放,但为了保证热力循环系统中工质含氧量量要求又必须将除氧器排氧门保持开放状态。降低汽水工质含氧量是为了保证系统机械设备免受腐蚀,所以,补给水必须予以严格除氧、除离子等化学处理,合格后方能充入系统运行。For example, since the formation of the power plant, the technology and management level of the power plant has been continuously improved, and the soda loss rate of the thermal system in the production process of the power plant has been reduced to 0.5-1.0%. At present, the biggest source of loss is the discharge of the working fluid from the oxygen exhaust door of the deaerator, but in order to ensure the oxygen content of the working fluid in the thermal cycle system, the oxygen exhaust door of the deaerator must be kept open. The purpose of reducing the oxygen content of the soda water working medium is to ensure that the mechanical equipment of the system is free from corrosion. Therefore, the make-up water must be strictly deoxidized, deionized and other chemical treatments, and can only be filled into the system for operation after passing the standard.
现有技术中至少存在如下问题:在热力循环系统中,除氧器的排氧门保持开放状态,汽水工质损失率较高,存在较大的能源和工质浪费,制约着电厂的经济效益。There are at least the following problems in the prior art: in the thermodynamic cycle system, the oxygen discharge door of the deaerator remains open, the loss rate of soda and water working medium is high, and there is a large waste of energy and working medium, which restricts the economic benefits of the power plant .
实用新型内容Utility model content
本公开的实施例旨在至少解决现有技术中存在的技术问题之一,提供一种电厂热力循环系统。Embodiments of the present disclosure aim to solve at least one of the technical problems existing in the prior art, and provide a thermal cycle system of a power plant.
本公开的实施例一个方面提供一种电厂热力循环系统。所述系统包括热能动力发生子系统、热能动力终端子系统、热能动力回热子系统和热能动力补给子系统;所述热能动力发生子系统包括:锅炉和汽轮机;所述热能动力终端子系统包括:凝汽器和抽气器;所述热能动力回热子系统包括:除氧器和排氧门控制器;所述热能动力补给子系统包括:补给水箱和加热装置;所述凝汽器的凝结水出口通过第一输水管路与所述除氧器的补给水入口相连通,所述除氧器的排气出口设置有排氧门,所述除氧器的给水出口通过第二输水管路与所述锅炉的给水入口相连通,所述锅炉的蒸汽出口与所述汽轮机的蒸汽入口相连通,所述汽轮机的排汽出口与所述凝汽器的蒸汽入口相连通;An aspect of the embodiments of the present disclosure provides a thermal cycle system of a power plant. The system includes a thermal power generation subsystem, a thermal power terminal subsystem, a thermal power regeneration subsystem and a thermal power supply subsystem; the thermal power generation subsystem includes: a boiler and a steam turbine; the thermal power terminal subsystem includes : Condenser and air extractor; The thermal energy power recovery subsystem includes: Deaerator and oxygen exhaust door controller; The thermal energy power supply subsystem includes: Makeup water tank and heating device; The condenser's The condensed water outlet is connected with the feed water inlet of the deaerator through the first water pipeline, the exhaust outlet of the deaerator is provided with an oxygen discharge valve, and the water supply outlet of the deaerator is connected through the second water pipeline The road is connected with the feed water inlet of the boiler, the steam outlet of the boiler is connected with the steam inlet of the steam turbine, and the exhaust steam outlet of the steam turbine is connected with the steam inlet of the condenser;
所述补给水箱的出口通过补给管路与所述凝汽器的补给水入口相连通,所述抽气器的入口通过抽气管路与所述凝汽器的排气出口相连通;所述加热装置用于对所述补给水箱加热,以将补给水温加热至所述凝汽器工作压力下的饱和温度;所述排氧门控制器与所述排氧门电连接,用于在所述除氧器中的氧气含量低于预设值时控制所述排氧门关闭。The outlet of the make-up water tank communicates with the make-up water inlet of the condenser through a make-up pipeline, and the inlet of the air extractor communicates with the exhaust outlet of the condenser through a suction pipeline; the heating The device is used to heat the make-up water tank to heat the make-up water temperature to the saturation temperature under the working pressure of the condenser; the oxygen discharge door controller is electrically connected to the oxygen discharge door for When the oxygen content in the oxygen device is lower than a preset value, the oxygen discharge valve is controlled to be closed.
可选的,所述加热装置包括集热器和换热器;所述集热器与所述换热器相连接;所述集热器设置于所述补给水箱外侧;所述换热器设置于所述补给水箱内侧。Optionally, the heating device includes a heat collector and a heat exchanger; the heat collector is connected to the heat exchanger; the heat collector is arranged outside the makeup water tank; the heat exchanger is arranged Inside the make-up water tank.
可选的,所述系统还包括温度传感器和温度控制器;所述温度传感器设置于所述补给水箱内或补给管路中,并与所述温度控制器电连接;所述温度控制器,用于根据所述温度传感器检测的补给水温,调控所述加热装置将所述补给水温维持在所述饱和温度。Optionally, the system further includes a temperature sensor and a temperature controller; the temperature sensor is arranged in the supply water tank or in the supply pipeline, and is electrically connected to the temperature controller; the temperature controller is used Based on the supply water temperature detected by the temperature sensor, the heating device is regulated to maintain the supply water temperature at the saturation temperature.
可选的,所述系统还包括水量调节器;所述水量调节器串设于所述补给管路,用于调节向所述凝汽器输送的补给水量。Optionally, the system further includes a water volume regulator; the water volume regulator is connected in series with the supply pipeline for adjusting the supply water volume delivered to the condenser.
可选的,所述凝汽器内设置有喷淋头,所述喷淋头设置有多个喷淋孔,所述喷淋头通过连接管与所述凝汽器的补给水入口相连通。Optionally, a spray head is provided in the condenser, and the spray head is provided with a plurality of spray holes, and the spray head is connected to the feed water inlet of the condenser through a connecting pipe.
可选的,所述喷淋头喷淋范围至少覆盖所述凝汽器横截面面积的1/2。Optionally, the spraying range of the shower head covers at least 1/2 of the cross-sectional area of the condenser.
可选的,所述喷淋孔的数量范围为10个~30个。Optionally, the number of the spray holes ranges from 10 to 30.
本公开实施例的电厂热力循环系统中,将输入至凝汽器的补给水加热其工作压力下的饱和温度,利于氧气逸出,抽气器抽气时直接除氧,除氧后的补给水含氧量降低,以实现在含氧量低于预设值时关闭排氧门,减少除氧器的热量和工质排放,实现节能减排。In the thermal cycle system of the power plant in the embodiment of the present disclosure, the feed water input to the condenser is heated to its saturation temperature under the working pressure, which is conducive to the escape of oxygen. The oxygen content is reduced to close the oxygen discharge door when the oxygen content is lower than the preset value, reduce the heat and working medium discharge of the deaerator, and realize energy saving and emission reduction.
附图说明Description of drawings
图1为本公开实施例的一种电厂热力循环系统的结构示意图。Fig. 1 is a schematic structural diagram of a thermal cycle system of a power plant according to an embodiment of the present disclosure.
图中:In the picture:
100、凝汽器;110、第一输水管路;120、第一凝结水泵;100. Condenser; 110. First water pipeline; 120. First condensate pump;
130、精细除盐水箱;140、第二凝结水泵;200、抽气器;210、抽气管路;300、除氧器;310、第二输水管路;320、低压加热器;330、高压加热器;340、给水泵;400、排氧门;500、锅炉;130. Fine desalinated water tank; 140. Second condensate pump; 200. Air extractor; 210. Air extraction pipeline; 300. Deaerator; 310. Second water delivery pipeline; 320. Low-pressure heater; 330. High-pressure heating device; 340, feed water pump; 400, oxygen exhaust door; 500, boiler;
600、汽轮机;700、补给水箱;710、补给管路;720、补水泵;600, steam turbine; 700, water supply tank; 710, supply pipeline; 720, water supply pump;
730、水量调节器;800、加热装置。730, water regulator; 800, heating device.
具体实施方式Detailed ways
为使本领域技术人员更好地理解本实用新型的技术方案,下面结合附图和具体实施方式对本实用新型作进一步详细描述。In order to enable those skilled in the art to better understand the technical solution of the utility model, the utility model will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本公开的实施例涉及一种电厂热力循环系统,所述系统包括:热能动力发生子系统、热能动力终端子系统、热能动力回热子系统和热能动力补给子系统;所述热能动力发生子系统包括:锅炉500和汽轮机600;所述热能动力终端子系统包括:凝汽器100和抽气器200;所述热能动力回热子系统包括:除氧器300和排氧门控制器(图中未示出);所述热能动力补给子系统包括:补给水箱700和加热装置800。所述凝汽器100的凝结水出口通过第一输水管路110与所述除氧器300的补给水入口相连通,所述除氧器300的排气出口设置有排氧门400,所述除氧器300的给水出口通过第二输水管路310与所述锅炉500的给水入口相连通,所述锅炉500的蒸汽出口与所述汽轮机600的蒸汽入口相连通,所述汽轮机600的排汽出口与所述凝汽器100的蒸汽入口相连通。As shown in FIG. 1 , an embodiment of the present disclosure relates to a thermal cycle system of a power plant, the system includes: a thermal power generation subsystem, a thermal power terminal subsystem, a thermal power regeneration subsystem, and a thermal power supply subsystem; The thermal power generation subsystem includes:
所述补给水箱700的出口通过补给管路710与所述凝汽器100的补给水入口相连通,所述抽气器200的入口通过抽气管路210与所述凝汽器100的排气出口相连通;所述加热装置800用于对所述补给水箱700加热,以将补给水温加热至凝汽器100工作压力下的饱和温度;所述排氧门控制器与所述排氧门400电连接,用于在所述除氧器300中的氧气含量低于预设值时控制所述排氧门400关闭。The outlet of the make-
如图1所示,所述热能动力补给子系统还包括:补水泵720,所述补水泵720可以设置于所述补给管路710。所述补给水箱700内的补给水是经过除盐的水,所述补给水箱700可以是电厂用的除盐水箱,所述除盐水箱可以设置于化水单间。所述热能动力补给子系统还可以包括:补水控制器,所述补水控制器与所述除氧器的水位计电连接,所述补水泵720与所述补水控制器电连接。当所述除氧器300中给水水位低于预设阈值时,所述补水控制器接收给水水位信号,所述补水控制器控制所述补水泵将除盐并加热至所述凝汽器工作压力下饱和温度的补给水输送至所述凝汽器;所述加热装置800将补给水温加热至所述凝汽器100工作压力下的饱和温度,在此物理状态下溶解在补给水里的气体达到最低,从而保证补给水含氧量达到指标要求。As shown in FIG. 1 , the thermal power supply subsystem further includes: a
所述热能动力终端子系统还包括:第一凝结水泵120、精细除盐水箱130和第二凝结水泵140。所述第一凝结水泵120、所述精细除盐水箱130和所述第二凝结水泵140沿补给水流动方向依次设置于所述第一输水管路110。所述第一凝结水泵120将所述凝汽器100热井内的凝结水和补给水升压后送至所述精细除盐水箱130,所述精细除盐水箱130进一步对除氧后的补给水进行除盐,再经过所述第二凝结水泵140进一步升压后送至所述热能动力回热子系统。所述热能动力终端子系统还包括:循环水泵(图中未示出)、循环水管路(图中未示出)和冷却水塔(图中未示出)等,所述循环水管路设置于所述凝汽器100,所述循环水管路伸出所述凝汽器100的部分设置有所述循环水泵,所述循环水管路两端与所述冷却水塔相连通。所述循环水泵、所述循环水管路和所述冷却水塔具体连接关系这里不赘述。The thermal power terminal subsystem further includes: a
作为一个示例,如图1所示,所述热能动力回热子系统还包括:低压加热器320、给水泵340和高压加热器330;所述低压加热器320设置于所述第一输水管路110。所述给水泵340和所述高压加热器330分别设置于所述第二输水管路310。所述给水泵用于把除氧器储水箱内具有一定温度、除过氧的给水,提高压力后输送给锅炉,以满足锅炉用水的需要。所述低压加热器和所述高压加热器可以分别利用汽轮机的部分抽汽加热锅炉给水,提高电厂热效率,提高给水温度,进而减少进入锅炉的给水和炉膛的温度,减少了温差换热损失,节省燃料,并有利于机组安全运行。关于所述低压加热器、所述给水泵和所述高压加热器具体结构和控制连接关系技术比较成熟,这里不赘述。所述除氧器300还设置有水位计,所述水位计与所述热能动力补给子系统电连接,所述水位计用于检测除氧器300内给水水位,当所述除氧器300给水水位低于预设阈值时,所述水位计发送信号至所述热能动力补给子系统的补水控制器,所述热能动力补给子系统将补给水加热至凝汽器工作压力下的饱和温度后输送至所述凝汽器100进行除氧,再输送至所述除氧器300。所述除氧器300内靠近给水出口设置有测氧仪,所述测氧仪与所述排氧门控制器电连接,所述测氧仪用于监测除氧器300中给水的氧气含量,当所述除氧器300中给水的氧气含量低于预设值时,即氧气含量品质指标低于标准时,所述除氧器300的排氧门400自动关闭,降低电厂热力循环系统的热量与工质排放,所述测氧仪可以是溶解氧传感器。所述除氧器具体容积、型号等,可以根据实际情况选择使用,所述除氧器的具体结构这里不赘述。As an example, as shown in FIG. 1 , the thermal power regeneration subsystem further includes: a low-
所述电厂热力循环系统工作原理:所述加热装置可以独立于机组运行,所述加热装置800可以提前对所述补给水箱700进行加热,将补给水温加热至所述凝汽器100工作压力下的饱和温度,也可以将补给水加热高于所述饱和温度2°~4°,可以根据实际情况调节加热补给水温,并将补给水温保持在所述饱和温度;机组启动,将加热后的补给水输送至所述凝汽器100,因补给水温是所述凝汽器100工作压力下的饱和温度,补给水进入所述凝汽器100后,补给水中的气体极易逸出,所述抽气器200将所述凝汽器100内逸出的氧气等气体一并抽出,保持所述凝汽器100真空状态;除氧后的补给水与凝结水形成所述锅炉500给水输送至所述除氧器300,所述除氧器300内的所述测氧仪检测检测所述锅炉500给水的氧气含量,并将检测信息发送给所述排氧门控制器,当所述锅炉500给水氧气含量低于预设值时,所述排氧门控制器控制所述排氧门400关闭,反之,所述排氧门400开启;一般情况下,机组启动阶段,虽然有所述凝汽器100进行除氧,进入所述除氧器300的补给水的氧气含量可能超过所述除氧器300的氧气含量预设值,此时,所述排氧门400开启,排出所述除氧器300内的气体;机组正常运行后,所述加热装置将补给水温维持在所述凝汽器工作压力下的饱和温度,这里所述加热装置可以根据需要自动运行,以对补给水箱内的补给水持续加热,以保证需要补水时,随时可以提供加热至所述饱和温度的补给水;当所述水位计检测到所述除氧器300内给水的水位低于预设阈值需要补给水时,所述水位计发送信号至所述补水控制器,所述补水控制器将加热至所述凝汽器100工作压力下的饱和温度的补给水输送至所述凝汽器100,因饱和温度的补给水进入所述凝汽器100后,气体极易逸出,经抽气器200抽出,由于凝汽器100内的凝结水的氧气含量较低,从而保证凝结水与补给水的含氧量标准;经过所述凝汽器除氧的锅炉500给水输入至所述除氧器300,基本可以保证进入所述除氧器300的给水的氧气含量低于预设值,保证所述排氧门400关闭。一般情况下机组启动阶段,主要进行水处理工况,输入至所述除氧器300的补给水已经经过除氧,含氧量较低,所述排氧门400可以开一点,所述排氧门400的开启大小可以根据实际情况调节;随着机组运行,所述凝汽器100中来自汽轮机600的凝结水增加,进入所述凝汽器100的补给水经过除氧,使得输入至所述除氧器300的锅炉500给水含氧量降低,基本可以保持排氧门400关闭的状态,所述排氧门关闭后,排放的汽水等工质减少,需要补充的补给水量或补给次数也会减少,由补给水带进的氧气也会减少,所述凝汽器完全可以满足除氧工作,使得输入至所述除氧器的补给水氧气含量低于预设值,保持所述排氧门关闭,减少了发电厂汽水损失,达到节能减排的目的,The working principle of the thermodynamic cycle system of the power plant: the heating device can operate independently of the unit, the
本公开实施例在试验阶段及实际使用时,达到无热量无工质排放就完成工质脱氧,既能保证工质满足标准要求又完成节能减排的目的。In the test stage and actual use, the embodiment of the present disclosure achieves the deoxidation of the working medium without heat and discharge of the working medium, which can not only ensure that the working medium meets the standard requirements, but also achieve the purpose of energy saving and emission reduction.
举例说明,一般火力发电机组热力循环系统除氧器300的排氧门400是常开设置的,以控制热力循环系统工质含氧量在标准范围之内。其结果是导致了此处的汽水损失达到热力循环系统总汽水损失量的50%以上,甚至更多。以600MWe机组为例,取机组汽水损失率的低值0.5%,即9吨/小时,关闭排氧门后,保守估算能将汽水损失率最少降至0.25%,即4.5吨/小时,热量损失为240万千卡/小时,约核标煤0.345吨/小时。利用本公开实施例将排氧门关闭后,在相同的工况下降低了热力循环系统的流量,若按机组每年等效利用6000小时计算,折合标准煤约2000吨/年;折合除盐水27000吨/年。据统计,我国在运的600MWe机组多达630台,仅此一项改进即可每年节约标准煤126万吨,节约除盐水1700万吨,减少CO2排放462万吨。考虑全国尚有137台1000WMe、900台300WMe火力发电机组,此项改进实施后节能减排的效果更加巨大。As an example, the
本公开实施例,通过对火力发电厂热力循环系统除氧器排氧门的运行方式与热力循环系统的改进,能够使得排氧门保持常闭状态,而又保证了工质的含氧量达到品质指标要求,从而减少发电厂的汽水损失,为国家节能减排做出贡献。In the embodiment of the present disclosure, by improving the operation mode of the oxygen discharge door of the deaerator in the thermal cycle system of the thermal power plant and the improvement of the thermal cycle system, the oxygen discharge valve can be kept in a normally closed state, while ensuring that the oxygen content of the working medium reaches Quality index requirements, thereby reducing the loss of soda water in power plants, and contributing to national energy conservation and emission reduction.
示例性的,如图1所示,所述加热装置800包括集热器(图中未示出)和换热器(图中未示出);所述集热器与所述换热器相连接;所述集热器设置于所述补给水箱700外侧;所述换热器设置于所述补给水箱700内侧。Exemplarily, as shown in Figure 1, the
作为一个示例,所述热力循环系统可以利用太阳能光伏/光热设备等对所述补给水箱700内的补给水进行加热,节约能源,使用方便,与本公开实施例的节能减排相互补充。As an example, the thermodynamic cycle system can use solar photovoltaic/photothermal equipment to heat the make-up water in the make-up
示例性的,所述系统还包括温度传感器(图中未示出)和温度控制器(图中未示出);所述温度传感器设置于所述补给水箱700内或补给管路710中,并与所述温度控制器电连接;所述温度控制器,用于根据所述温度传感器检测的补给水温,调控所述加热装置800将所述补给水温维持在所述饱和温度。Exemplarily, the system further includes a temperature sensor (not shown in the figure) and a temperature controller (not shown in the figure); the temperature sensor is arranged in the make-up
作为一个示例,所述温度控制器可以与所述补水控制器电连接,所述补水控制器可以将相应的所述凝汽器100工作压力下的饱和温度传输至所述温度控制器,并由所述温度控制器调控所述加热装置800将所述补给水温维持在所述饱和温度。一般所述凝汽器保持真空,或工作压力极小,补给水的饱和温度只有几十度,不同凝汽器对应不同的饱和温度,这里不赘述。本公开的实施例采用所述温度传感器和所述温度控制器可以保证补给水加热温度,保证所述热力循环系统持续有效的循环。As an example, the temperature controller can be electrically connected with the water supply controller, and the water supply controller can transmit the saturation temperature corresponding to the working pressure of the
示例性的,如图1所示,所述系统还包括水量调节器730;所述水量调节器730串设于所述补给管路710,用于调节向所述凝汽器100输送的补给水量。Exemplarily, as shown in FIG. 1 , the system further includes a
作为一个示例,所述水量调节器730可以与所述补水控制器电连接,所述水量调节器730根据所述补水控制器得到的补水量,调节向所述凝汽器100输送的补给水量。所述水量调节器730可以是超声波流量计,超声波流量计可以是多普勒超声波流量计。超声波流量计适用于管道的流量测量、且能够测量各种液体和污水的流量、测量范围大、只需夹持在管道外壁上即可,安装十分便利,因而当采用管道进水时,采用超声波流量计能够进一步提高监测所得数据的准确性,且能够提高装配的便利性。所述水量调节器730也可以是流体计量泵,使用流体计量泵可以同时完成输送、计量和调节的功能,从而简化生产工艺流程。本领域技术人员可以根据实际情况选用相关器件作为水量调节器。采用所述水量调节器可以降低单位时间内补给水量,延长补给水时间,以利于补给水进入所述凝汽器后气体充分逸出,保持补给水量满足热力循环系统的要求,即变趸补为适量时长补给水,又达到充分排出补给水中气体。具体的补给水量可以根据实际情况进行调控。As an example, the
示例性的,所述凝汽器100内设置有喷淋头(图中未示出),所述喷淋头设置有多个喷淋孔,所述喷淋头通过连接管与所述凝汽器100的补给水入口相连通;所述喷淋头喷淋范围至少覆盖所述凝汽器100横截面面积的1/2;所述喷淋孔的数量范围为10个~30个。Exemplarily, the
作为一个示例,喷淋头喷雾覆盖于所述凝汽器100内冷凝管上方,和/或,所述喷淋头喷淋范围至少覆盖所述凝汽器100横截面面积的1/2,具体可以根据机组类型设置所述喷淋头的喷淋孔数量。以600MWe机组为例,所述喷淋头可以设置至少20个喷淋孔。本公开实施例通过增加喷淋孔个数,增大喷淋头径向尺寸,增大喷淋范围,保证热力循环系统真空度满足电厂技术规格书的要求。As an example, the sprinkler spray covers above the condensation pipe in the
本公开的实施例另一方面提供一种电厂热力循环方法,采用上述的热力循环系统,所述方法包括:所述加热装置800将所述补给水箱700内的补给水加热至所述凝汽器100工作压力下的饱和温度;加热至所述饱和温度的补给水通过所述补给管路710输入至所述凝汽器100,所述抽气器200通过抽气管路210对所述凝汽器100进行抽气除氧。On the other hand, the embodiments of the present disclosure provide a thermal cycle method of a power plant, using the above-mentioned thermal cycle system, the method includes: the
所述凝汽器100通过所述第一输水管路110将除氧后的补给水输入至所述除氧器300;所述除氧器300通过第二输水管路310将除氧后的补给水输入至所述锅炉500,所述锅炉500运行将产生的蒸汽输入至所述汽轮机600;所述汽轮机600排出的蒸汽进入所述凝汽器100凝结为水循环为锅炉500提供给水;其中,所述排氧门控制器用于在所述除氧器300中的氧气含量低于预设值时控制所述排氧门400关闭。The
作为一个示例,补给水在补给水箱700内就被加热到所述凝汽器100工作压力下的饱和温度,进入所述凝汽器100的补给水经过抽气器200抽气除氧,使得补给水在所述凝汽器100就完成了脱氧,可以保证补给水输入至所述除氧器300后,含氧量低,在机组正常运行中保持排氧门400关闭。所述排氧门可以通过加装在除氧器上的排氧门控制器进行控制,实现自动关闭或开启,具体抽气时间等可以根据实际情况调节。本公开实施例通过改进发电厂热力循环系统的设备和运行方法,从而实现燃煤发电厂的节能减排,为国家2030年碳达峰2060年碳中和做贡献。而且所述热力循环系统结构简单,可以充分利用已有的设备进行适当改进,实现本公开的实施例的热力循环方法,达到减少除氧器工质的汽水排放,达到节能减排。As an example, the make-up water is heated to the saturation temperature under the working pressure of the
示例性的,在所述系统还包括温度传感器和温度控制器时,所述加热装置800将所述补给水箱700内补给水加热至所述凝汽器100工作压力下的饱和温度,包括:所述传感器检测所述补给水箱700或所述补给管道中的补给水温;所述控制器根据接收到的所述补给水温调控所述加热装置800以使所述补给水温维持在所述饱和温度。Exemplarily, when the system further includes a temperature sensor and a temperature controller, the
作为一个示例,本公开的实施例可以实现持续对补给水进行加热,无需人工操作,自动对所述补给水加热到所述饱和温度,加热及时且准确,保证机组持续运行。As an example, the embodiments of the present disclosure can continuously heat the makeup water without manual operation, and automatically heat the makeup water to the saturation temperature, and the heating is timely and accurate, ensuring continuous operation of the unit.
示例性的,在所述系统还包括水量调节器730时,所述方法还包括:通过所述水量调节器730调节向所述凝汽器100输送的补给水量。Exemplarily, when the system further includes a
作为一个示例,区别于一次进行补水,本公开实施例可以通过降低单位时间的内补给水量,延长补给水时间,以利于补给水中气体逸出,保证所述凝汽器充分除氧,降低所述补给水的氧气含量。单位时间内的补给水量具体降低多少,可以根据实际情况进行设定,这里不赘述。采用本公开实施例的热力循环方法,可以有效减少除氧器工质的汽水排放,实现节能减排。为国家节能减排做出贡献。As an example, different from replenishing water at one time, the embodiments of the present disclosure can reduce the amount of replenishing water per unit time and extend the replenishing water time to facilitate the escape of gas in the replenishing water, ensure that the condenser is fully deoxygenated, and reduce the The oxygen content of the make-up water. The specific reduction of the water supply amount per unit time can be set according to the actual situation, and will not be repeated here. By adopting the thermodynamic cycle method of the embodiment of the present disclosure, it is possible to effectively reduce the steam and water discharge of the working fluid of the deaerator, and realize energy saving and emission reduction. Contribute to national energy conservation and emission reduction.
可以理解的是,以上实施方式仅仅是为了说明本实用新型的原理而采用的示例性实施方式,然而本实用新型并不局限于此。对于本领域内的普通技术人员而言,在不脱离本实用新型的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本实用新型的保护范围。It can be understood that, the above embodiments are only exemplary embodiments adopted to illustrate the principles of the present invention, but the present invention is not limited thereto. For those skilled in the art, various modifications and improvements can be made without departing from the spirit and essence of the present utility model, and these variations and improvements are also regarded as the protection scope of the present utility model.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222639771.8U CN218409903U (en) | 2022-09-30 | 2022-09-30 | Power plant thermodynamic cycle system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222639771.8U CN218409903U (en) | 2022-09-30 | 2022-09-30 | Power plant thermodynamic cycle system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218409903U true CN218409903U (en) | 2023-01-31 |
Family
ID=85000165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202222639771.8U Active CN218409903U (en) | 2022-09-30 | 2022-09-30 | Power plant thermodynamic cycle system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218409903U (en) |
-
2022
- 2022-09-30 CN CN202222639771.8U patent/CN218409903U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110735676B (en) | A kind of flexible adjustment system and adjustment method of coal-fired unit adopting water make-up tank | |
CN206037003U (en) | Secondary reheating unit EC BEST steam turbine steam exhaust heating deoxidization boiler feed water's thermodynamic system | |
CN206018578U (en) | A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler | |
CN109296415B (en) | Combined cycle combined cooling heating power unit steam supply superheat degree utilization system | |
CN218409903U (en) | Power plant thermodynamic cycle system | |
CN214948932U (en) | Steam generation device applied to wastewater zero discharge system of coal-fired power plant | |
CN214426040U (en) | Non-pressure-bearing low-temperature energy-saving system | |
CN204704010U (en) | A kind of bootstrap system of distributed energy | |
CN214221275U (en) | An extraction steam cogeneration unit suitable for primary frequency modulation of large extraction steam | |
CN114963298B (en) | Online quantitative calculation method and system for energy storage of steam pipe network | |
CN117847509A (en) | A thermal cycle system and method for a power plant | |
CN112728574A (en) | Non-pressure-bearing low-temperature energy-saving system and using method thereof | |
CN211199116U (en) | Dry quenching double-super power generation circulating water cooling device | |
CN212511096U (en) | Condensate water recovery system | |
CN208982126U (en) | Combined cycle combined cooling heating and power unit steam supply superheat utilization system | |
CN209431389U (en) | A kind of waste incineration and generating electricity heat energy recycling system of air compressor | |
CN207501129U (en) | One kind is used for steam power plant's steam heat recovery system | |
CN208398056U (en) | Energy saving dead steam recovery system suitable for boiler deoxidizing method | |
CN114034029A (en) | A kind of vaporization cooling system with control high loop to strengthen steam-water separation and method thereof | |
CN112050191A (en) | Energy-saving system suitable for non-regenerative boiler and control method | |
CN206386911U (en) | A kind of chemical water heating system | |
CN215520992U (en) | A heating system for a gas-steam combined cycle unit heater | |
CN215294877U (en) | Boiler feed water heating device | |
CN218495377U (en) | Energy-saving hot water unit capable of stably supplying water | |
CN221780710U (en) | Boiler exhaust steam whitening and energy saving system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |