CN218383360U - 角度滤光器 - Google Patents

角度滤光器 Download PDF

Info

Publication number
CN218383360U
CN218383360U CN202090000999.9U CN202090000999U CN218383360U CN 218383360 U CN218383360 U CN 218383360U CN 202090000999 U CN202090000999 U CN 202090000999U CN 218383360 U CN218383360 U CN 218383360U
Authority
CN
China
Prior art keywords
array
lenses
angular filter
lens
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202090000999.9U
Other languages
English (en)
Inventor
威尔弗里德·施瓦兹
本杰明·布蒂农
奥黛丽·罗莎
珍-伊夫·戈麦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ai Seleju
Original Assignee
Ai Seleju
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Seleju filed Critical Ai Seleju
Application granted granted Critical
Publication of CN218383360U publication Critical patent/CN218383360U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

本说明书涉及一种角度滤光器(13),该角度滤光器包括第一和第二平凸透镜阵列(131,141)的第一和第二和开口(137)的阵列,第一阵列和第二阵列的透镜(131,141)的平坦表面彼此面对。

Description

角度滤光器
本专利申请要求法国专利申请FR19/13892的优先权权益,该申请通过引用结合于此。
技术领域
本公开涉及一种角度滤光器。
更特别地,本公开涉及一种旨在在光学系统(例如成像系统)的内部使用、或者用于准直光源的光线(通过有机发光二极管(organic light-emitting diode,OLED)进行的定向照明和光学检查)的角度滤光器。
背景技术
角度滤光器是一种使得能够根据辐射的入射来过滤这个入射辐射并且因此阻挡具有大于期望角度(称为最大入射角)的入射角的光线的设备。角度滤光器经常与图像传感器结合使用。
实用新型内容
需要改进已知的角度滤光器。
实施例提供了一种角度滤光器,该角度滤光器包括:
平凸透镜的第一阵列;
平凸透镜的第二阵列,平凸透镜的第二阵列位于透镜的第一阵列和图像传感器之间;以及
开口的阵列,
第一阵列和第二阵列的透镜的平坦表面彼此面对,并且第二阵列的透镜的数量大于第一阵列的透镜的数量。
实施例提供了一种角度滤光器,该角度滤光器包括平凸透镜的第一和第二阵列以及开口的阵列,第一阵列和第二阵列的透镜的平坦表面彼此面对。
根据实施例,开口的阵列形成在由在可见光和红外范围内不透明的第一树脂制成的层中。
根据实施例,开口的阵列填充有空气或者填充有在可见光和红外范围内至少部分透明的材料。
根据实施例,第一阵列的每个透镜的光轴与第二阵列的透镜的光轴以及开口的阵列的中心对准。
根据实施例,阵列的每个开口与第一阵列的单个透镜相关联。
根据实施例,第一阵列的透镜的像焦平面与第二阵列的透镜的物焦平面重合。
根据实施例,第二阵列的透镜的数量大于第一阵列的透镜的数量。
根据实施例,第一阵列的透镜的直径大于第二阵列的透镜的直径。
根据实施例,开口的阵列位于第一透镜阵列和第二透镜阵列之间。
根据实施例,第二透镜阵列位于第一透镜阵列和开口的阵列之间。
根据实施例,第一阵列的透镜在基底上并与基底接触。
实施例提供了一种角度滤光器的制造方法,除其他外,包括以下步骤:
沉积第二抗蚀剂的膜;
通过光刻形成第二抗蚀剂的垫;以及
加热所述垫以改变它们的几何形状,并且因此形成第二阵列的透镜。
根据实施例,穿过第一阵列的透镜执行通过光刻进行的曝光。
根据实施例,第二透镜阵列通过压印形成。
根据实施例,两个透镜阵列分离地形成,并且然后通过粘合剂膜组装。
附图说明
前述特征和优点以及其他特征和优点将在以下通过说明而非限制的方式给出的具体实施例的描述中参照附图进行详细描述,在附图中:
图1以截面图示出了图像采集系统的实施例;
图2以截面图示出了角度滤光器制造方法的第一实施模式的步骤;
图3以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图4以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图5以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图6以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图7以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图8以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤;
图9以截面图示出了角度滤光器制造方法的第二实施模式的步骤;
图10以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图11以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图12以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图13以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图14以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图15以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤;
图16以截面图示出了角度滤光器制造方法的第三实施模式的步骤;
图17以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤;
图18以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤;
图19以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤;
图20以截面图示出了图18和图19的步骤的变型;
图21以截面图示出了角度滤光器制造方法的第四实施模式的步骤;
图22以截面图示出了根据第四实施模式的角度滤光器制造方法的另一步骤;
图23以截面图示出了根据第四实施模式的角度滤光器制造方法的另一步骤;以及
图24以截面图示出了图23的步骤的变型。
具体实施方式
在不同的附图中,相同的特征由相同的附图标记表示。特别地,各种实施例中共同的结构和/或功能特征可以具有相同的附图标记,并且可以具有相同的结构、尺寸和材料属性。
为了清楚起见,仅详细示出和描述了对理解本文描述的实施例有用的步骤和元素。特别地,没有详细描述图像传感器和除了角度滤光器之外的元件的形成,所描述的实施例和实施模式与传感器的和这些其他元件的通常形成相兼容。
除非另有说明,当对连接在一起的两个元件进行引用时,这表示除了导体之外没有任何中间元件的直接连接,而当对耦合在一起的两个元件进行引用时,这表示这两个元件可以连接或者它们可以通过一个或多个其他元件耦合。
在以下公开内容中,除非另有说明,当提及绝对位置限定符(诸如术语“前部”、“后部”、“顶部”、“底部”、“左部”、“右部”等)或提及相对位置限定符(诸如术语“上方”、“下方”、“上部”、“下部”等)、或提及方向限定符(诸如“水平”、“竖直”等),参考图中示出的取向。
除非另有说明,否则表述“大约”、“近似”、“基本上”和“在……的量级”表示在10%以内,优选地在5%以内。
在下面的描述中,当通过层或膜的辐射的透射率小于10%时,该层或膜被称为对辐射不透明。在下面的描述中,当通过层或膜的辐射的透射率大于10%时,该层或膜被称为对辐射透明。根据实施例,对于同一光学系统,对辐射不透明的光学系统的所有元件具有小于对所述辐射透明的光学系统的元件的最低透射率的一半、优选小于五分之一、更优选小于十分之一的透射率。在本公开的其余部分中,表述“有用辐射”指代在操作中穿过光学系统的电磁辐射。在下面的描述中,“微米级光学元件”指代在支撑件的表面上形成的、具有平行于所述表面测量的大于1μm且小于1mm的最大尺寸的光学元件。在下面的描述中,当膜或层在40℃下对氧气的渗透率小于1.10-1cm3/(m2*天)时,该膜或层被称为是不透氧气的。对氧气的渗透率可以根据题为“使用库仑传感器的氧气通过塑料薄膜和片材的透过率的标准试验方法(Standard Test Method for Oxygen Gas Transmission Rate ThroughPlastic Film and Sheeting Using a Coulometric Sensor)”的ASTM D3985方法来测量。在下面的描述中,当膜或层在40℃下对水的渗透率小于1.10-1g/(m2*天)时,该膜或层被认为是不透水的。对水的渗透率可以根据名为“使用调制红外传感器水蒸气通过塑料薄膜和片材的透过率的标准测试方法(Standard Test Method for Water Vapor TransmissionRate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor)”的ASTM F1249方法来测量。
在每个微米级光学元件对应于由两个屈光度形成的微米级透镜或微透镜的情况下,对于包括微米级光学元件阵列的光学系统,将不描述光学系统的实施例。然而,应该清楚的是,这些实施例也可以利用其他类型的微米范围的光学元件来实施,其中每个微米范围的光学元件可以例如对应于微米范围的菲涅耳透镜、对应于微米范围的折射率梯度透镜或对应于微米范围的衍射光栅。
在下面的描述中,可见光指代具有在400nm至700nm的范围内的波长的电磁辐射,并且红外辐射指代具有在700nm至1mm的范围内的波长电磁辐射。在红外辐射中,人们可以特别地区分具有在700nm至1.7μm的范围内的波长的近红外辐射。
为了简化描述,除非另有说明,制造步骤以与在该步骤结束时获得的结构相同的方式表示。
图1以截面图示出了图像采集系统1的实施例。
图1中示出的采集系统1在图的取向上从底部到顶部包括图像传感器11和角度滤光器13。
图像传感器11包括光子传感器111(也称为光电探测器)阵列。光电探测器111可以覆盖有保护涂层(未示出)。图像传感器11还包括导电轨和能够选择光电探测器111的开关元件(特别是晶体管)(未示出)。光电探测器111可以由有机材料制成。光电探测器111可以对应于有机光电二极管(organic photodiode,OPD)、对应于有机光敏电阻、对应于与TFT(Thin Film Transistor,薄膜晶体管)或CMOS(Complementary Metal OxideSemiconductor,互补金属氧化物半导体)晶体管阵列相关联的非晶或单晶硅光电二极管。
根据实施例,每个光电探测器111适于检测可见光和/或红外辐射。
采集系统1还包括用于处理由图像传感器11供应的信号的单元(未示出),例如包括微处理器。
在图1的取向上,角度滤光器13从上到下包括:
平凸透镜131的第一阵列;
第一基底或支撑件133;
开口或孔137的第一层135;
第二层139,该第二层可以包括平坦化层和/或另一基底和/或粘合剂膜;以及
平凸透镜141的第二阵列,平凸透镜的第二阵列用于准直由滤光器透射的光,
透镜141的平坦表面面向透镜131的平坦表面。
第一阵列的透镜131的平坦表面和第二阵列的透镜141的平坦表面彼此面对。
第一阵列的透镜131的直径优选地大于第二阵列的透镜141的直径。
每个开口137优选地与第一阵列的单个透镜131相关联。透镜131的光轴143优选地与第一层135的开口137的中心对准。第一阵列的透镜131的直径优选地大于开口137的最大横截面长度(垂直于轴线143测量)。
在图1中示出的实施例中,第一阵列的透镜131的数量等于第一阵列的透镜141的数量。第一阵列的透镜131和第二阵列的透镜141通过它们的光轴143对准。
作为变型,第二阵列的透镜141的数量大于第一阵列的透镜131的数量。
在图1的示例中,每个光电探测器111被示出为与单个开口137相关联,每个光电探测器111的中心以与其相关联的开口137的中心为中心。实际上,角度滤光器13的分辨率至少是图像传感器11的分辨率的两倍。换句话说,系统1包括至少两倍于光电探测器111的透镜131(或开口137)。因此,光电二极管111与至少两个透镜131(或开口137)相关联。
角度滤光器13适于根据辐射相对于第一阵列的透镜131的光轴143的入射来过滤入射辐射。角度滤光器13被适配为使得图像传感器11的每个光电探测器111仅接收相对于与光电探测器111相关联的透镜131的相应光轴143的相应入射角比最大入射角小45°、优选地小30°、更优选地小10°、再优选地小于4°的光线。角度滤光器13能够阻挡具有相对于滤光器13的透镜131的光轴143的相应入射角比最大入射角更大的入射辐射的光线。
光线以相对于入射到透镜131的光线的相应方向的角度α从透镜131和从层135射出。角度α特定于透镜131,并且取决于其直径且取决于这个相同透镜131的焦距。
在层135的输出处,光线穿过139并且然后遇到第二阵列的透镜141。因此,在光线从透镜141出来时,它们相对于入射在透镜141上的光线的相应方向偏离了角度β。角度β特定于透镜141,并且取决于其直径且取决于这个相同透镜141的焦距。
总发散角对应于由透镜131和由透镜141连续生成的偏差。第二阵列的透镜141被选择为使得总发散角例如小于或等于大约5°。
图1中示出的实施例示出了理想配置,其中第一阵列的透镜131的像焦平面与第二阵列的透镜141的物焦平面相同。平行于光轴到达的所示光线聚焦到透镜131的像焦点或透镜141的物焦点上。因此,从透镜141射出的光线平行于其光轴传播。在这种情况下,总发散角为零。
在没有透镜141的第二阵列的情况下,如果发散角太大,从透镜131射出的某些光线有不被层135的开口137之间的壁136吸收的风险。然后它们有照亮多个光电探测器111的风险。这导致所得到的图像的质量方面的分辨率损失。
出现的优点是,透镜141的第二阵列的存在产生角度滤光器13的输出处的发散角方面的减小。发散角的减小能够降低在图像传感器11的水平处射出的光线相交的风险。
图2至图8示意性地且部分地示出了根据第一实施模式的角度滤光器制造方法的示例的连续步骤。
图2以截面图示出了角度滤光器制造方法的第一实施模式的步骤。
更特别地,图2部分地并示意性地示出了透镜或微透镜131的第一阵列和第一基底133的初始结构或堆叠21。
基底133可以由至少不吸收所考虑的波长(在此是在可见光和红外范围内)的透明聚合物制成。聚合物特别地可以由聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、环烯烃聚合物(COP)、聚酰亚胺(PI)、聚碳酸酯(PC)制成。基底133的厚度可以例如从1到100μm变化,优选从10到100μm变化。基底133可以对应于滤色器、对应于偏振器、对应于半波片或对应于四分之一波片。
在基底133上并与其接触的微透镜131可以由二氧化硅、由PMMA、由正性抗蚀剂、由PET、由聚萘二甲酸乙二醇酯(PEN)、由COP、由聚二甲基硅氧烷(PDMS)/硅酮、由环氧树脂或由丙烯酸酯树脂制成。微透镜131可以通过抗蚀剂块的蠕变来形成。微透镜131还可以通过压印在PET、PEN、COP、PDMS/硅树脂、环氧树脂或丙烯酸树脂的层上来形成。
微透镜131是各自具有在1μm到100μm的范围内,优选地从1μm到70μm的范围内的焦距f的会聚透镜。根据实施例,所有微透镜131基本相同。
在下面的描述中,该结构的上表面在图2的取向上被认为是前侧,该结构的下表面在图2的取向上被认为是后侧。
图3以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地,图3以局部简化图示出了在图2的步骤结束时获得的结构的背侧上形成包括开口137的阵列的第一树脂145的层135的步骤。
从支撑件133测量的层135的厚度称为“h”。层135例如对于由光电探测器(111,图1)检测的辐射是不透明的,例如对于由光电探测器探测的辐射是吸收的和/或反射性的。层135在可见光和/或近红外和/或红外范围进行吸收。层135对于用于成像(生物特征和指纹成像)的从450nm至570nm范围内的辐射可以是不透明的。
在图3中,在截面图中,开口137被示出为具有梯形截面。一般而言,在截面图中,开口137的截面可以是正方形、三角形、矩形。进一步,在俯视图中,开口137的截面可以是圆形、椭圆形或多边形,例如三角形、正方形、矩形、梯形或漏斗形。俯视图中开口137的截面优选地为圆形。
根据实施例,开口137以行和列的形式布置。开口137可以具有基本相同的尺寸。称“w1”为开口137的直径(在开口的基部处测量,即在与基底133的界面处测量)。根据实施例,开口137以行和列的形式规则地布置。称“p”为孔137的重复间距,即,在俯视图中行或列中的两个连续孔137的中心之间的距离。
开口137优选地被形成为使得每个微透镜131在单个开口137前面,并且每个开口137的顶部具有单个微透镜137。微透镜131的中心例如与和其相关联的开口137的中心对准。每个透镜131的直径优选地大于透镜131与其相关联的每个开口137的直径w1。
间距p可以在从5μm到50μm的范围内,例如大约等于15μm。高度h可以在1μm至1mm的范围内,优选地在12μm至15μm的范围内。宽度w1可以优选地在从5μm至50μm的范围内,例如大约等于10μm。
制造包括开口137的阵列的层135的方法的实施例包括以下步骤:
通过离心或涂覆在基底133的背侧上沉积第一树脂145的层135;
通过将第一树脂145在其前侧暴露(光刻)于通过由微透镜131阵列形成的掩模准直的光,在层135中形成开口137;以及
通过显影去除树脂145的被曝光部分。
根据这个实施例,微透镜131和基底133优选地由透明或部分透明(即,在与曝光期间使用的波长相对应的波长范围内,在为目标场(例如成像)考虑的光谱的一部分中是透明的)的材料制成。
制造包括开口137的阵列的层135的方法的另一实施例包括以下步骤:
通过离心或涂覆在基底133的背侧上沉积第一树脂145的层135;
通过树脂145的背面将其暴露于通过掩模准直的光,在层135中形成开口137;以及
通过显影去除树脂145的被曝光部分。
这个实施例需要在掩模上绘制的开口与透镜131先前对准,以形成与透镜131对准的开口137。
实际上,这种对准是通过分布在结构整个表面上的对准标记(优选至少四个对准标记)来执行的。
制造包括开口137的阵列的层135的方法的另一实施模式包括以下步骤:
在基底133的背侧上并且通过光刻蚀刻步骤,形成由期望形状的开口137的透明负性牺牲树脂(图3中未示出)制成的模具;
利用第一树脂145填充模具;以及
例如通过“剥离”方法移除牺牲树脂模具。
这个实施例还需要在掩模上绘制的开口与透镜131先前对准,以形成与透镜131对准的开口137。
制造包括开口137的阵列的层135的方法的实施模式包括以下步骤:
通过涂覆或离心在基底133的背侧上沉积树脂145的层135;以及
对树脂145的层135穿孔以形成开口137。
这个实施例还需要透镜131与穿孔工具的先前对准,以形成与透镜131对准的开口137。
可以通过使用例如包括微型针的微型穿孔工具来执行穿孔,以获得精确尺寸的孔137。
作为变型,层135的穿孔可以通过激光烧蚀来执行。
根据实施例,树脂145是正性抗蚀剂,例如,有色或黑色DNQ-Novolac树脂、或DUV(深紫外)抗蚀剂。DNQ-Novolac抗蚀剂是基于重氮萘醌(DNQ)和酚醛清漆树脂(酚醛树脂)的混合物。DUV抗蚀剂可以包括基于聚羟基苯乙烯的聚合物。
根据另一实施例,树脂145是负性抗蚀剂。负性抗蚀剂的示例是环氧聚合物树脂(例如,以SU-8名称商业化的树脂)、丙烯酸酯树脂和非化学计量硫醇烯(off-stoichiometry thiol-ene,OSTE)聚合物。
根据另一实施例,树脂145是基于激光可加工材料,即在激光辐射的作用下会降解的材料。激光可加工材料的示例是石墨、塑料材料,诸如PMMA、丙烯腈丁二烯苯乙烯(ABS)或染色塑料薄膜(诸如PET、PEN、COP和PI)。
图4以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地说,图4以局部简化图示出了通过在图2和图3的步骤结束时获得的结构的背侧上沉积第二层139来进行平坦化的步骤。
可选地,开口137填充有空气或填充有对由光电探测器(111,图1)检测到的辐射至少部分透明的材料,例如PDMS、环氧树脂或丙烯酸树脂或以商标名SU8已知的树脂。作为变型,开口137可以填充有部分透明的材料,该材料在被考虑用于目标场(例如成像)的光谱的一部分中是吸收性的,以便对由角度滤光器13进行角度滤光的光线进行颜色滤光。
在图3中示出的步骤之后,或者在开口137的可选填充之后,该结构的背侧完全覆盖有第二层139。换句话说,第一层135覆盖有第二层139。在这个步骤之后,第二层139的下表面基本上是平坦的。如果先前没有实行填充开口137的步骤,则开口137因此被填充有第二层139。
层139的材料优选地对由光电探测器(111,图1)检测到的辐射是至少部分透明的,例如PDMS、环氧树脂或丙烯酸树脂或以商标名SU8已知的树脂。在开口137的可选填充期间使用的填充材料和层139的材料可以具有相同的成分或不同的成分。
图5以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地,图5以局部简化图示出了在图2至图4的步骤结束时获得的结构的背侧上沉积第二树脂151的膜149的步骤。
根据实施模式,结构的背侧被整体覆盖(整板),并且特别地层139覆盖有第二树脂151的膜149。第二树脂151优选地是正性的。
膜的厚度在整个结构上基本恒定。厚度例如在从1μm至20μm的范围内,优选地从12μm至15μm的范围内。
作为替代性实施方式,层149可以沉积在支撑膜(未示出)上,并且然后层149和所述膜在图2至图4的步骤结束时获得的结构上的组件可以被层压。根据这个替代性实施方式,层149可以在图3中示出的步骤结束后立即沉积。
图6以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地,图6以局部简化图示出了去除层149的一部分以形成第二树脂151的垫153的步骤。
垫153被形成为使得它们例如在俯视图中具有正方形或圆形形状,优选地圆形。垫具有在例如从2μm到透镜131的直径的范围内的直径w2。垫153的数量优选地对应于第一阵列的透镜131的数量。
从层149制造垫153的方法的实施例包括以下步骤:
通过将第二树脂151在其前侧暴露于穿过由微透镜131的阵列和开口137形成的掩模的准直的光,在层149中形成垫153;以及
通过显影去除树脂151的未曝光部分。
根据这个实施例,微透镜131、基底133和层139优选地由在对应于曝光期间使用的波长的波长范围内透明的材料制成。
从层151制造垫153的方法的另一实施例包括以下步骤:
通过将树脂151在其背侧暴露于通过掩模准直的光,在层149中形成垫153;以及
通过显影去除树脂151的未曝光部分。
这个实施例需要掩模上绘制的垫153与透镜131(和开口137)的先前对准,以形成与透镜131(和开口137)对准的垫153。
图7以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地,图7以局部简化图示出了加热在图2至图6的步骤结束时获得的结构的步骤。
根据实施方式,该结构被加热以使树脂151的垫153变形。实际上,通过加热的作用,垫153通过蠕动变形以形成透镜141。在这个步骤期间,温度例如在从100至200℃的范围内。
作为变型,垫153暴露于UV以变形并形成透镜141。UV源的孔径角使得能够改变透镜141的曲率。
在图7中示出的步骤结束时,透镜141具有例如球形或非球形的帽形。
图8以截面图示出了根据第一实施模式的角度滤光器制造方法的另一步骤。
更特别地,图8以局部简化图示出了在图2至图7的步骤结束时获得的结构的背侧上沉积第三层155的步骤。
该结构的背侧被整体覆盖(全板),并且特别地,透镜141和第二层139覆盖有第三层155。
第三层155和第二层139可以具有相同的成分或具有不同的成分。
第三层155优选地具有优选小于第二树脂151的光学指数的光学指数。
图9至图15示意性地且部分地示出了根据第二实施模式的角度滤光器制造方法的示例的连续步骤。
第二实施模式与第一实施模式的不同之处在于这样的事实,即,透镜131的第一阵列被形成为与基底133接触,并且在形成包括开口137的阵列的第一层135之前形成。
图9以截面图示出了角度滤光器制造方法的第二实施模式的步骤。
更特别地,图9以局部简化图示出了与图2中示出的根据第一实施模式的方法的初始结构相同的初始结构。
图10以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
更特别地,图10以局部简化图示出了在图9的步骤结束时获得的结构的背侧上沉积第一实施模式的膜149的步骤。
这个步骤基本上与根据第一实施模式的方法的图5中示出的步骤相同,不同之处在于在图10中示出的步骤中,膜149覆盖基底133。
图11以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
图12以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
更特别地,图11和图12以局部简化图示出了在图10的步骤结束时获得的结构的背侧上由薄膜149形成透镜141的第二阵列的步骤。
这两个步骤基本上与根据第一实施模式的方法的图6和图7中分别示出的步骤相同。
图13以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
更具体地说,图13以局部简化图示出了在图9至图12的步骤结束时获得的结构的背侧上沉积具有低于第二树脂151的光学指数的光学指数的第三层155的步骤。
该结构的背侧被整体覆盖(全板),并且特别地透镜141和基底133覆盖有第三层155。
图14以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
图15以截面图示出了根据第二实施模式的角度滤光器制造方法的另一步骤。
更特别地,图14和图15以局部简化图示出了在图9至图13的步骤结束时获得的结构的背侧上形成包括开口137的阵列的第一层135的步骤。
这两个步骤基本上与根据第一实施模式的方法的图3中示出的步骤相同,不同之处在于第一层135形成在第三层155上。
这些步骤之后可以是与根据第一实施模式的方法的图7的第二层139的沉积步骤基本相同的第二层的沉积步骤。
图16至图19示意性地且部分地示出了根据第三实施模式的角度滤光器制造方法的示例的连续步骤。
第三实施模式与第一实施模式的不同之处在于透镜141的第二阵列的制造模式。
图16以截面图示出了角度滤光器制造方法的第三实施模式的步骤。
更特别地,图16以局部简化图示出了形成与根据第一实施模式的方法的图4中示出的结构基本相同的结构的步骤。因此,图16中示出的结构基本上对应于根据第一实施模式的方法的图2至图4的步骤的实施结果。
图17以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤。
更特别地,图17以局部简化图示出了在图16的步骤结束时获得的结构的背侧上沉积第二树脂151的膜149的步骤。
这个步骤基本上与根据第一实施模式的方法的图5中示出的步骤相同。
在本实施模式中,第二树脂151优选地是基于非交联环氧树脂和/或丙烯酸酯。
图18以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤。
更特别地,图18以局部简化图示出了从膜149形成第二透镜阵列141的步骤。
在这个步骤中,通过压印形成透镜141的第二阵列141。更准确地说,恒定初始厚度的膜149由于模具157在结构上的压力而变形。所使用的模具157优选地具有透镜141的阵列的印记的形状。在压印期间,结构同时暴露于光辐射,例如UV,或者暴露于热源(热成型),从而使得第二树脂151能够交联并因此固化第二树脂。然后,第二树脂151呈与模具157的形状相反的形状。
实际上,在这个步骤期间,该结构可以通过其前侧安装在保护膜上,以避免损坏透镜131的第一阵列。
图18中示出的结构对应于上述步骤结束时获得的结构,模具157总是与树脂151接触。
图19以截面图示出了根据第三实施模式的角度滤光器制造方法的另一步骤。
更特别地,图19以局部简化图示出了移除存在于在图18的步骤结束时获得的结构上的模具157的步骤。
在这个步骤中移除模具157以释放透镜141的第二阵列。
实际上,在这个步骤结束时,透镜141不必彼此分离。实际上,后者可以通过源自膜149的交联膜耦接。这种现象特别地是由于模具157的内表面处存在的缺陷,以及层139的平坦化缺陷。
这个步骤需要模具157与透镜131(和开口137)的先前对准,以形成与透镜131(和开口137)对准的透镜141。
图20以截面图示出了图18和图19的步骤的变型。
更特别地,图20以局部简化图示出了图18和图19的步骤的替代性实施例。
图20中示出的步骤与图18和图19中的步骤的不同之处在于这样的事实,即,第二阵列的透镜141的数量与第一阵列的透镜131的数量不同。透镜141的数量优选地大于透镜131的数量。例如,透镜141的数量至少是透镜131的数量的两倍。
在这种情况下,每个透镜141的光轴143(图1)不必与透镜131的光轴143(图1)对准。
因此,这个变型不需要模具157与透镜131(和开口137)的先前对准。
图21至图24示意性地且部分地示出了根据第四实施模式的角度滤光器制造方法的示例的连续步骤。
第四实施模式与第一实施模式的不同之处在于这样的事实,即,两个透镜131和141阵列分离地形成,并且然后通过粘合剂组装。
图21以截面图示出了角度滤光器制造方法的第四实施模式的步骤。
更特别地,图21以局部简化图示出了形成与根据第一实施模式的方法的图4中示出的结构基本相同的结构的步骤。
图22以截面图示出了根据第四实施模式的角度滤光器制造方法的另一步骤。
更特别地,图22示出了形成堆叠件23的步骤,该堆叠件从上到下包括:
粘合剂膜159;
第二基底161;以及
透镜141的第二阵列。
第二基底161基本上与根据第一实施模式的方法的图2中示出的第一基底133相同。
根据实施例,透镜141的阵列的形成与根据第一实施模式的方法的图5至图7中示出的步骤中讨论的透镜141的阵列的形成基本相同,不同之处在于在图22的步骤处,透镜141的第二阵列形成在基底161上。透镜141的第二阵列形成在不包括透镜131的第一阵列的结构上,然而,透镜141可以不通过由透镜131的第一阵列形成的掩模准直的光的作用进行的光刻蚀刻来形成。
根据另一实施例,透镜141的阵列的形成与根据第三实施模式的方法的图17至图20中示出的步骤中讨论的透镜141的阵列的形成基本相同。
图23以截面图示出了根据第四实施模式的角度滤光器制造方法的另一步骤。
更特别地,图23示出了组装图21和图22中示出的两个结构的步骤。
在这个步骤中,通过位于堆叠件23的前侧上的粘合剂膜159,堆叠件23被定位并粘合到图21中示出的结构的后侧。
图24以截面图示出了图23的步骤的变型。
更特别地,图24以局部简化图示出了图22和图23的步骤的替代性实施例。
图24中示出的结构与图23中示出的结构的不同之处在于,第二阵列的透镜141的数量与第一阵列的透镜131的数量不同。透镜141的数量优选地大于透镜131的数量。
图24中示出的透镜141与根据第三实施模式的方法的图20中示出的透镜141基本相同。
因此,这个变型不需要透镜141的阵列与透镜131的阵列(和开口137)的先前对准。
已经描述了各种实施例和变型。本领域技术人员将理解,这些不同实施例和变型的某些特征可以组合,并且本领域技术人员将想到其他变型。特别地,第二和第三实施模式可以组合,并且第三实施模式中的图20中示出的变型可以变换到第一和第二实施模式。进一步,所描述的实施例例如不限于上文提及的尺寸和材料的示例。
最后,基于上文提供的功能指示,本文描述的实施例和变型的实际实施方式在本领域技术人员的能力范围内。

Claims (10)

1.一种角度滤光器(13),其特征在于,包括:
平凸透镜(131)的第一阵列;
平凸透镜(141)的第二阵列,所述平凸透镜的第二阵列位于透镜的第一阵列和图像传感器(11)之间;以及
开口(137)的阵列,
第一阵列和第二阵列的透镜(131,141)的平坦表面彼此面对,并且所述第二阵列的透镜的数量大于所述第一阵列的透镜的数量。
2.根据权利要求1所述的角度滤光器,其特征在于,所述开口(137)的阵列形成在由在可见光和红外范围内不透明的第一树脂制成的层(135)中。
3.根据权利要求1所述的角度滤光器,其特征在于,阵列的开口(137)填充有空气或者填充有在可见光和红外范围内至少部分透明的材料。
4.根据权利要求1所述的角度滤光器,其特征在于,所述第一阵列的每个透镜(131)的光轴(143)与所述第二阵列的透镜(141)的光轴(143)以及阵列的开口(137)的中心对准。
5.根据权利要求1所述的角度滤光器,其特征在于,阵列的每个开口(137)与所述第一阵列的单个透镜(131)相关联。
6.根据权利要求1所述的角度滤光器,其特征在于,所述第一阵列的透镜(131)的像焦平面与所述第二阵列的透镜(141)的物焦平面重合。
7.根据权利要求1所述的角度滤光器,其特征在于,所述第一阵列的透镜(131)具有大于所述第二阵列的透镜(141)的直径的直径。
8.根据权利要求1所述的角度滤光器,其特征在于,所述开口(137)的阵列位于透镜(131)的第一阵列和透镜(141)的第二阵列之间。
9.根据权利要求1所述的角度滤光器,其特征在于,透镜(141)的第二阵列位于透镜(131)的第一阵列和所述开口(137)的阵列之间。
10.根据权利要求1所述的角度滤光器,其特征在于,所述第一阵列的透镜(131)位于基底(133)上并与所述基底接触。
CN202090000999.9U 2019-12-06 2020-12-03 角度滤光器 Active CN218383360U (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1913892 2019-12-06
FR1913892A FR3104272B1 (fr) 2019-12-06 2019-12-06 Filtre angulaire optique
PCT/EP2020/084543 WO2021110875A1 (fr) 2019-12-06 2020-12-03 Filtre angulaire

Publications (1)

Publication Number Publication Date
CN218383360U true CN218383360U (zh) 2023-01-24

Family

ID=70228128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202090000999.9U Active CN218383360U (zh) 2019-12-06 2020-12-03 角度滤光器

Country Status (6)

Country Link
US (1) US20230003923A1 (zh)
EP (1) EP4070137A1 (zh)
JP (1) JP2023504883A (zh)
CN (1) CN218383360U (zh)
FR (1) FR3104272B1 (zh)
WO (1) WO2021110875A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094140B1 (fr) 2019-03-22 2022-04-08 Isorg Capteur d'images comprenant un filtre angulaire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894840B2 (en) * 2002-05-13 2005-05-17 Sony Corporation Production method of microlens array, liquid crystal display device and production method thereof, and projector
KR100539090B1 (ko) * 2003-04-18 2005-12-26 포스트마이크로 주식회사 마이크로 렌즈 제조 방법
JP4985061B2 (ja) * 2007-04-06 2012-07-25 株式会社ニコン 分光装置および撮像装置
JP2011203792A (ja) * 2010-03-24 2011-10-13 Hitachi Displays Ltd 撮像装置

Also Published As

Publication number Publication date
JP2023504883A (ja) 2023-02-07
WO2021110875A1 (fr) 2021-06-10
FR3104272A1 (fr) 2021-06-11
US20230003923A1 (en) 2023-01-05
FR3104272B1 (fr) 2023-09-01
EP4070137A1 (fr) 2022-10-12

Similar Documents

Publication Publication Date Title
JP7411630B2 (ja) 光学系、及び光学系を製造する方法
US9305956B2 (en) Optical assembly including plenoptic microlens array
US9784986B2 (en) Self-aligned spatial filter
US8303866B2 (en) Mass production of micro-optical devices, corresponding tools, and resultant structures
NL2012262C2 (en) Method of fabricating a wafer level optical lens assembly.
JPH09307697A (ja) マイクロレンズアレイおよびイメージセンサおよび光画像伝送素子
CN218383360U (zh) 角度滤光器
TWI725048B (zh) 包含直接附著至基底之間隔件之光學組件
US20230154957A1 (en) Structure of an angular filter on a cmos sensor
US20220406838A1 (en) Method for Manufacturing a Biometric Imaging Device by Means of Nanoimprint Lithography
JP2013246210A (ja) マイクロレンズの形成方法、マイクロレンズ、液晶デバイス用対向基板、および液晶デバイス
JP2002192534A (ja) マイクロレンズアレイ、その製造方法及びその製造用原盤並びに光学装置
US20220317351A1 (en) Angular filter
CN214586079U (zh) 用于图像传感器的光学滤波器、系统和指纹传感器
CN116583765A (zh) 光学角度滤波器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant