CN217237860U - Wisdom orchard soil moisture content monitoring system based on loRa technique - Google Patents
Wisdom orchard soil moisture content monitoring system based on loRa technique Download PDFInfo
- Publication number
- CN217237860U CN217237860U CN202220649937.1U CN202220649937U CN217237860U CN 217237860 U CN217237860 U CN 217237860U CN 202220649937 U CN202220649937 U CN 202220649937U CN 217237860 U CN217237860 U CN 217237860U
- Authority
- CN
- China
- Prior art keywords
- resistor
- wireless communication
- interface
- sensor
- lora
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 239000002689 soil Substances 0.000 title claims abstract description 36
- 238000012544 monitoring process Methods 0.000 title claims abstract description 35
- 239000002420 orchard Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title description 5
- 238000004891 communication Methods 0.000 claims abstract description 66
- 238000005516 engineering process Methods 0.000 claims abstract description 19
- 230000002776 aggregation Effects 0.000 claims abstract description 16
- 238000004220 aggregation Methods 0.000 claims abstract description 16
- 238000007619 statistical method Methods 0.000 claims abstract description 5
- 230000005540 biological transmission Effects 0.000 claims description 32
- 239000003990 capacitor Substances 0.000 claims description 26
- 238000005070 sampling Methods 0.000 claims description 21
- 230000003750 conditioning effect Effects 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 5
- 238000009432 framing Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 230000008901 benefit Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 102100034004 Gamma-adducin Human genes 0.000 description 1
- 101000799011 Homo sapiens Gamma-adducin Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本实用新型涉及一种基于LoRa技术的智慧果园土壤墒情监测系统,其特征在于,包括分布设置在所述果园内,用于采集果园分布点标识信息和数据的至少两个节点采集装置,节点采集装置通过LoRa无线通讯模块与节点汇聚装置通讯连接,所述的节点汇聚装置用于接收所述的标识信息和数据,并校对所述标识信息和数据的时间信息,进而与上位机通讯连接,所述的上位机用于对所述的标识信息和数据进行统计分析。本实用新型是一种低功耗、高精度、兼容性高、扩展性好、稳定可靠、资源丰富的多参量传感器采集装置,有效解决物联网数据采集领域中高精度、低成本数据采集的核心技术问题。
The utility model relates to a soil moisture monitoring system for a smart orchard based on LoRa technology. The device communicates with the node aggregation device through the LoRa wireless communication module, and the node aggregation device is used to receive the identification information and data, and check the time information of the identification information and data, and then communicate with the host computer. The above-mentioned upper computer is used to perform statistical analysis on the above-mentioned identification information and data. The utility model is a multi-parameter sensor acquisition device with low power consumption, high precision, high compatibility, good expansibility, stability and reliability, and abundant resources, which effectively solves the core technology of high-precision and low-cost data acquisition in the field of Internet of Things data acquisition. question.
Description
技术领域technical field
本实用新型涉及农业物联网领域,具体涉及一种果园墒情监测系统。The utility model relates to the field of agricultural Internet of things, in particular to an orchard moisture monitoring system.
背景技术Background technique
开展农田土壤墒情的监测可以实现适时适量的灌溉,有效解决农业节水问题,并达到节水增产增效益的目的;随着自动化技术与通信技术的发展,人工监测的方式已经被彻底取代,且涉及数据采集的高集成传感器和测量信号种类繁多,可是,在物联网数据采集领域,具有环境条件恶劣、采集精度高、传输速率高、数据吞吐量大等特点,为此系统的稳定性、可靠性、抗干扰性、数据的加密传输和数据存储力成为着力克服的关键问题。Carrying out the monitoring of soil moisture in farmland can realize timely and appropriate irrigation, effectively solve the problem of agricultural water saving, and achieve the purpose of saving water and increasing production and increasing benefits; with the development of automation technology and communication technology, manual monitoring methods have been completely replaced, and There are many types of highly integrated sensors and measurement signals involved in data acquisition. However, in the field of IoT data acquisition, it has the characteristics of harsh environmental conditions, high acquisition accuracy, high transmission rate, and large data throughput. For this reason, the system is stable and reliable. Security, anti-interference, encrypted data transmission and data storage have become the key issues to be overcome.
申请号为201710528262.9,申请名称为基于LoRa物联网的低功耗土壤监测系统,包括土壤监测站群和远程监控服务平台,土壤监测群包括一个主土壤监测站和多个从土壤监测站的数据采集系统存在数据精度低、兼容性低、操作复杂,在限定的环境中测试问题。第一,缺少一种集多参数传感器接口资源、采样精度高、性价比较高的数据采集系统;第二,监测对象的传感器模块成本非常高、系统兼容性差,增加匹配接口电平提高了系统的整体功耗,无法满足监测系统的低功耗要求;第三,监测对象的系统所采用的非线性传感器校准难度大、开发验证周期长、设计工作量大。The application number is 201710528262.9, and the application name is a low-power soil monitoring system based on the LoRa Internet of Things, including a soil monitoring station group and a remote monitoring service platform. The soil monitoring group includes a main soil monitoring station and multiple data collection from soil monitoring stations The system has problems of low data accuracy, low compatibility, complex operation, and testing in a limited environment. First, there is a lack of a data acquisition system that integrates multi-parameter sensor interface resources, has high sampling accuracy, and is cost-effective; second, the cost of the sensor module of the monitoring object is very high and the system compatibility is poor. Increasing the matching interface level improves the system performance. The overall power consumption cannot meet the low power consumption requirements of the monitoring system; third, the nonlinear sensor used in the monitoring object system is difficult to calibrate, the development and verification cycle is long, and the design workload is large.
同时的,基于甘肃山地果园占地面积大,而土地贫瘠干旱的实际情况,现有的土壤墒情系统的通信可靠性、采集实时性、系统稳定性均适应不了该情况,同时,也无法功能扩展,满足不了甘肃地区,尤其针对山地型果园远程监控的实际应用需求。At the same time, due to the fact that Gansu mountain orchard covers a large area and the land is barren and arid, the communication reliability, real-time acquisition and system stability of the existing soil moisture system cannot adapt to this situation, and at the same time, it cannot be expanded. , can not meet the practical application needs of remote monitoring in Gansu region, especially for mountain orchards.
为此,需要研究一种低功耗、高精度、兼容性高、扩展性好、稳定可靠、资源丰富的多参量传感器采集装置,有效解决物联网数据采集领域中高精度、低成本数据采集的核心技术问题。To this end, it is necessary to research a multi-parameter sensor acquisition device with low power consumption, high precision, high compatibility, good scalability, stability and reliability, and rich resources, which can effectively solve the core of high-precision and low-cost data acquisition in the field of IoT data acquisition. technical problem.
发明内容SUMMARY OF THE INVENTION
本实用新型的目的在于避免现有技术的不足提供一种通信可靠性、采集实时性、系统稳定性都有显著提高,易于功能扩展,能够高效满足山地果园远程监控的实际应用需求的一种基于LoRa技术的智慧果园土壤墒情监测系统。The purpose of the utility model is to avoid the deficiencies of the prior art, and to provide a system based on which communication reliability, real-time acquisition and system stability are significantly improved, functions are easily expanded, and the practical application requirements of remote monitoring of mountain orchards can be efficiently met. Smart orchard soil moisture monitoring system based on LoRa technology.
为实现上述目的,本实用新型采取的技术方案为:一种基于LoRa技术的智慧果园土壤墒情监测系统,包括分布设置在所述果园内,用于采集果园分布点标识信息和数据的至少两个节点采集装置,节点采集装置通过LoRa无线通讯模块与节点汇聚装置通讯连接,所述的节点汇聚装置用于接收所述的标识信息和数据,并校对所述标识信息和数据的时间信息,进而与上位机通讯连接,所述的上位机用于对所述的标识信息和数据进行统计分析;In order to achieve the above-mentioned purpose, the technical scheme adopted by the present utility model is: a kind of intelligent orchard soil moisture monitoring system based on LoRa technology, including distribution and being arranged in the described orchard, for collecting at least two of orchard distribution point identification information and data. Node acquisition device, the node acquisition device is communicated and connected with the node aggregation device through the LoRa wireless communication module, and the node aggregation device is used to receive the identification information and data, and check the identification information and the time information of the data, and then communicate with the node aggregation device. The upper computer is connected for communication, and the upper computer is used to perform statistical analysis on the identification information and data;
所述的节点采集装置包括用于采样土壤湿度的第一传感器和用于采样环境温度、湿度的第二传感器,所述的第一传感器和第二传感器的输出端分别与第一处理器的GPIO输入端接口连接,所述的LoRa无线通讯模块集成设置在所述的第一处理器上,LoRa无线通讯模块的射频发送端的接口与第一处理器的GPIO输出端接口电连接;还包括与所述节点采集装置电连接的太阳能蓄电池;The node collection device includes a first sensor for sampling soil moisture and a second sensor for sampling ambient temperature and humidity, and the output ends of the first sensor and the second sensor are respectively connected to the GPIO of the first processor. The input end interface is connected, the described LoRa wireless communication module is integrated on the described first processor, the interface of the radio frequency transmitting end of the LoRa wireless communication module is electrically connected with the GPIO output end interface of the first processor; a solar battery electrically connected to the node collection device;
所述的节点汇聚装置包括LoRa无线通讯模块的射频接收端,LoRa无线通讯模块的射频接收端用于与所述LoRa无线通讯模块的射频发送端通过自定义modbus协议组帧传输所述的标识信息和采集数据;所述的LoRa无线通讯接收模块的射频接收端与第二处理器的输入端电连接,所述第二处理器通过集成在第二处理器上的以太网PHY芯片的太网接口与上位机通讯连接。The node aggregation device includes a radio frequency receiving end of the LoRa wireless communication module, and the radio frequency receiving end of the LoRa wireless communication module is used to transmit the identification information with the radio frequency transmitting end of the LoRa wireless communication module by framing a custom modbus protocol. and collecting data; the radio frequency receiving end of the LoRa wireless communication receiving module is electrically connected to the input end of the second processor, and the second processor passes through the Ethernet interface of the Ethernet PHY chip integrated on the second processor. Communication connection with the host computer.
进一步的,所述的第一传感器与信号调理电路电连接,信号调理电路用于将第一传感器输出的4~20mA电流信号转换输出为0~3.2V电压信号;所述的第一处理器通过处理器片内16位模数转换器ADC采样并量化所述的电压信号;Further, the first sensor is electrically connected to a signal conditioning circuit, and the signal conditioning circuit is used to convert the 4-20mA current signal output by the first sensor into a 0-3.2V voltage signal; the first processor passes The on-chip 16-bit analog-to-digital converter ADC samples and quantizes the voltage signal;
所述的信号调理电路包括同相放大器U1和差分放大器U2;The signal conditioning circuit includes a non-inverting amplifier U1 and a differential amplifier U2;
在所述第一传感器的接口J1信号正向输出端和反向输出端之间,连接有采样电阻R9及与采样电阻R9并联连接的滤波电路,所述采样电阻R9用于将电流信号转换为电压信号,所述第一传感器的反向输出端接地,并通过分压电阻R12接入同相放大器U1的反相输入端,同相放大器U1的输出端通过反馈电阻R11连接在同相放大器U1的反相输入端,所述同相放大器U1用于输出440~2200mV电压信号;Between the signal forward output end and the reverse output end of the interface J1 of the first sensor, a sampling resistor R9 and a filter circuit connected in parallel with the sampling resistor R9 are connected, and the sampling resistor R9 is used to convert the current signal into For the voltage signal, the inverting output terminal of the first sensor is grounded, and is connected to the inverting input terminal of the non-inverting amplifier U1 through the voltage dividing resistor R12, and the output terminal of the non-inverting amplifier U1 is connected to the inverting phase of the non-inverting amplifier U1 through the feedback resistor R11. Input terminal, the non-inverting amplifier U1 is used to output 440-2200mV voltage signal;
所述同相放大器U1的输出端通过输入回路电阻R6连接在所述差分放大器U2的反相输入端,参考电压440mV通过第一分压电阻R7接入差分放大器U2的同相输入端,差分放大器U2的同相输入端依次通过第二分压电阻R10、第三分压电阻R13串联后接地;所述差分放大器U2的输出端通过无源RC低通滤波器电阻R8、电容C3输出0~3.2V的电压信号,所述差分放大器U2的输出端还通过依次串联的第二反馈电阻R2和第一反馈电阻R1串联连接在差分放大器U2的同相输入端。The output terminal of the non-inverting amplifier U1 is connected to the inverting input terminal of the differential amplifier U2 through the input loop resistance R6, and the reference voltage 440mV is connected to the non-inverting input terminal of the differential amplifier U2 through the first voltage dividing resistor R7. The non-inverting input terminal is connected to the ground through the second voltage dividing resistor R10 and the third voltage dividing resistor R13 in series; the output terminal of the differential amplifier U2 outputs a voltage of 0-3.2V through the passive RC low-pass filter resistor R8 and the capacitor C3 The output terminal of the differential amplifier U2 is also connected in series to the non-inverting input terminal of the differential amplifier U2 through the second feedback resistor R2 and the first feedback resistor R1 connected in series in sequence.
进一步的,在所述同相放大器U1和差分放大器U2的NC输入端口、NC输出端口之间分别连接有第一调零电阻R3和第二调零电阻R4;所述第一调零电阻R3和第二调零电阻R4的阻值为8~12kΩ。Further, a first zero-adjusting resistor R3 and a second zero-adjusting resistor R4 are respectively connected between the NC input ports and the NC output ports of the non-inverting amplifier U1 and the differential amplifier U2; The resistance value of the two zero-adjusting resistor R4 is 8 to 12kΩ.
进一步的,所述的滤波电路为并联设置的第一滤波电容C1和第二滤波电容C2,所述第一滤波电容C1为8~12uF,第二滤波电容C2为0.08~0.12uF;所述的无源RC低通滤波器电阻R8的输出端通过第三滤波电容C3接地滤波,第三滤波电容C3为0.08~0.12uF。Further, the filter circuit is a first filter capacitor C1 and a second filter capacitor C2 arranged in parallel, the first filter capacitor C1 is 8-12uF, and the second filter capacitor C2 is 0.08-0.12uF; The output end of the passive RC low-pass filter resistor R8 is grounded and filtered through the third filter capacitor C3, and the third filter capacitor C3 is 0.08-0.12uF.
进一步的,所述的采样电阻R9为90~110Ω,所述的平衡电阻R5为8.8~9.4kΩ,所述的反馈电阻R11为9~11kΩ所述的分压电阻R12为98~108kΩ;所述的回路电阻R6为9~11kΩ,所述的第二反馈电阻R2和第一反馈电阻R1为8.8~9.4kΩ,所述的第一分压电阻R7为9~11kΩ,所述的第二分压电阻R10和第二分压电阻R3为8.8~9.4kΩ,所述的无源RC低通滤波器电阻R8为98~108kΩ。Further, the sampling resistor R9 is 90-110Ω, the balance resistor R5 is 8.8-9.4kΩ, the feedback resistor R11 is 9-11kΩ, the voltage dividing resistor R12 is 98-108kΩ; The loop resistance R6 is 9~11kΩ, the second feedback resistance R2 and the first feedback resistance R1 are 8.8~9.4kΩ, the first voltage dividing resistor R7 is 9~11kΩ, the second voltage dividing The resistor R10 and the second voltage dividing resistor R3 are 8.8-9.4kΩ, and the passive RC low-pass filter resistor R8 is 98-108kΩ.
进一步的,所述第二传感器具有控制SCL引脚和串口数据SDA引脚,所述的控制SCL引脚和串口数据SDA引脚分别通过第一上拉电阻R14与第二上拉电阻R15与所述第一处理器的I2C接口引脚电连接;Further, the second sensor has a control SCL pin and a serial port data SDA pin, and the control SCL pin and the serial port data SDA pin are respectively connected with the first pull-up resistor R14 and the second pull-up resistor R15. the I2C interface pins of the first processor are electrically connected;
所述的第二上拉电阻R15用于在SDA数据传输时,拉低或升高第二传感器串口数据SDA引脚的输出信号,信号拉低不少于30μs,再升高不少于30μs;所述的第二传感器接收到第一处理器的信号后,所述第二传感器用于一次性从串口数据SDA引脚高位发送40位数据,依次为湿度高位、湿度低位、温度高位、温度低位和校验位,其中校验位等于湿度高8位、湿度低8位、温度高8位、温度低8位之和。The second pull-up resistor R15 is used for pulling down or raising the output signal of the SDA pin of the serial port data of the second sensor during SDA data transmission, the signal is pulled down not less than 30μs, and then raised not less than 30μs; After the second sensor receives the signal of the first processor, the second sensor is used to send 40 bits of data from the high position of the serial port data SDA pin at one time, followed by high humidity, low humidity, high temperature, and low temperature. and check digit, where the check digit is equal to the sum of 8 high humidity bits, 8 low humidity bits, 8 high temperature bits, and 8 low temperature bits.
进一步的,所述LoRa无线通讯接收模块的射频接收端具有用于指示所述LoRa无线通讯接收模块工作状态的AUX接口,AUX接口通过第一电阻R16与5V电压相连接,所述LoRa无线通讯接收模块的射频接收端的RXD接口和TXD接口分别与数字隔离器U4的VOA接口和VIB接口,同时,所述的RXD接口和TXD接口分别通过第二上拉电阻R17和第三上拉电阻R18与5V电压相连接;Further, the radio frequency receiving end of the LoRa wireless communication receiving module has an AUX interface for indicating the working state of the LoRa wireless communication receiving module, and the AUX interface is connected to the 5V voltage through the first resistor R16, and the LoRa wireless communication receives The RXD interface and TXD interface of the radio frequency receiving end of the module are respectively connected with the VOA interface and VIB interface of the digital isolator U4. At the same time, the RXD interface and the TXD interface are connected to 5V through the second pull-up resistor R17 and the third pull-up resistor R18 respectively. voltage connection;
所述LoRa无线通讯接收模块的射频接收端还具有用于切换所述LoRa无线通讯接收模块的传输、WOR、配置及深度休眠工作模式的M0接口和M1接口;The radio frequency receiving end of the LoRa wireless communication receiving module also has an M0 interface and an M1 interface for switching the transmission, WOR, configuration and deep sleep working modes of the LoRa wireless communication receiving module;
所述的LoRa无线通讯接收模块的射频接收端和LoRa无线通讯模块的射频发送端的电路连接结构相同。The circuit connection structure of the radio frequency receiving end of the LoRa wireless communication receiving module and the radio frequency transmitting end of the LoRa wireless communication module is the same.
进一步的,所述的第一电阻R16、第二电阻R17和第三电阻R18为9~11kΩ。Further, the first resistor R16, the second resistor R17 and the third resistor R18 are 9-11kΩ.
进一步的,所述的LoRa无线通讯接收模块的接收端与LoRa无线通讯接收模块的发送端信号匹配,均采用SEMTECH公司SX1268射频芯片的无线串口模块E22-400T30D;所述的数字隔离器U4为双通道数字隔离器ADuM1201AR芯片。Further, the receiving end of the described LoRa wireless communication receiving module matches the signal of the transmitting end of the LoRa wireless communication receiving module, and both adopt the wireless serial port module E22-400T30D of the SX1268 radio frequency chip of SEMTECH Company; the described digital isolator U4 is a dual Channel digital isolator ADuM1201AR chip.
进一步的,所述的第一处理器和第二处理器的型号为STM32H743XI;所述的第二传感器的型号为:AM2315C;所述的以太网PHY芯片型号为:LAN8720A。Further, the model of the first processor and the second processor is STM32H743XI; the model of the second sensor is: AM2315C; the model of the Ethernet PHY chip is: LAN8720A.
本实用新型的有益效果是:基于LoRa技术构建一个山地果园自动监测与控制系统,以STM32H743XI芯片为控制器,设计土壤湿度信号调理电路,环境温湿度和LoRa模块接口电路,以及LoRa模块配置和收发程序设计,采集节点定时发送采样数据,汇聚节点利用循环队列异步解析接受数据,并发送至上位机进行统计分析,该果园土壤墒情监测系统的设计方案,具有通信可靠性高、采集实时性高、系统稳定性好以及易于扩展等优势,为今后LoRa应用提供技术支撑。The beneficial effects of the utility model are as follows: an automatic monitoring and control system for mountain orchards is constructed based on the LoRa technology, and the STM32H743XI chip is used as the controller to design the soil moisture signal conditioning circuit, the ambient temperature and humidity and the LoRa module interface circuit, as well as the LoRa module configuration and transceiver. Program design, the collection node sends the sampled data regularly, the sink node uses the circular queue to asynchronously parse the received data, and send it to the upper computer for statistical analysis. The design scheme of the orchard soil moisture monitoring system has the advantages of high communication reliability, high real-time acquisition, The advantages of good system stability and easy expansion provide technical support for future LoRa applications.
附图说明Description of drawings
图1是系统总体结构图;Figure 1 is the overall structure diagram of the system;
图2是土壤湿度传感器调理电路;Figure 2 is the soil moisture sensor conditioning circuit;
图3是AM2315温湿度传感器硬件连接图;Figure 3 is the hardware connection diagram of the AM2315 temperature and humidity sensor;
图4是LoRa模块硬件连接图。Figure 4 is the hardware connection diagram of the LoRa module.
图中:1、节点汇聚装置;11、LoRa无线通讯模块的射频接收端;12、第二处理器;13、以太网PHY芯片;2、节点采集装置;21、第一传感器;22、第二传感器;23、第一处理器;24、LoRa无线通讯模块的射频发送端;25、太阳能蓄电池;5、上位机。In the figure: 1. Node aggregation device; 11. RF receiving end of LoRa wireless communication module; 12. Second processor; 13. Ethernet PHY chip; 2. Node acquisition device; 21. First sensor; 22. Second sensor; 23, the first processor; 24, the radio frequency sending end of the LoRa wireless communication module; 25, the solar battery; 5, the upper computer.
具体实施方式Detailed ways
以下结合附图对本实用新型的原理和特征进行描述,所举实例只用于解释本实用新型,并非用于限定本实用新型的范围。The principles and features of the present invention will be described below with reference to the accompanying drawings, and the examples are only used to explain the present invention, and are not intended to limit the scope of the present invention.
实施例1:如图1、图2,图3,图4所示,一种基于LoRa技术的智慧果园土壤墒情监测系统,包括分布设置在所述果园内,用于采集果园分布点标识信息和数据的至少两个节点采集装置2,节点采集装置2通过LoRa无线通讯模块与节点汇聚装置1通讯连接,所述的节点汇聚装置1用于接收所述的标识信息和数据,并校对所述标识信息和数据的时间信息,进而与上位机5通讯连接,所述的上位机5用于对所述的标识信息和数据进行统计分析;Embodiment 1: as shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, a kind of wisdom orchard soil moisture monitoring system based on LoRa technology, including distribution is arranged in described orchard, for collecting orchard distribution point identification information and At least two
所述的节点采集装置2包括用于采样土壤湿度的第一传感器21和用于采样环境温度、湿度的第二传感器22,所述的第一传感器21和第二传感器22的输出端分别与第一处理器23的GPIO输入端接口连接,所述的LoRa无线通讯模块集成设置在所述的第一处理器23上,LoRa无线通讯模块的射频发送端24的接口与第一处理器23的GPIO输出端接口电连接;还包括与所述节点采集装置2电连接的太阳能蓄电池25;The
所述的节点汇聚装置1包括LoRa无线通讯模块的射频接收端11,LoRa无线通讯模块的射频接收端11用于与所述LoRa无线通讯模块的射频发送端24通过自定义modbus协议组帧传输所述的标识信息和采集数据;所述的LoRa无线通讯接收模块的射频接收端11与第二处理器12的输入端电连接,所述第二处理器12通过集成在第二处理器12上的以太网PHY芯片13的以太网接口与上位机5通讯连接。The
如图2所示,所述的第一传感器21与信号调理电路电连接,信号调理电路用于将第一传感器21输出的4~20mA电流信号转换输出为0~3.2V电压信号;所述的第一处理器23通过处理器片内16位模数转换器ADC采样并量化所述的电压信号;所述的信号调理电路包括同相放大器U1和差分放大器U2;在所述第一传感器21的接口J1信号正向输出端和反向输出端之间,连接有采样电阻R9及与采样电阻R9并联连接的滤波电路,所述采样电阻R9用于将电流信号转换为电压信号,所述第一传感器21的反向输出端接地,并通过分压电阻R12接入同相放大器U1的反相输入端,同相放大器U1的输出端通过反馈电阻R11连接在同相放大器U1的反相输入端,所述同相放大器U1用于输出440~2200mV电压信号;As shown in FIG. 2 , the
所述同相放大器U1的输出端通过输入回路电阻R6连接在所述差分放大器U2的反相输入端,参考电压440mV通过第一分压电阻R7接入差分放大器U2的同相输入端,差分放大器U2的同相输入端依次通过第二分压电阻R10、第三分压电阻R13串联后接地;所述差分放大器U2的输出端通过无源RC低通滤波器电阻R8、电容C3输出0~3.2V的电压信号,所述差分放大器U2的输出端还通过依次串联的第二反馈电阻R2和第一反馈电阻R1串联连接在差分放大器U2的同相输入端。The output terminal of the non-inverting amplifier U1 is connected to the inverting input terminal of the differential amplifier U2 through the input loop resistance R6, and the reference voltage 440mV is connected to the non-inverting input terminal of the differential amplifier U2 through the first voltage dividing resistor R7. The non-inverting input terminal is connected to the ground through the second voltage dividing resistor R10 and the third voltage dividing resistor R13 in series; the output terminal of the differential amplifier U2 outputs a voltage of 0-3.2V through the passive RC low-pass filter resistor R8 and the capacitor C3 The output terminal of the differential amplifier U2 is also connected in series to the non-inverting input terminal of the differential amplifier U2 through the second feedback resistor R2 and the first feedback resistor R1 connected in series in sequence.
在所述同相放大器U1和差分放大器U2的NC输入端口、NC输出端口之间分别连接有第一调零电阻R3和第二调零电阻R4;所述第一调零电阻R3和第二调零电阻R4的阻值为8~12kΩ。A first zero-adjustment resistor R3 and a second zero-adjustment resistor R4 are respectively connected between the NC input ports and the NC output ports of the non-inverting amplifier U1 and the differential amplifier U2; the first zero-adjustment resistor R3 and the second zero-adjustment resistor R3 The resistance value of the resistor R4 is 8-12kΩ.
所述的滤波电路为并联设置的第一滤波电容C1和第二滤波电容C2,所述第一滤波电容C1为8~12uF,第二滤波电容C2为0.08~0.12uF;所述的无源RC低通滤波器电阻R8的输出端通过第三滤波电容C3接地滤波,第三滤波电容C3为0.08~0.12uF。The filter circuit is a first filter capacitor C1 and a second filter capacitor C2 arranged in parallel, the first filter capacitor C1 is 8-12uF, and the second filter capacitor C2 is 0.08-0.12uF; the passive RC The output end of the low-pass filter resistor R8 is grounded and filtered through the third filter capacitor C3, and the third filter capacitor C3 is 0.08-0.12uF.
所述的采样电阻R9为90~110Ω,所述的平衡电阻R5为8.8~9.4kΩ,所述的反馈电阻R11为9~11kΩ所述的分压电阻R12为98~108kΩ;所述的回路电阻R6为9~11kΩ,所述的第二反馈电阻R2和第一反馈电阻R1为8.8~9.4kΩ,所述的第一分压电阻R7为9~11kΩ,所述的第二分压电阻R10和第二分压电阻R3为8.8~9.4kΩ,所述的无源RC低通滤波器电阻R8为98~108kΩ。The sampling resistor R9 is 90-110Ω, the balance resistor R5 is 8.8-9.4kΩ, the feedback resistor R11 is 9-11kΩ, the voltage dividing resistor R12 is 98-108kΩ; the loop resistance R6 is 9-11kΩ, the second feedback resistor R2 and the first feedback resistor R1 are 8.8-9.4kΩ, the first voltage dividing resistor R7 is 9-11kΩ, the second voltage dividing resistor R10 and The second voltage dividing resistor R3 is 8.8-9.4kΩ, and the passive RC low-pass filter resistor R8 is 98-108kΩ.
如图3所示,所述第二传感器22具有控制SCL引脚和串口数据SDA引脚,所述的控制SCL引脚和串口数据SDA引脚分别通过第一上拉电阻R14与第二上拉电阻R15与所述第一处理器23的I2C接口引脚电连接;As shown in FIG. 3 , the
所述的第二上拉电阻R15用于在SDA数据传输时,拉低或升高第二传感器22串口数据SDA引脚的输出信号,信号拉低不少于30μs,再升高不少于30μs;所述的第二传感器22接收到第一处理器23的信号后,所述第二传感器22用于一次性从串口数据SDA引脚高位发送40位数据,依次为湿度高位、湿度低位、温度高位、温度低位和校验位,其中校验位等于湿度高8位、湿度低8位、温度高8位、温度低8位之和。The second pull-up resistor R15 is used to pull down or raise the output signal of the serial port data SDA pin of the
如图4所示,所述LoRa无线通讯接收模块的射频接收端11具有用于指示所述LoRa无线通讯接收模块工作状态的AUX接口,AUX接口通过第一电阻R16与5V电压相连接,所述LoRa无线通讯接收模块的射频接收端11的RXD接口和TXD接口分别与数字隔离器U4的VOA接口和VIB接口,同时,所述的RXD接口和TXD接口分别通过第二上拉电阻R17和第三上拉电阻R18与5V电压相连接;As shown in FIG. 4 , the radio
所述LoRa无线通讯接收模块的射频接收端11还具有用于切换所述LoRa无线通讯接收模块的传输、WOR、配置及深度休眠工作模式的M0接口和M1接口;The radio
所述的LoRa无线通讯接收模块的射频接收端11和LoRa无线通讯模块的射频发送端24的电路连接结构相同。The circuit connection structure of the radio
所述的第一电阻R16、第二电阻R17和第三电阻R18为9~11kΩ。The first resistor R16, the second resistor R17 and the third resistor R18 are 9-11kΩ.
所述的LoRa无线通讯接收模块的接收端11与LoRa无线通讯接收模块的发送端24信号匹配,均采用SEMTECH公司SX1268射频芯片的无线串口模块E22-400T30D;所述的数字隔离器U4为双通道数字隔离器ADuM1201AR芯片。所述的第一处理器和第二处理器的型号为STM32H743XI;所述的第二传感器22的型号为:AM2315C;所述的以太网PHY芯片13型号为:LAN8720A。The receiving
本实用新型提供的基于LoRa技术的智慧果园土壤墒情监测系统,提供的土壤湿度传感器即为第一传感器21输出4~20mA信号经信号调理电路转换输出为0~3.2V电压信号,节点采集装置2采用第一处理器23片内16位ADC采样量化该电压信号,通过I2C接口读取第一传感器22的40位数据,UART接口与LoRa无线通讯模块的射频发送端通讯,将节点具体信息和采集数据采用自定义MODBUS协议组包发送至节点汇聚装置2。节点汇聚装置2将接受到的数据采用循环队列存储至缓存,解析后的数据通过以太网PHY芯片13发送至上位机5软件,上位机统计分析数据并存储至分布式文件存储的数据库MongoDB,以便用户查询历史数据,也可给采集节点发送控制命令。In the smart orchard soil moisture monitoring system based on LoRa technology provided by the utility model, the provided soil moisture sensor is that the
所述以太网PHY芯片13的传输介质为双绞线,传输速率为10Mbps,具有数据吞吐量大、传输速率高、抗干扰性强、扩展性好、性价比高等优势。The transmission medium of the
第一传感器21为土壤湿度传感器,通过测量土壤的介电常数,以反映各种土壤的真实水分含量。所采用模块输出信号为4~20mA,量程为0-100%,分辨率为0.1%,精度为±3%。The
土壤湿度传感器的信号调理电路如图2所示。信号调理电路包括土壤湿度传感器接口J1、同相放大器U1、采样电阻R9、第一滤波电容C1、第二滤波电容C2、平衡电阻R5、反馈电阻R11、分压电阻R12、第一调零电阻R3、差分放大器U2、输入回路电阻R6、反馈电阻R1、反馈电阻R2、第一分压电阻R7、第二分压电阻R10、第三分压电阻R13、第二调零电阻R4、滤波器电阻R8、第三滤波器电容C3。The signal conditioning circuit of the soil moisture sensor is shown in Figure 2. The signal conditioning circuit includes a soil moisture sensor interface J1, a non-inverting amplifier U1, a sampling resistor R9, a first filter capacitor C1, a second filter capacitor C2, a balance resistor R5, a feedback resistor R11, a voltage divider resistor R12, a first zero adjustment resistor R3, Differential amplifier U2, input loop resistor R6, feedback resistor R1, feedback resistor R2, first voltage dividing resistor R7, second voltage dividing resistor R10, third voltage dividing resistor R13, second zero-adjusting resistor R4, filter resistor R8, The third filter capacitor C3.
土壤湿度传感器即为第一传感器21的传感器接口J1信号正端输出4~20mA电流信号通过采样电阻R9转换为电压信号,经滤波电容C1、C2滤波后,采用平衡电阻R5作用于同相放大器U1同相输入端,输出端信号经反馈电阻R11、分压电阻R12接入U1反相输入端,U1同相放大后输出电压的对应范围为440~2200mV,第一调零电阻R3用来调节输入为零时输出也为零。同相放大器U1输出电压信号通过输入回路电阻R6、反馈电阻R1和R2作用于差分放大器U2反相输入端,参考电压440mV通过第一分压电阻R7、第二分压电阻R10、第三分压电阻R13接入差分放大器U2同相输入端,差分放大器U2差分放大后输出电压的对应范围为0~3.2V,第二调零电阻R4用来调节输入为零时输出也为零。差分放大器U2输出电压信号通过无源RC低通滤波器电阻R8、第三滤波器电容C3滤波后输出。The soil moisture sensor is the signal positive terminal of the sensor interface J1 of the
第二传感器22的型号为AM2315C,是奥松公司一款半导体管道式温湿度传感器,内部配置ASIC专用芯片、MEMS半导体电容式湿度传感元件和一个标准的温度传感元件,具有长期的稳定性和更高的可靠性,在高温高湿的极端恶劣环境条件下,也能够保持优异的性能。AM2315 C采用标准IIC接口,供电电压范围为2.2~5.5V,温度测量范围为-40~+80℃,精度为±0.3℃,湿度测量范围为0~100%RH,精度为±2%RH。AM2315温湿度传感器硬件连接如图3所示。The model of the
在图3中,AM2315C主要是通过串口数据SDA进行通讯,为了使之更好的传输数据,故连接第二上拉电阻R15,SDA数据传输时,SDA拉低不少于30μs,再升高不少于30μs,接收到处理器信号后,传感器一次性从SDA高位先出发送40位数据,依次为湿度高位、湿度低位、温度高位、温度低位和校验位,其中校验位=湿度高8位+湿度低8位+温度高8位+温度低8位。In Figure 3, AM2315C mainly communicates through serial port data SDA. In order to transmit data better, the second pull-up resistor R15 is connected. When SDA data is transmitted, SDA is pulled down for no less than 30μs, and then rises for no less than 30μs. Less than 30μs, after receiving the processor signal, the sensor sends 40 bits of data from the SDA high bit first out at one time, followed by humidity high bit, humidity low bit, temperature high bit, temperature low bit and check digit, where check digit = humidity high 8 Bit +
所述LoRa无线通讯模块采用SEMTECH公司SX1268射频芯片的无线串口模块E22-400T30D,TTL电平输出,供电电压5V,兼容3.3V与5V的IO接口电压,工作温度-40~85℃,支持0.3k~62.5kbps的数据传输速率,频段410.125~493.125MHz,最大发射功率22.0dBm,可选择10、13、17、22dBm,发射长度240Byte,可选择32、64、128、240Byte,缓存容量1000Byte,工作频段410.125~493.125MHz,接收灵敏度-147dBm@0.3Kbps,空中速率范围为0.3K~62.5Kbps,通信接口为UART,具有自动中继、空中唤醒、无线配置、载波监听、通信密钥、分包长度设定等功能,支持定点传输、广播传输、信道监听,超远距离通信时可采用多级中继方式,该模块传输距离更远,速度更快,功耗更低,体积更小。The LoRa wireless communication module adopts the wireless serial port module E22-400T30D of SEMTECH's SX1268 radio frequency chip, TTL level output,
LoRa无线通讯模块的射频接收端(11)型号为SX1268,其工作电压为5V,第二处理器12的工作电压3.3V,为使二者IO接口电平匹配,采用双通道数字隔离器ADuM1201AR芯片,其硬件电路如图4所示。The model of the RF receiver (11) of the LoRa wireless communication module is SX1268, its working voltage is 5V, and the working voltage of the
在图4中,AUX接口用于指示模块工作状态,唤醒外部MCU,上电自检初始化期间输出低电平,不使用时可悬空。M0和M1两个接口用来配置该模块的4种工作模式,不使用时可接地但不可悬空,其中M0置0,M1置0时,为传输模式,用户串口输入数据后,模块启动无线发射,空闲时,无线接收功能打开,接收到数据串口TXD输出;M0置0,M1置1时,为WOR模式,发射前自动增加一定时间唤醒码,接收等同于模式0;M0置1,M1置0时,为配置模式,无线收发功能关闭,用户可设置寄存器;M0置1,M1置1时,为深度休眠模式,无线收发关闭,进入深度休眠模式,当进入其他工作模式,模块重新配置参数。In Figure 4, the AUX interface is used to indicate the working status of the module, wake up the external MCU, and output a low level during power-on self-test initialization, and can be left floating when not in use. The two interfaces M0 and M1 are used to configure the 4 working modes of the module. When not in use, it can be grounded but not suspended. When M0 is set to 0 and M1 is set to 0, it is the transmission mode. After the user serial port inputs data, the module starts wireless transmission. , when idle, the wireless receiving function is turned on, and the data is received by the serial port TXD output; when M0 is set to 0, and M1 is set to 1, it is in WOR mode, and a certain time wake-up code is automatically added before transmitting, and receiving is equivalent to mode 0; M0 is set to 1, and M1 is set When 0, it is configuration mode, the wireless transceiver function is turned off, and the user can set the register; when M0 is set to 1, M1 is set to 1, it is deep sleep mode, wireless transceiver is turned off, and the module enters deep sleep mode. When entering other working modes, the module reconfigures parameters .
所采用传输模式有广播透传、中继组网和WOR定点传输方式。采用广播透传方式时,通讯双方需速率等级、信道、目标地址相同或参数值保持一致,LoRa数传终端可收到同速率、信道、目标地址下的所有LoRa数传终端发出的数据,需协议的容错处理,若将LoRa数传终端的目标地址设为广播地址,则其他同速率同信道的LoRa数传终端均可接收到此LoRa数传终端发送的数据。采用WOR定点传输方式时,有WOR发送方和WOR接收方,支持空中唤醒,WOR发送方发射数据前会自动增加一定时间的唤醒时间,通过串口输入数据,模块会启动无线发射,WOR接收方模块无线接收功能打开,收到无线数据后会通过串口TXD引脚输出。采用中继组网方式时,切换到一般模式中继可开始工作,中继模式地址(ADDH/ADDL)不再作为模块地址,分别对应网络地址NETID的转发配对地址,中继模式下,中继器自身的网络地址无效,不能发送和接收数据,也无法进行低功耗操作。The transmission modes adopted include broadcast transparent transmission, relay networking and WOR fixed-point transmission. When using the broadcast transparent transmission method, both parties of the communication need to have the same rate level, channel and target address or keep the same parameter values. The LoRa data transmission terminal can receive data from all LoRa data transmission terminals under the same rate, channel and target address. For the fault-tolerant processing of the protocol, if the target address of the LoRa data transmission terminal is set as the broadcast address, other LoRa data transmission terminals with the same rate and the same channel can receive the data sent by the LoRa data transmission terminal. When using the WOR fixed-point transmission mode, there are WOR sender and WOR receiver, which supports air wake-up. The WOR sender will automatically increase the wake-up time for a certain period of time before transmitting data. Input data through the serial port, the module will start wireless transmission, and the WOR receiver module will start wireless transmission. The wireless receiving function is turned on, and the wireless data will be output through the serial port TXD pin after receiving the wireless data. When the relay networking mode is adopted, the relay can start to work after switching to the general mode. The relay mode address (ADDH/ADDL) is no longer used as the module address, which corresponds to the forwarding pairing address of the network address NETID. In the relay mode, the relay The network address of the device itself is invalid, it cannot send and receive data, and it cannot perform low-power operation.
所述LoRa无线通讯模块透传方式发送或接受数据时模块标识节点具体信息,将模块地址、网络地址、发射功率、频率信道、功能码、时间信息、数据以及校验数据采用自定义modbus通信协议组帧传输,所述组帧数据采用AES-128加密算法加密后传输,采用定时间隔方式传输完毕后进入深度休眠模式以降低系统功耗。When the LoRa wireless communication module transmits or receives data through transparent transmission, the module identifies the specific information of the node, and the module address, network address, transmit power, frequency channel, function code, time information, data and verification data adopt a custom modbus communication protocol. Framing transmission, the framing data is transmitted after being encrypted by AES-128 encryption algorithm, and enters deep sleep mode after transmission is completed in a timed interval mode to reduce system power consumption.
LoRa无线通讯模块的接收端11所述接受数据采用循环队列异步解析方式,将接受数据存储至循环队列缓存,采用MODBUS协议解析数据或指令。The receiving
所述上位机5监测软件采用Pycharm开发环境,结合PyQt5设计上位机监测界面,统计分析从汇聚节点接收到的数据信息,将数据存储于分布式文件存储的数据库MongoDB,以便进一步查询、处理历史数据。The monitoring software of the
太阳能蓄电池采用12V太阳能蓄电池模块。The solar battery adopts 12V solar battery module.
以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection of the utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220649937.1U CN217237860U (en) | 2022-03-22 | 2022-03-22 | Wisdom orchard soil moisture content monitoring system based on loRa technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220649937.1U CN217237860U (en) | 2022-03-22 | 2022-03-22 | Wisdom orchard soil moisture content monitoring system based on loRa technique |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217237860U true CN217237860U (en) | 2022-08-19 |
Family
ID=82842377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220649937.1U Active CN217237860U (en) | 2022-03-22 | 2022-03-22 | Wisdom orchard soil moisture content monitoring system based on loRa technique |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217237860U (en) |
-
2022
- 2022-03-22 CN CN202220649937.1U patent/CN217237860U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104507148B (en) | A kind of low-consumption wireless Sensor Network | |
CN101620771A (en) | Remote wireless environment real-time data acquisition method and device | |
CN201955886U (en) | Agricultural environment information collection system based on wireless sensor network | |
CN103945017A (en) | Automatic mapping technique method and converting device based on Modbus-ZigBee protocol link addresses | |
CN203299198U (en) | Soil environment monitoring data collection terminal based on SDI-12 bus | |
CN114705732A (en) | Wisdom orchard soil moisture content monitoring system based on loRa technique | |
CN201514245U (en) | Flow sensor with HART communication module | |
CN217237860U (en) | Wisdom orchard soil moisture content monitoring system based on loRa technique | |
CN103246223A (en) | Zigbee-based sensing measurement and control system | |
CN104459406B (en) | State monitoring terminal processing device | |
CN202353826U (en) | A Farmland Monitoring System Based on ZigBee Technology | |
CN103475728A (en) | Orchard ecological environment remote monitoring system based on wireless sensor network | |
CN203055127U (en) | Micro-power-consumption pressure transmitter based on wireless internet of things | |
CN206452412U (en) | A kind of HART instrumental analysis platforms based on Internet of Things | |
CN203732930U (en) | An energy source data acquisition terminal with two RS485 interfaces | |
CN201368776Y (en) | Ultra low power wireless digital temperature sensor | |
CN203786221U (en) | Energy efficiency data acquisition terminal possessing two RS485 interfaces | |
CN204392586U (en) | Wireless sensor network terminal device for coal mine monitoring | |
CN212259017U (en) | General system of Internet of things metering instrument for pointer instrument | |
CN103298167A (en) | Mobile data gateway of Internet of things | |
CN208125190U (en) | A kind of wireless monitor system based on wireless warm and humid sensor | |
CN206369557U (en) | A kind of electric energy acquisition and environment sensing node device based on Zigbee protocol | |
CN206725595U (en) | A kind of automatic weather station wind velocity measurement system based on ZigBee | |
CN216483212U (en) | A Garden Environment Detection System Based on MODBUS | |
CN204740357U (en) | Long -range meteorological monitoring system based on GPRS communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |