CN217719685U - 一种燃料电池循环冷却装置 - Google Patents

一种燃料电池循环冷却装置 Download PDF

Info

Publication number
CN217719685U
CN217719685U CN202221675501.6U CN202221675501U CN217719685U CN 217719685 U CN217719685 U CN 217719685U CN 202221675501 U CN202221675501 U CN 202221675501U CN 217719685 U CN217719685 U CN 217719685U
Authority
CN
China
Prior art keywords
fuel cell
cell stack
temperature
radiator assembly
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202221675501.6U
Other languages
English (en)
Inventor
谢佳平
朱维
王超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhuo Micro Hydrogen Technology Co ltd
Original Assignee
Shanghai Zhuo Micro Hydrogen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhuo Micro Hydrogen Technology Co ltd filed Critical Shanghai Zhuo Micro Hydrogen Technology Co ltd
Priority to CN202221675501.6U priority Critical patent/CN217719685U/zh
Application granted granted Critical
Publication of CN217719685U publication Critical patent/CN217719685U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型具体为一种燃料电池循环冷却装置,所述装置包括与燃料电池电堆通过两条管路连通的散热器总成,控制冷却液是否进入散热器总成的开关阀,冷却液循环换向机构连接在燃料电池电堆与散热器总成连通的管路上,为冷却液流动提供动力以及切换冷却液流动方向,根据计算的电堆温度与预设电堆温度的差值、冷却液进出堆温差,以及所计算的燃料电池电堆的压差、电堆的所有单电池的四个位置电压值的方差划分温度均衡控制模式,对于达到散热要求的燃料电池电堆,选择合适的模式,控制冷却液循环换向机构驱动冷却液单向流动或者换向流动,控制散热器总成风扇工作在合适速度区间。通过本实用新型实现控制燃料电池系统的温度一致性。

Description

一种燃料电池循环冷却装置
技术领域
本实用新型涉及交通动力系统用大面积燃料电池热管理技术领域,具体为一种燃料电池循环冷却装置。
背景技术
由于无污染排放的特性,燃料电池在世界范围内受到越来越多的关注,燃料电池本质上是一种电化学装置,以氢气、氧气作为燃料,通过电化学反应(非燃烧)产生电能。燃料电池商业化仍然面对很多问题,包括成本过高、寿命过低,耐久性较差。随着燃料电池趋于更大的活性面积,燃料电池内部各组分的分布不均,导致燃料电池面内差异性进一步扩大,并且随着燃料电池片数的增加,燃料电池系统的一致性也会受到影响,最终导致燃料电池耐久性和寿命的降低。
从热力学角度,燃料电池自产热随电流密度的增加而显著提高,在额定功率点的效率仅为50%左右,其余能量大多变为热量,这导致燃料电池内部温度集聚,并且分布不均。温度分布不均主要表现在两个方面:首先是面内分布不均,由于气流分配等因素,面内燃料分配不均会导致反应强度不同,进而导致温度分布的差异性;其次,由于燃料电池系统有若干片电池串联形成的,并通过冷却系统将热量带出,这意味着沿流道方向的温度会呈现梯次变化。温度的变化与差异会显著影响燃料电池自身的性能与一致性,需要着重考虑燃料电池的温度分布均匀性。
现有的燃料电池热管理仅采用单向冷却方式,这导致燃料电池出水口处温度显著高于进水口处温度,并且随着电流密度的升高,温度梯度显著提升。
现有的大面积燃料电池大多采用单片一检,甚至多片一检的方式,由于燃料电池内部状态耦合多变,依靠单一变量测量很难对燃料电池内部状态进行有效评估,不适合在大面积燃料电池上应用。
实用新型内容
本实用新型为了解决上述技术问题,提供一种燃料电池循环冷却装置,在对燃料电池状态进行评估的前提下,旨在提高燃料电池的温度分布均匀性,保证燃料电池的一致性与寿命。
本实用新型提供一种燃料电池循环冷却装置,包括与燃料电池电堆通过两条管路连通的散热器总成,控制冷却液是否进入散热器总成的开关阀,采集燃料电池电堆冷却液进出口温度、压力的温度传感器和压力传感器,还包括冷却液循环换向机构、氧化剂供应系统以及燃料供应系统,所述冷却液循环换向机构连接在燃料电池电堆与散热器总成连通的管路上,为冷却液流动提供动力以及切换冷却液流动方向,所述氧化剂供应系统和燃料供应系统分别通过管路与燃料电池电堆连接。
优选的,所述冷却液循环换向机构采用可逆泵,所述可逆泵设置在燃料电池电堆与散热器总成连通的一条管路上。
优选的,所述冷却液循环换向机构包括单向泵、四个换向阀、第一支路和第二支路,所述第一支路和第二支路上分别设置一个换向阀,所述第一支路和第二支路交叉接入燃料电池电堆与散热器总成连通的两条管路上;所述单向泵、一个换向阀设置在燃料电池电堆与散热器总成连通的一条管路上;一个换向阀设置在燃料电池电堆与散热器总成连通的另一条管路上。
优选的,还包括水箱,所述水箱通过管路接入燃料电池电堆与散热器总成连通的一条管路上。
优选的,还包括水箱,所述水箱通过管路接入燃料电池电堆与散热器总成连通的一条管路上。
优选的,所述氧化剂供应系统包括燃料电池电堆的氧化剂入口一侧通过管路依次连接的空气滤清器、流量计、空压机、节气门、空气加湿器,燃料电池电堆的氧化剂出口一侧设置的背压阀,以及检测燃料电池电堆空气进出堆温度、压力的空气进出堆温度传感器、空气进出堆压力传感器。
优选的,所述燃料供应系统包括燃料电池电堆的燃料入口一侧通过管路依次连接的储氢瓶、氢喷阀、氢气加湿器,燃料电池电堆的燃料出口一侧设置的排氢阀,以及检测燃料电池电堆氢气进出堆温度、压力的氢气进出堆温度传感器、氢气进出堆压力传感器。
本实用新型的有益效果为:
本实用新型提出了可逆泵与变流道结构两种结构方案,针对燃料电池电堆的温度场变化,利用可逆泵或者换向阀,适时调整冷却液的流向,可以保证燃料电池电堆进出水口温度的分布均匀性,装置具有灵活度高,散热效果好,适应性强的特点。
附图说明
图1:实施例一的燃料电池循环冷却装置结构原理图,
图2:实施例二的燃料电池循环冷却装置结构原理图,
图3:单电池面内温差随时间变化趋势示意图,
图4:单电池面内温度分布示意图,
图5:电堆长堆、短堆、单电池冷却液温差示意图,
图6:多点电压采集示意图。
图中标记:第一管路1、第二管路2、散热器总成3、开关阀4、温度传感器5、压力传感器6、可逆泵7、水箱8、氧化剂供应系统9、燃料供应系统10、单向泵11、第一换向阀12、第二换向阀13、第三换向阀14、第四换向阀15、第一支路16、第二支路17、空气滤清器91、流量计92、空压机93、节气门94、空气加湿器95、背压阀96、空气进出堆温度传感器97、空气进出堆压力传感器98、储氢瓶101、氢喷阀102、氢气加湿器103、排氢阀104、氢气进出堆温度传感器105、氢气进出堆压力传感器106、燃料电池电堆100。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例,基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
此外,以下实施方式中提到的方向用词,例如“上”“下”“左”“右”等仅是参考附图的方向,因此,使用的方向用词是用来说明而非限制本实用新型创造。
实施例一
如图1所示,本具体实施例提供的燃料电池循环冷却装置,包括与燃料电池电堆100通过第一管路1和第二管路2连通的散热器总成3,控制冷却液是否进入散热器总成3的开关阀4,采集燃料电池电堆100冷却液进出口温度、压力的温度传感器5和压力传感器6,还包括冷却液循环换向机构,本实施例的冷却液循环换向机构采用可逆泵7,可逆泵7可以控制冷却液顺向和逆向流动,所述可逆泵7设置在燃料电池电堆100与散热器总成3连通的第一管路1上,所述可逆泵7为冷却液流动提供动力以及切换冷却液流动方向。本实施例的燃料电池循环冷却装置还包括水箱8,所述水箱8通过管路接入燃料电池电堆100与散热器总成3连通的第二管路2上。
本实施例的燃料电池循环冷却装置,还包括氧化剂供应系统9以及燃料供应系统10,所述氧化剂供应系统9包括燃料电池电堆100的氧化剂入口一侧通过管路依次连接的空气滤清器91、流量计92、空压机93、节气门94、空气加湿器95,燃料电池电堆100的氧化剂出口一侧设置的背压阀96,以及检测燃料电池电堆100空气进出堆温度、压力的空气进出堆温度传感器97、空气进出堆压力传感器98。
所述燃料供应系统10包括燃料电池电堆100的燃料入口一侧通过管路依次连接的储氢瓶101、氢喷阀102、氢气加湿器103,燃料电池电堆100的燃料出口一侧设置的排氢阀104,以及检测燃料电池电堆100氢气进出堆温度、压力的氢气进出堆温度传感器105、氢气进出堆压力传感器106。
实施例二
如图2所示,本具体实施例提供的燃料电池循环冷却装置,包括与燃料电池电堆100通过第一管路1和第二管路2连通的散热器总成3,控制冷却液是否进入散热器总成3的开关阀4,采集燃料电池电堆100冷却液进出口温度、压力的温度传感器5和压力传感器6,还包括冷却液循环换向机构,本实施例的冷却液循环换向机构包括单向泵11、四个换向阀(第一换向阀12、第二换向阀13、第三换向阀14、第四换向阀15)、第一支路16和第二支路17,所述第一支路16和第二支路17上分别设置第一换向阀12和第二换向阀13,所述第一支路16和第二支路17交叉接入燃料电池电堆100与散热器总成3连通的第一管路1和第二管路2上;所述单向泵11、第三换向阀14设置在燃料电池电堆100与散热器总成3连通的第一管路1上;所述第四换向阀15设置在燃料电池电堆100与散热器总成3连通的第二管路2上。本实施例的燃料电池循环冷却装置也包括水箱8,且氧化剂供应系统9以及燃料供应系统10的系统结构与实施例一相同,不再赘述。
本申请主要针对燃料电池电堆冷却液进出口温差过大的问题,提出温度均衡控制方法,通过该方法控制实施例一或者实施例二所述的燃料电池循环冷却装置的冷却液循环换向机构改变冷却液流动方向,通过散热器总成为燃料电池电堆散热,从而实现燃料电池电堆的温度分布均匀。如图3所示为大面积燃料电池单电池温度随时间变化曲线,可以看出随着时间增加(电流密度升高),单电池面内差异性进一步增加。图4为大面积燃料电池单体面内温度分布情况,从图中可以看出单电池面内温度最高点位于冷却液入口,最低点位于冷却液出口。图5为长堆、短堆、单电池冷却液进出口温度随电流密度的变化曲线,可以看出随着电池片数的增多,电池温度差异性进一步增加。采用本实施例的温度均衡控制方法能够显著的提升燃料电池电堆的温度分布均匀性。
燃料电池电堆中有电压巡检模块,用来对每个单电池进行电压检测。实施例一和实施例二的燃料电池循环冷却装置中所有传感器及执行器都和燃料电池控制器相连接,蓄电池通过电源线束与换向阀、逆向泵或单向泵、散热器总成、燃料电池控制器连接,并为它们供电;燃料电池控制器根据温度传感器、电压巡检模块采集的信息,控制逆向泵或单向泵、散热器总成以及换向阀,用以控制燃料电池电堆的整体温升,增加燃料电池电堆温度一致性,具体的温度均衡控制方法如下。
本实施例提供一种采用所述燃料电池循环冷却装置的温度均衡控制方法,所述方法为:
通过温度传感器5采集燃料电池电堆100的冷却液进、出堆温度,通过燃料电池电堆100中的电压巡检模块采集燃料电池电堆100每一片单电池的阴极入口、阴极出口、阳极入口、阳极出口四个位置电压(如图6所示的1-4号采样位置),通过燃料电池控制器计算冷却液进出堆温差、电堆温度,计算所述燃料电池电堆的压差、以及电堆的所有单电池的四个位置电压值的方差,根据计算的冷却液进出堆温差,结合燃料电池工作温度范围,判断燃料电池电堆是否达到散热要求,进一步根据计算的电堆温度与预设电堆温度的差值、冷却液进出堆温差,以及所计算的燃料电池电堆的压差、电堆的所有单电池的四个位置电压值的方差划分温度均衡控制模式,对于达到散热要求的燃料电池电堆,选择合适的温度均衡控制模式,燃料电池控制器控制冷却液循环换向机构驱动冷却液单向流动或者换向流动,控制散热器总成风扇工作在合适速度区间。
具体的,所述电堆温度通过冷却液进、出堆温度的平均值表示,即T=(T1+T2)/2,T1为冷却液进堆温度,T2为冷却液出堆温度,并以|T1-T2|作为冷却液进出堆温差。
具体的,燃料电池电堆的压差、方差计算过程如下:
通过燃料电池电堆的电压巡检模块检测每一片单电池的四个位置的电压,定义所述燃料电池电堆的第i(i=1,2,...,n)片单电池的阳极入口电压为Vi1、阳极出口电压为Vi2、阴极入口电压为Vi3、阴极出口电压为Vi4,所述每一片单电池的四个位置电压的压差通过公式(1)计算:
ΔVi=max(Vi1,Vi2,Vi3,Vi4)-min(Vi1,Vi2,Vi3,Vi4) (1)
所述每一片单电池的四个位置电压的方差通过公式(2)计算:
Figure BDA0003725530270000061
其中,
Figure BDA0003725530270000062
为所述每一片单电池的四个位置电压的平均值,即
Figure BDA0003725530270000063
Figure BDA0003725530270000064
ΔVi≤B,σVi≤C作为单电池面内差异性合理的标志,其中A,B,C是实验标定值,分别为0.55,0.05,0.065。并且在燃料电池电堆中,总计有n片单电池,以单电池面内差异性过大电池个数m作为评价指标,来表征电堆内部出现问题电池的个数。
通过公式(4)计算每一片单电池的表征电压,
Figure BDA0003725530270000065
其中,k1=1.5,k2=0.5,k3=1.5,k4=0.5,i=1,2,…,n。
再通过公式(5)计算电堆的压差ΔV,
ΔV=max(V1,V2,V3,......,Vn)-min(V1,V2,V3,......,Vn) (5)
再通过公式(6)计算电堆的所有单电池四个位置电压值的方差σV,
Figure BDA0003725530270000066
其中,
Figure BDA0003725530270000071
为电堆的所有单电池的表征电压的平均值,如公式(7)所示,
Figure BDA0003725530270000072
然后根据冷却液进堆温差、预设的电堆温度值T0、电堆的压差ΔV、电堆的所有单电池四个位置电压值的方差σV划分温度均衡控制模式:
当同时满足以下条件,记为模式一状态:
|T-T0|≤D1,|T1-T2|≤D2,并且ΔV≤D3,σV≤D4。
当同时满足以下条件,记为模式二状态:
D1<|T-T0|≤E1,D2<|T1-T2|≤E2,并且D3<ΔV≤E3,D4<σV≤E4。
当同时满足以下条件,记为模式三状态:
E1<|T-T0|≤F1,E2<|T1-T2|≤F2,并且E3<ΔV≤F3,E4<σV≤F4。
其中,D1、D2、D3、D4、E1、E2、E3、E4、F1、F2、F3、F4的数值通过实验来获得,根据NEDC工况以及实车测试工况,实际标定各个参数的数值,进而确定上述阈值大小。D1、E1、F1的大致范围为0.5℃、1℃、1.5℃;D2、E2、F2的大致范围为4℃、6℃、8℃;D3、E3、F3的大致范围为0.01、0.025、0.05;D4、E4、F4的大致范围为0.005、0.01、0.015。
所述燃料电池电堆的工作温度范围为70-80℃,所述冷却液进出堆温差应控制在10℃以内,对于超出工作温度范围以及冷却液进出堆温差范围的燃料电池电堆达到散热要求。
在模式一下,燃料电池电堆的温度在工作温度范围内,燃料电池电堆自产热较少,此时采用单向流冷却方式。对于实施例一的燃料电池循环冷却装置,可逆泵采用单向模式,冷却液顺向流动;对于实施例二的燃料电池循环冷却装置,第一换向阀12、第二换向阀13关闭,第三换向阀14、第四换向阀15打开,此时冷却液液是顺向流动,散热器总成风扇工作在20%以下区间。
在模式二下,燃料电池电堆自产热较大,冷却液进出堆温差较大,此时需要切换冷却液的方向,并且采用固定频率对冷却液换向进行控制,一般顺向流动5分钟,逆向流动3min。对于实施例一的燃料电池循环冷却装置,可逆泵按照指定顺序切换方向;对于实施例二的燃料电池循环冷却装置,第一换向阀12、第二换向阀13和第三换向阀14、第四换向阀15按照指定顺序切换打开,进而控制冷却液方向。所述散热器总成风扇工作在75%以下区间。
在模式三下,燃料电池电堆自产热较大,温度较大,并且冷却液进出堆温差较大,此时需要针对现有工况采用模糊PID算法对冷却液换向以及切换时间进行控制。对于实施例一的燃料电池循环冷却装置,收到切换指令后,可逆泵切换方向;对于实施例二的燃料电池循环冷却装置,收到切换指令后,第一换向阀12、第二换向阀13和第三换向阀14、第四换向阀15按照指令切换打开,进而控制冷却液方向。所述散热器总成风扇工作在95%以下区间。
所述模糊PID算法具体原理如下:
PID控制器的常用数学表达式显示为:
Figure BDA0003725530270000081
其中u(t)是计算的输出控制信号,e(t)是目标值和测量值之间的误差,t是系统的运行时间,kp、ki和kd分别是比例增益、积分增益和微分增益。
因此,本实施例提出的控制器是一种无导数的PI结构,以保证闭环控制系统的稳定性。明确输入变量:冷却液进出堆温度T1和T2、一致性评价依据是ΔVi
Figure BDA0003725530270000082
σVi;输出变量:散热风扇转速(实数域)。然后设定隶属度函数,将输入输出模糊化。用于表示模糊集的语言标签分为七个模糊子集:NB(远小于0)、NM(小于0)、NS(略小于0)、ZO(等于0)、PS(略大于0)、PM(大于0)、PB(远大于0)。误差和误差变化的隶属函数为三角形,所有变量的字段在[-6,6]内。类似地,比例增益和积分增益的输出隶属度函数通过高斯分布分配,所有变量的场在[-1,1]内,用于通过重心法计算的结果,如下等式所述:
Figure BDA0003725530270000083
Figure BDA0003725530270000084
这里e是误差,Δe是误差变化,ω是指隶属函数,n是单点集的个数,Kpi和Kii是单点的输出,Δkp和Δki是确定性输出。因此,PI控制器的参数可以通过以下方式获得:
kp_controller=kp+Δkp (11)
ki_controller=ki+Δki (12)
其中kp和ki是之前调试过的固定增益,kp_controller和ki_controller是PI控制器的输入。
模糊规则是根据被控对象和工作经验建立的。对于燃料电池系统的散热风扇控制,主要是对电池温度和性能进行有效控制。基于PI控制器的特性和非线性滞后效应创建的模糊逻辑规则显示在表1中。
表1
Figure BDA0003725530270000091
尽管已经示出和描述了本实用新型的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本实用新型的原理和精神的情况下,可以对这些实施例进行多种变化、修改、替换和变型,本实用新型的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种燃料电池循环冷却装置,包括与燃料电池电堆通过两条管路连通的散热器总成,控制冷却液是否进入散热器总成的开关阀,采集燃料电池电堆冷却液进出口温度、压力的温度传感器和压力传感器,其特征在于:还包括冷却液循环换向机构、氧化剂供应系统以及燃料供应系统,所述冷却液循环换向机构连接在燃料电池电堆与散热器总成连通的管路上,为冷却液流动提供动力以及切换冷却液流动方向,所述氧化剂供应系统和燃料供应系统分别通过管路与燃料电池电堆连接。
2.根据权利要求1所述的燃料电池循环冷却装置,其特征在于:所述冷却液循环换向机构采用可逆泵,所述可逆泵设置在燃料电池电堆与散热器总成连通的一条管路上。
3.根据权利要求1所述的燃料电池循环冷却装置,其特征在于:所述冷却液循环换向机构包括单向泵、四个换向阀、第一支路和第二支路,所述第一支路和第二支路上分别设置一个换向阀,所述第一支路和第二支路交叉接入燃料电池电堆与散热器总成连通的两条管路上;所述单向泵、一个换向阀设置在燃料电池电堆与散热器总成连通的一条管路上;一个换向阀设置在燃料电池电堆与散热器总成连通的另一条管路上。
4.根据权利要求1所述的燃料电池循环冷却装置,其特征在于:还包括水箱,所述水箱通过管路接入燃料电池电堆与散热器总成连通的一条管路上。
5.根据权利要求1所述的燃料电池循环冷却装置,其特征在于:所述氧化剂供应系统包括燃料电池电堆的氧化剂入口一侧通过管路依次连接的空气滤清器、流量计、空压机、节气门、空气加湿器,燃料电池电堆的氧化剂出口一侧设置的背压阀,以及检测燃料电池电堆空气进出堆温度、压力的空气进出堆温度传感器、空气进出堆压力传感器。
6.根据权利要求1所述的燃料电池循环冷却装置,其特征在于:所述燃料供应系统包括燃料电池电堆的燃料入口一侧通过管路依次连接的储氢瓶、氢喷阀、氢气加湿器,燃料电池电堆的燃料出口一侧设置的排氢阀,以及检测燃料电池电堆氢气进出堆温度、压力的氢气进出堆温度传感器、氢气进出堆压力传感器。
CN202221675501.6U 2022-07-01 2022-07-01 一种燃料电池循环冷却装置 Active CN217719685U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202221675501.6U CN217719685U (zh) 2022-07-01 2022-07-01 一种燃料电池循环冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202221675501.6U CN217719685U (zh) 2022-07-01 2022-07-01 一种燃料电池循环冷却装置

Publications (1)

Publication Number Publication Date
CN217719685U true CN217719685U (zh) 2022-11-01

Family

ID=83777901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202221675501.6U Active CN217719685U (zh) 2022-07-01 2022-07-01 一种燃料电池循环冷却装置

Country Status (1)

Country Link
CN (1) CN217719685U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505018A (zh) * 2023-06-14 2023-07-28 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505018A (zh) * 2023-06-14 2023-07-28 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法
CN116505018B (zh) * 2023-06-14 2024-01-26 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法

Similar Documents

Publication Publication Date Title
Daud et al. PEM fuel cell system control: A review
Chen et al. Mechanism analysis of starvation in PEMFC based on external characteristics
CN104934619B (zh) 一种水冷型质子交换膜燃料电池热管理系统及其控制方法
CN113299949B (zh) 具有低温冷启动功能的燃料电池热管理系统及控制方法
CN109713334A (zh) 燃料电池电堆测试台及其使用方法
CN209675411U (zh) 燃料电池电堆测试台
Zhang et al. Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode
CN203326036U (zh) 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN109818016B (zh) 一种阴极开放式燃料电池温度自调节方法
CN217719685U (zh) 一种燃料电池循环冷却装置
CN113097535B (zh) 自增湿燃料电池水热管理系统及其控制方法
CN203326037U (zh) 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN113471477B (zh) 一种燃料电池冷却水回路温度控制系统及其控制方法
CN114335624B (zh) 一种燃料电池热管理系统及其控制方法
CN115117391A (zh) 一种基于模糊逻辑与模型相结合的燃料电池热管理控制方法
CN115224303B (zh) 一种燃料电池循环冷却装置及温度均衡控制方法
CN114551944B (zh) 质子交换膜燃料电池内部含水量的快速控制方法及系统
Chen et al. Research on improving dynamic response ability of 30kW real fuel cell system based on operating parameter optimization
CN113839065B (zh) 一种燃料电池冷却水回路热补偿温度控制系统及控制方法
CN213546368U (zh) 一种燃料电池吹扫试验装置
KR20190063313A (ko) 오픈 캐소드 타입 연료전지의 팬 제어 장치
CN115312805A (zh) 一种多堆燃料电池冷却系统及其水热管理方法
CN114583220A (zh) 燃料电池含水量控制方法、燃料电池系统及燃料电池车辆
Li et al. Model-based control strategy research for the hydrogen system of fuel cell
CN107431227A (zh) 燃料电池控制器、燃料电池系统和运行方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant