CN218274664U - 一种燃料电池系统的吹扫系统 - Google Patents

一种燃料电池系统的吹扫系统 Download PDF

Info

Publication number
CN218274664U
CN218274664U CN202222114450.6U CN202222114450U CN218274664U CN 218274664 U CN218274664 U CN 218274664U CN 202222114450 U CN202222114450 U CN 202222114450U CN 218274664 U CN218274664 U CN 218274664U
Authority
CN
China
Prior art keywords
hydrogen
purging
outlet
inlet
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202222114450.6U
Other languages
English (en)
Inventor
仇昌盛
卢炽华
颜伏伍
吴友华
刘建国
丘祖新
李振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Xianhu Laboratory
Original Assignee
Foshan Xianhu Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Xianhu Laboratory filed Critical Foshan Xianhu Laboratory
Priority to CN202222114450.6U priority Critical patent/CN218274664U/zh
Application granted granted Critical
Publication of CN218274664U publication Critical patent/CN218274664U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池系统的吹扫系统和吹扫方法。本发明的吹扫系统包括:电池电堆、空气装置、氢气装置、吹扫装置和排出装置。本发明的吹扫方法基于所述吹扫系统。空气通过空压组件通入电池系统使用,来源丰富且成本低,高氮含量的空气经脱氧瓶的脱氧处理,从而获得吹扫气源,无需另外搭载氮气储存系统。采用氮气吹扫,对电池阴极和阳极的影响小。氢气装置的尾排氢气能够通过引射器和氢气循环泵循环利用,也能够作为还原剂对脱氧瓶内的脱氧剂进行还原处理。

Description

一种燃料电池系统的吹扫系统
技术领域
本发明涉及燃料电池技术领域,特别涉及一种燃料电池系统的吹扫系统。
背景技术
质子交换膜燃料电池,简称燃料电池,其吹扫主要是为了清理其工作过程中产生的液态水或水汽,避免残留于双极板和膜电极中的过量液态水或水汽固化,对电堆造成永久性损伤。燃料电池的吹扫往往伴随着燃料电池的启停,而启停时电堆性能的好坏又直接影响燃料电池的可靠性,故燃料电池吹扫的优劣是考量燃料电池可靠性的重要因素。
现有技术中,燃料电池的吹扫方式主要有以下三种。其一是用阳极氢气吹扫阳极,用阴极空气吹扫阴极。这种吹扫方式对控制标定要求较高,若采用大流量控制,在阴极会形成高电势,使阴极催化层上的碳基基体更容易与氧气或水发生氧化反应,造成催化剂凝结,恶化电堆性能;若采用小流量控制,会延长系统的启停时间。其二,是用阳极氢气吹扫阴极和阳极。这种吹扫方式存在阳极氢气与阴极空气混合的风险,会提高电堆反极的风险,不利用燃料电池的使用安全,亦会降低燃料电池的整体利用率。其三是用氮气吹扫阳极和阴极。这种吹扫方式的劣势主要来源于获取氮气源需要外部搭载氮气储存系统,不利于燃料电池集成化发展趋势。
发明内容
本发明目的在于提供一种燃料电池系统的吹扫系统,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
为解决上述技术问题所采用的技术方案:
一种燃料电池系统的吹扫系统,包括:电池电堆、空气装置、氢气装置、吹扫装置和排出装置;
所述电池电堆具有空气进口、空气出口、氢气进口和氢气出口;所述空气装置包括:空压组件和增湿器;所述氢气装置包括:储氢组件、引射器、氢气循环泵、液气分离器;所述吹扫装置包括:脱氧瓶和吹扫循环泵;
所述空气进口经所述增湿器与所述空压组件相连,所述空气出口经所述增湿器与所述排出装置相连;
所述氢气进口与所述储氢组件相连,所述氢气出口与所述液气分离器相连,所述液气分离器具有排水口和排氢口,所述排水口与所述排出装置相连,所述排氢口通过所述引射器和氢气循环泵与所述氢气进口相连;
所述脱氧瓶具有空气入口、氢气入口、吹扫出口和排出口,所述空气入口与所述空压组件相连,所述吹扫出口经所述吹扫循环泵分别与所述空气进口和氢气进口相连,所述排出口与所述排出装置相连。
本发明所提供的燃料电池系统的吹扫系统,至少具有如下的有益效果:空气通过空压组件通入电池系统使用,来源丰富,成本低且可靠,高氮含量的空气经脱氧瓶的脱氧处理,从而获得吹扫性能优越的吹扫气源,无需另外搭载氮气储存系统。采用氮气吹扫,对电池阴极和阳极的影响小,流量控制要求低,不会提高反极的风险。氢气装置的尾排氢气能够通过引射器和氢气循环泵循环利用,也能够作为还原剂对脱氧瓶内的脱氧剂进行还原处理,提高了系统氢气的利用率,也有效解决了尾排氢气浓度过高带来的氢安全问题。
作为上述技术方案的进一步改进,所述增湿器具有与空压组件连通的干侧入口、与所述空气进口连通的干侧出口、与所述空气出口连通的湿侧入口、以及与所述排出装置连通的湿侧出口。
通过上述技术方案,电池电堆排出的湿润尾气通过湿侧入口进入增湿器,并从湿侧出口排出;干燥的待加湿气体从干侧入口进入增湿器内,转换成为富含水分的气体后从干侧出口排出,再进入燃料电池电堆。
作为上述技术方案的进一步改进,所述湿侧出口和排水口均经所述脱氧瓶与所述排出装置相连,所述湿侧出口与所述空气入口相连,所述排水口与所述氢气入口相连。通过上述技术方案,氢气装置的尾排水以及空气装置的尾排水均通入到脱氧瓶内,提高脱氧瓶中的湿度或水含量,从而提升脱氧剂的脱氧效率和利用率,又能控制部件数量,降低控制需求和系统开发成本。
作为上述技术方案的进一步改进,所述引射器具有与所述储氢组件连通的引射入口、与所述氢气进口连通的引射出口、以及与所述排氢口相连的引射回流口。通过上述技术方案,所述液气分离器将尾排氢气分离出并通过引射器通过氢气进口通入电池电堆内循环使用。储氢组件的氢气沿引射入口通往引射出口,相对循环氢气为高速高能流,能够与循环氢气掺混均匀。
作为上述技术方案的进一步改进,所述吹扫装置还包括吹扫旁通阀,所述吹扫旁通阀的两端分别与所述空气入口和所述吹扫循环泵的出口相连通。通过上述技术方案,吹扫旁通阀能够能够与脱氧瓶和吹扫循环泵形成循环回路,脱氧空气能够在该循环回路内循环流动,使得脱氧处理更为充分。
作为上述技术方案的进一步改进,所述吹扫装置包括吹扫电磁阀,所述吹扫电磁阀的一侧与所述吹扫循环泵的出口连接;所述氢气进口或所述氢气循环泵的入口中的一个、以及所述空气进口均与所述吹扫电磁阀的另一侧相连。通过上述技术方案,吹扫气源通过吹扫循环泵通往空气进口,实现阴极吹扫;直接通往氢气进口或经氢气循环泵再通入氢气进口,都能实现阳极吹扫。所述吹扫电磁阀能够控制吹扫气源管道的通断。
作为上述技术方案的进一步改进,所述吹扫电磁阀和吹扫循环泵之间设有吹扫换热器,所述吹扫换热器的两端分别与所述吹扫电磁阀和吹扫循环泵相连。通过上述技术方案,所述吹扫换热器能够降低经脱氧瓶脱氧后的吹扫气源的温度,避免过高温度的吹扫气源流入燃料电池电堆,造成烧堆。
本发明还提供了一种吹扫方法,所述吹扫方法基于上述的燃料电池系统的吹扫系统,具体方法如下:通过空压组件将空气通入所述脱氧瓶内,通过脱氧瓶内的脱氧剂进行脱氧处理,脱氧后的氮气通入所述电池电堆的空气进口和氢气进口,实现阳极和阴极的氮气吹扫;所述氢气装置的尾排氢气经所述排氢口通入所述脱氧瓶内,充当还原剂,实现氧化后的脱氧剂的还原处理。
本发明所提供的吹扫方法,至少具有如下的有益效果:利用空气进行脱氧处理从而获取可靠的氮气吹扫气源,采用氮气进行阴极吹扫和阳极吹扫,提升了燃料电池电堆的工作性能和可靠性。利用氢气装置的尾排氢气作为脱氧瓶的还原剂,有效解决了尾排氢气浓度过高带来的氢安全问题的同时,提高了系统氢气利用率。本发明的吹扫方法,吹扫稳定、提高了的燃料电池系统的功能性,对尾排氢气能够二次利用,实现燃料电池系统的产物唯一性。
作为上述技术方案的进一步改进,所述脱氧瓶集成有加热丝、氧浓度传感器、氢浓度传感器和温度传感器,通过温度传感器检测并判定环境温度,根据环境温度结合整车系统、电池电堆和排氢阀的运行状态来控制脱氧瓶的启停。
通过上述技术方案,集成电阻加热丝的脱氧瓶能够确保脱氧剂的还原反应能够顺利进行。通过氧浓度传感器、氢浓度传感器,能够确保未有过量氧气和氢气参与吹扫。通过温度传感器进行温度监测,使得吹扫气源的脱氧处理和脱氧剂的还原处理都能够保持合适的反应温度。
作为上述技术方案的进一步改进,预设所述脱氧瓶内的氧浓度阈值和氢浓度阈值,通过实时监测脱氧瓶内的氧浓度和氢浓度来检测故障并控制燃料电池系统的开机吹扫或关机吹扫。通过上述技术方案,
附图说明
下面结合附图和实施例对本发明做进一步的说明;
图1是本发明所提供的燃料电池系统的吹扫系统,其一实施例的结构示意图;
图2是本发明所提供的燃料电池系统的吹扫系统,其一实施例的结构示意图;
图3是本发明所提供的燃料电池系统的吹扫系统,其一实施例的结构示意图;
图4是本发明所提供的燃料电池系统的吹扫系统,其一实施例的结构示意图;
图5是本发明所提供的燃料电池系统的吹扫系统,其一实施例的结构示意图;
图6是本发明所提供的吹扫方法,其一实施例中脱氧瓶的控制流程示意图;
图7是本发明所提供的吹扫方法,其一实施例中的关机吹扫策略流程示意图;
图8是本发明所提供的吹扫方法,其一实施例中的开机吹扫策略流程示意图。
图中:11、电池电堆;20、空气装置;21、空气滤清器;22、空压机;23、中冷器;24、节气门;25、增湿器;26、背压阀;27、空气旁通阀;30、氢气装置;31、储氢瓶;32、截止阀;33、减压阀;34、安全阀;35、氢气换热器;36、引射器;37、液气分离器;38、引射回流单向阀;39、氢气循环泵;310、氢循环单向阀;311、排水阀;312、排氢阀;40、吹扫装置;41、吹扫循环泵;42、吹扫电磁阀;43、吹扫旁通阀;44、脱氧瓶;45、阳极吹扫单向阀;46、阴极吹扫单向阀;47、吹扫排水阀;48、吹扫换热器;50、排出装置;51、混排管;52、消音器。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,如果具有“若干”之类的词汇描述,其含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1至图8,本发明的燃料电池系统的吹扫系统作出如下实施例:
一种燃料电池系统的吹扫系统,包括:电池电堆11、空气装置20、氢气装置30、吹扫装置40和排出装置50。
所述电池电堆11具有空气进口、空气出口、氢气进口和氢气出口。所述电池电堆11还应该具备热管理系统进出口和电气系统接口,但考虑到本发明提出的吹扫系统技术方案主要涉及空气系统和氢气系统,故不针对相应热管理系统或电气系统做出描述。
所述空气装置20包括:空压组件和增湿器25。
所述增湿器25具有干侧入口、干侧出口、湿侧入口和湿侧出口。所述干侧入口与所述空压组件相连通,所述干侧出口与所述空气进口相连通,所述湿侧入口与所述空气出口相连通,所述湿侧出口与所述排出装置50相连通。
所述空气进口经所述增湿器25与所述空压组件相连,所述空气出口经所述增湿器25与所述排出装置50相连。
所述氢气装置30包括:储氢组件、引射器36、氢气循环泵39和液气分离器37。所述氢气进口经所述引射器36与所述储氢组件相连。所述氢气出口与所述液气分离器37相连。所述液气分离器37具有排水口和排氢口。所述排水口与所述排出装置50相连,所述排氢口通过所述引射器36和氢气循环泵39与所述氢气进口相连。
所述氢气循环泵39的出口和所述氢气进口之间还设有氢循环单向阀310。所述氢循环单向阀310的入口与氢气循环泵39的出口相连通。所述氢气进口、氢循环单向阀310的出口和引射出口通过三通管相连通。
所述吹扫装置40包括:脱氧瓶44和吹扫循环泵41。所述脱氧瓶44具有空气入口、氢气入口、吹扫出口和排出口。所述空气入口与所述空压组件相连。所述吹扫出口经所述吹扫循环泵41分别与所述空气进口和氢气进口相连。所述排出口与所述排出装置50相连。
所述空压组件包括:空气滤清器21、空压机22和中冷器23。所述空气滤清器21、空压机22和中冷器23依次相互连通。
在本实施例中,所述空气滤清器21集成有环境温度传感器和空气流量计,其入口可直接与大气相通,其出口经管道与所述空压机22的入口相连通。在所述空压机22的工作过程中,其入口处会产生负压,为避免造成空压机22和空气滤清器21之间的连接管路出现吸瘪现象,应保证空气滤清器21出口与空压机22入口之间的连接管路至少满足±50kPa的耐压力,具体压力值可根据具体系统而定。
所述中冷器23的入口与所述空压机22的出口相连通,所述中冷器23的出口通过三通管分别与空气旁通阀27和节气门24相连。所述节气门24的一侧经三通管与所述中冷器23的出口连接,另一侧与所述增湿器25的干侧入口相连接。所述空气旁通阀27的一侧经三通管与所述中冷器23的出口连接,另一侧与所述脱氧瓶44的空气进口相连通。
所述增湿器25具有干侧通道和湿侧通道。所述干侧入口和干侧出口分别设于所述干侧通道的两端,所述湿侧入口和湿侧出口分别设于所述湿侧通道的两端。在空气进堆前通过增湿器25对其进行外增湿,从而保证质子交换膜含有适量的水分。所述增湿器25的湿侧出口通过背压阀26与排出装置50相连通。
大气中的空气经所述空气滤清器21初步过滤,然后通过空压机22进行加压,空压机22加压后的高温空气能够通过中冷器23降低温度,再输送至增湿器25或脱氧瓶44。
所述储氢组件包括:储氢瓶31、截止阀32、减压阀33、安全阀34和氢气换热器35。所述储氢瓶31、截止阀32、减压阀33、安全阀34和氢气换热器35依次相互连接。所述截止阀32的入口与储氢瓶31的出口连接,所述截止阀32的出口与减压阀33的入口连接。所述安全阀34的入口与减压阀33的出口连接,所述安全阀34的出口与氢气换热器35的入口连接。
所述引射器36具有引射入口、引射出口和引射回流口。所述氢气换热器35的出口与所述引射入口相连通。所述引射出口与所述电池电堆11的氢气进口相连。
所述液气分离器37的入口与所述电池电堆11的氢气出口相连,所述排氢口接有四通管。所述四通管的其中一路管口与所述氢气循环泵39的入口连通,另一路管口经排氢阀312与所述脱氧瓶44的氢气入口连通,其余一路管口经引射回流单向阀38与所述引射回流口相连通。
所述引射回流单向阀38的进口和出口分别与所述四通管以及引射回流口相连通,使得从排氢口排出的氢气能够经四通管和引射回流单向阀38流入所述引射回流口。
所述排氢阀312的两端分别与所述液气分离器37的排氢口以及脱氧瓶44的氢气入口相连,从而控制所述排氢口和氢气入口的通断。所述排水阀311的两端分别与所述液气分离器37的排水口以及排出装置50相连,从而控制所述排水口与排出装置50之间的通断。
所述吹扫装置40包括吹扫电磁阀42。所述脱氧瓶44的吹扫出口与吹扫循环泵41的入口相连通,所述吹扫循环泵41的出口与所述吹扫电磁阀42相连。所述吹扫电磁阀42的一侧与所述吹扫循环泵41的出口连接,所述吹扫电磁阀42的另一侧通过三通管连接有阳极吹扫单向阀45和阴极吹扫单向阀46。所述阳极吹扫单向阀45与氢气循环泵39的入口以及排氢口通过三通管相连。所述阴极吹扫单向阀46通过三通管连通于所述空气进口与所述增湿器25的干侧出口之间。
所述吹扫装置40还包括吹扫旁通阀43。所述吹扫旁通阀43的两端分别与吹扫循环泵41的出口以及脱氧瓶44的空气入口相连通。所述吹扫旁通阀43的一侧通过三通管连通于吹扫电磁阀42和吹扫循环泵41之间,另一侧通过三通管连通于空气旁通阀27和所述脱氧瓶44的空气入口之间。
所述液气分离器37的排水口经排水阀311与排出装置50相连。所述脱氧瓶44的排出口通过吹扫排水阀47与排出装置50相连。
所述排出装置50包括:混排管51和消音器52。所述混排管51的入口分别与所述背压阀26、排水阀311和吹扫排水阀47相连通。所述消音器52设于所述混排管51的出口。在本实施例中,所述混排管51具备排水功能,避免因过量液态水或水汽流入所述消音器52,从而导致啸叫或所述消音器52的性能衰减。
如图3所示的进一步实施例中,所述阳极吹扫单向阀45的一侧与所述吹扫电磁阀42相连通,另一侧通过三通管与所述电池电堆11的氢气进口相连通。阳极吹扫单向阀45直接与氢气进口相连,阳极吹扫路径无需经过氢气循环泵39,降低了吹扫循环泵41的性能需求,降低开发成本。
如图4所示的进一步实施例中,所述液气分离器37的排水口通过排水阀311与所述脱氧瓶44的氢气入口相连。所述排水阀311的一侧与所述液气分离器37的排水口相连通,另一侧通过三通管连通于所述氢气入口和排氢阀312之间。所述氢气装置30的尾排水汽输送到脱氧瓶44中,提高脱氧瓶44中的湿度或水含量,提升脱氧瓶44内脱氧剂的脱氧效率和利用率。同样地,所述增湿器25的湿侧出口也可以通过背压阀26与脱氧瓶44的空气入口相连。空气装置20和氢气装置30的尾排水汽都通入到脱氧瓶44内,以供脱氧剂进行脱氧反应时消耗,多余的水汽又能通过排出口输送到混排管51进行排出。
在图5所示的进一步实施例中,所述吹扫装置40还包括吹扫换热器48。所述吹扫换热器48设于吹扫电磁阀42和吹扫循环泵41之间。所述吹扫换热器48的两端分别与所述吹扫电磁阀42和吹扫循环泵41相连。经脱氧瓶44脱氧处理后的吹扫气源,通过所述吹扫换热器48降低温度,避免过高温度的吹扫气源流入燃料电池电堆11而造成烧堆。
根据系统需要,在一些实施例中,所述液气分离器37可以集成超声波液位传感器。集成有超声波液位传感器可配合排水阀311实现液气分离器37的排水控制。
本发明还提供了一种基于上述吹扫系统的吹扫方法。
在吹扫过程中,通过空压组件将空气通入所述脱氧瓶44内,通过脱氧瓶44内的脱氧剂进行脱氧处理,脱氧后的氮气通入所述电池电堆11的空气进口和氢气进口,实现阳极和阴极的氮气吹扫;所述氢气装置30的尾排氢气经所述排氢口通入所述脱氧瓶44内,充当还原剂,实现氧化后的脱氧剂的还原处理。
所述脱氧瓶44的内部设置有适量的脱氧剂。所述脱氧瓶44的容积和脱氧剂的储存量根据燃料电池系统的功率而定。在本实施例中,所述脱氧剂是由还原铁粉、活性炭、吸水树脂和食盐混合而成的,无毒无味,脱氧效率高。以水和盐作为触媒,利用铁和氧的化学反应,能强效地吸收空气中的氧气,实现脱氧目的。具体的化学反应式为:4Fe+3O2+6H2O→4Fe(OH)3。
所述脱氧瓶44集成有加热丝。脱氧剂在进行脱氧后,形成4Fe(OH)3。需要将氢气装置30的尾排氢气作为还原剂,使4Fe(OH)3还原成还原铁粉或活性铁粉,以保证循环利用。具体地:先利用高温加热4Fe(OH)3,使其形成Fe2O3。再利用排氢阀312排出的氢气充当还原剂,在高温100℃~200℃下,实现还原反应。具体化学反应是为:4Fe(OH)3→Fe2O3+H2→2Fe+3H2O。
所述脱氧瓶44还集成有氧浓度传感器、氢浓度传感器和温度传感器。通过温度传感器检测并判定环境温度,根据环境温度结合整车系统、电池电堆11和排氢阀312的运行状态来控制脱氧瓶44的启停,以确保合适的反应温度、以及未有过量氧气和氢气参与吹扫。
如图6所示,所述脱氧瓶44的具体控制方法如下:
首先,检测环境温度,并判定环境温度传感器是否异常。
若环境温度传感器存在故障,则上报故障并重新检测环境温度。若环境温度传感器未存在故障,则判断环境温度是否大于阈值T1。
若环境温度小于等于阈值T1,则开启脱氧瓶44的加热功能,开启时间需根据脱氧瓶44中温度传感器识别的温度而定,温度阈值可考虑与T1一致或高于T1。
若环境温度大于阈值T1,则判断车辆是否运行。若车辆未运行,则关闭脱氧加热功能;若车辆运行中,则判断电池电堆11是否运行。若电池电堆11未运行,则关闭脱氧瓶44的加热功能;若电池电堆11运行中,则判断排氢阀312是否开启。
若排氢阀312未开启,则关闭脱氧瓶44的加热功能;若排氢阀312开启,则开启脱氧瓶44的加热功能,开启时间需根据脱氧瓶44中氢浓度传感器识别的氢浓度而定。
环境温度阈值T1可以根据实际情况和使用环境来设定。一般来说,T1设定为0℃以上为佳,能够避免因环境温度过低,造成脱氧瓶44内部的反应水结冰。而氢浓度阈值需根据燃料电池电堆11对吹扫气体的敏感性而定。
根据燃料电池电堆11的吹扫敏感性,预设好所述脱氧瓶44内的氧浓度阈值c1和氢浓度阈值c2。再通过实时监测脱氧瓶44内的氧浓度和氢浓度来检测故障并控制燃料电池系统的开机吹扫或关机吹扫。
如图7所示,在进行关机吹扫时:
首先,判断是否未执行燃料电池系统关机指令。
若未执行燃料电池系统关机指令,则返回上一级并继续等待关机命令;若执行燃料电池系统关机指令,则判断燃料电池系统是否未停止工作。
若燃料电池系统未停止工作,则返回上一级并继续等待关机命令;若燃料电池系统已停止工作,则关闭节气门24,开启旁通阀,给脱氧瓶44输入脱氧气源。
然后,检测脱氧瓶44内的氧浓度,判断脱氧瓶44的氧浓度是否大于c1。
若氧浓度大于c1,则判断氧浓度传感器是否异常。若氧浓度传感器存在异常,则上报故障,并在排除故障后重新检测脱氧瓶44的氧浓度。若氧浓度传感器未存在异常,则依次关闭吹扫电磁阀42、运行吹扫循环泵41、开启吹扫旁通阀43,之后再重新检测脱氧瓶44氧浓度。
若氧浓度小于c1,则检测脱氧瓶44内的氢浓度,判断脱氧瓶44氢浓度是否大于c2。
若脱氧瓶44氢浓度大于c2,则判断氢浓度传感器是否异常。若氢浓度传感器存在异常,则上报故障,并在故障排除后重新检测脱氧瓶44的氢浓度。若氧浓度传感器未存在异常,则依次关闭吹扫电磁阀42、运行吹扫循环泵41、开启吹扫旁通阀43,之后再重新检测脱氢瓶的氢浓度。
若脱氧瓶44氢浓度小于c2,则依次关闭吹扫旁通阀43、运行吹扫循环泵41、开启吹扫电磁阀42,再同时开启背压阀26、排水阀311和排氢阀312。
完成上述工作,则可结束关机吹扫策略。吹扫时间可根据吹扫旁通阀43的开启时间、吹扫电磁阀42的开启时间、燃料电池电堆11的不同运行工况等进行标定。
如图8所示,在进行开机吹扫时:
首先,判断是否未执行燃料电池系统开机指令。
若未执行燃料电池系统开机指令,则返回上一级并继续等待开机命令;若执行燃料电池系统开机指令,则判断燃料电池系统是否未启动。
若燃料电池系统未启动,则返回上一级并继续等待开机命令;若燃料电池系统已启动,则开启空气系统和氢气系统。其中开启空气系统是指开启空压机22、节气门24和背压阀26。而开启氢气系统是指开启截止阀32、减压阀33、氢气循环泵39、排水阀311和排氢阀312。
开启空气系统和氢气系统之后,检测脱氧瓶44的氧浓度,判断脱氧瓶44氧浓度是否大于c1。
若氧浓度大于c1,则判断氧浓度传感器是否异常。若氧浓度传感器存在异常,则上报故障,并在排除故障后重新检测脱氧瓶44的氧浓度。若氧浓度传感器未存在异常,则依次关闭吹扫电磁阀42、运行吹扫循环泵41、开启吹扫旁通阀43,之后再重新检测脱氧瓶44氧浓度。
若氧浓度小于c1,则检测脱氧瓶44内的氢浓度,判断脱氧瓶44氢浓度是否大于c2。
若脱氧瓶44氢浓度大于c2,则判断氢浓度传感器是否异常。若氢浓度传感器存在异常,则上报故障,并在故障排除后重新检测脱氧瓶44的氢浓度。若氧浓度传感器未存在异常,则依次关闭吹扫电磁阀42、运行吹扫循环泵41、开启吹扫旁通阀43,之后再重新检测脱氢瓶的氢浓度。
若脱氧瓶44氢浓度小于c2,则开启吹扫排水阀47。
完成上述工作,则可结束开机吹扫策略。特别地,在开启空气系统时,可根据燃料电池电堆11的需求和空压机22协调性能是否开启空气旁通阀27。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下还可以对这些实施例进行多种变化、修改、替换和变型,这些变化、修改、等同的变型或替换均包含在本申请权利要求所限定的范围内,本发明的范围由权利要求及其等同物限定。

Claims (7)

1.一种燃料电池系统的吹扫系统,其特征在于:包括:电池电堆(11)、空气装置(20)、氢气装置(30)、吹扫装置(40)和排出装置(50);
所述电池电堆(11)具有空气进口、空气出口、氢气进口和氢气出口;所述空气装置(20)包括:空压组件和增湿器(25);所述氢气装置(30)包括:储氢组件、引射器(36)、氢气循环泵(39)、液气分离器(37);所述吹扫装置(40)包括:脱氧瓶(44)和吹扫循环泵(41);
所述空气进口经所述增湿器(25)与所述空压组件相连,所述空气出口经所述增湿器(25)与所述排出装置(50)相连;
所述氢气进口与所述储氢组件相连,所述氢气出口与所述液气分离器(37)相连,所述液气分离器(37)具有排水口和排氢口,所述排水口与所述排出装置(50)相连,所述排氢口通过所述引射器(36)和氢气循环泵(39)与所述氢气进口相连;
所述脱氧瓶(44)具有空气入口、氢气入口、吹扫出口和排出口,所述空气入口与所述空压组件相连,所述吹扫出口经所述吹扫循环泵(41)分别与所述空气进口和氢气进口相连,所述排出口与所述排出装置(50)相连。
2.根据权利要求1所述的燃料电池系统的吹扫系统,其特征在于:所述增湿器(25)具有与空压组件连通的干侧入口、与所述空气进口连通的干侧出口、与所述空气出口连通的湿侧入口、以及与所述排出装置(50)连通的湿侧出口。
3.根据权利要求2所述的燃料电池系统的吹扫系统,其特征在于:所述湿侧出口和排水口均经所述脱氧瓶(44)与所述排出装置(50)相连,所述湿侧出口与所述空气入口相连,所述排水口与所述氢气入口相连。
4.根据权利要求1所述的燃料电池系统的吹扫系统,其特征在于:所述引射器(36)具有与所述储氢组件连通的引射入口、与所述氢气进口连通的引射出口、以及与所述排氢口相连的引射回流口。
5.根据权利要求1所述的燃料电池系统的吹扫系统,其特征在于:所述吹扫装置(40)还包括吹扫旁通阀(43),所述吹扫旁通阀(43)的两端分别与所述空气入口和所述吹扫循环泵(41)的出口相连通。
6.根据权利要求1所述的燃料电池系统的吹扫系统,其特征在于:所述吹扫装置(40)包括吹扫电磁阀(42),所述吹扫电磁阀(42)的一侧与所述吹扫循环泵(41)的出口连接;所述氢气进口或所述氢气循环泵(39)的入口中的一个、以及所述空气进口均与所述吹扫电磁阀(42)的另一侧相连。
7.根据权利要求6所述的燃料电池系统的吹扫系统,其特征在于:所述吹扫电磁阀(42)和吹扫循环泵(41)之间设有吹扫换热器(48),所述吹扫换热器(48)的两端分别与所述吹扫电磁阀(42)和吹扫循环泵(41)相连。
CN202222114450.6U 2022-08-11 2022-08-11 一种燃料电池系统的吹扫系统 Active CN218274664U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202222114450.6U CN218274664U (zh) 2022-08-11 2022-08-11 一种燃料电池系统的吹扫系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202222114450.6U CN218274664U (zh) 2022-08-11 2022-08-11 一种燃料电池系统的吹扫系统

Publications (1)

Publication Number Publication Date
CN218274664U true CN218274664U (zh) 2023-01-10

Family

ID=84773920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202222114450.6U Active CN218274664U (zh) 2022-08-11 2022-08-11 一种燃料电池系统的吹扫系统

Country Status (1)

Country Link
CN (1) CN218274664U (zh)

Similar Documents

Publication Publication Date Title
CN109411784B (zh) 一种商用车燃料电池发动机供气系统
US6936359B2 (en) Apparatus for warming-up fuel cell
US10522855B2 (en) Method for creating an oxygen depleted gas in a fuel cell system
CN112216853A (zh) 一种燃料电池系统及其湿度控制方法
CN112234228A (zh) 一种车载燃料电池氢气管道吹扫系统及方法
CN105186016A (zh) 一种燃料电池系统的电控喷氢压力调节装置
JP2009117384A (ja) 燃料電池システム
CN209912965U (zh) 氢燃料电池系统
CN113270616B (zh) 一种车用燃料电池增湿器系统及增湿方法
CN109950578A (zh) 一种冷启动系统及其控制方法
CN213304186U (zh) 一种燃料电池系统
JP4418299B2 (ja) 加湿装置
US20170250426A1 (en) Power generation stopping method for fuel cell system and fuel cell system
CN114243066A (zh) 一种燃料电池发动机停机吹扫系统及其控制方法及燃料电池系统
CN218274664U (zh) 一种燃料电池系统的吹扫系统
CN110649292B (zh) 一种冷启动辅助装置与一种燃料电池发动机
CN115939449B (zh) 燃料电池系统及其增湿方法和补水方法
JP6307536B2 (ja) 燃料電池システムの低温起動方法
CN115395053A (zh) 一种燃料电池系统的吹扫系统及吹扫方法
CN114824364A (zh) 燃料电池氢气循环系统及其控制方法
CN210897483U (zh) 一种燃料电池发动机空气控制系统
US20210336283A1 (en) Fuel cell system
CN216084960U (zh) 一种氢燃料电池排氢装置及车辆
CN219800939U (zh) 热量回收装置
CN219246733U (zh) 一种燃料电池系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant