CN216555903U - 一种基于v型沟槽导流栅片的减阻弯头装置 - Google Patents

一种基于v型沟槽导流栅片的减阻弯头装置 Download PDF

Info

Publication number
CN216555903U
CN216555903U CN202123018932.3U CN202123018932U CN216555903U CN 216555903 U CN216555903 U CN 216555903U CN 202123018932 U CN202123018932 U CN 202123018932U CN 216555903 U CN216555903 U CN 216555903U
Authority
CN
China
Prior art keywords
shaped groove
flow guide
guide grid
groove flow
bent pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202123018932.3U
Other languages
English (en)
Inventor
董建林
秦俊非
袁海林
秦帅
王星
邹斌
姚琳强
陈许刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Yizhu Electromechanical Industrialization Technology Co ltd
Third Engineering Co Ltd of China Railway Construction Electrification Bureau Group Co Ltd
Original Assignee
Xi'an Yizhu Electromechanical Industrialization Technology Co ltd
Third Engineering Co Ltd of China Railway Construction Electrification Bureau Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Yizhu Electromechanical Industrialization Technology Co ltd, Third Engineering Co Ltd of China Railway Construction Electrification Bureau Group Co Ltd filed Critical Xi'an Yizhu Electromechanical Industrialization Technology Co ltd
Priority to CN202123018932.3U priority Critical patent/CN216555903U/zh
Application granted granted Critical
Publication of CN216555903U publication Critical patent/CN216555903U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipe Accessories (AREA)

Abstract

一种基于V型沟槽导流栅片的减阻弯头装置,包括弯管段,弯管段内固定设置有降低流体阻力的V型沟槽导流栅片,V型沟槽导流栅片呈弧形,弯管段与V型沟槽导流栅片的弧度相同,V型沟槽导流栅片两侧均设置有多个相互平行的V型沟槽,V型沟槽的延伸方向与流体的流动方向平行。本实用新型提供的一种基于V型沟槽导流栅片的减阻弯头装置,V型沟槽导流栅片可对流体涡旋进行分割,减小部分涡流和二次流,并对弯管段的紊乱流动进行整流,上游缓冲段和下游缓冲段内流体的流动方向得到有效调整,降低了弯管段的压力损失。

Description

一种基于V型沟槽导流栅片的减阻弯头装置
技术领域
本实用新型涉及液体输配管道技术领域,具体为一种基于V型沟槽导流栅片的减阻弯头装置。
背景技术
管道输送液体过程中,由于实际流体都是具有粘性的,不可避免地会产生阻力损失。阻力损失一方面来源于管道壁面粗糙度引起的沿程阻力损失,另一方面则是液体流经弯头或者其它装置的局部损失,而且局部阻力损失占总阻力损失的很大一部分。因此,迫切需要采取科学的减阻措施优化管道局部装置的形式,实现低阻力节能降耗的管道输配系统。
目前用于流体输运方面常见的管道局部构件减阻方法有:导流叶片减阻、整流器减阻、管道弧面形式减阻、添加高分子减阻剂减阻等。
在上述的减阻方式中,整流器减阻是通过消除局部构件下游仍未消除的涡旋,达到减阻的目的;管道弧面形式减阻,包括改变曲率半径、弧度角、截面积等,它是通过降低管道局部构件的变形程度,削弱离心力、压强梯度强度,从而降低涡旋强度,达到一定的减阻效果;添加高分子减阻剂减阻则是通过改变管道的表面特性而减阻的。导流叶片减阻则是最为常见的弯头构件减阻方式,其原理是通过固体壁面对流体涡旋进行分割,将大涡旋分解为小涡旋,从而降低局部构件中的流体阻力。但现有的导流叶片均为表面光滑的常规导流叶片,仅通过单纯的分割涡旋降低局部阻力,并且提高导流叶片表面的光滑度方面是有限度的,无法达到最优的减阻效果。此外,现有的导流叶片减阻大都应用于通风空调管道,尚未在液体输配管道领域有所涉及。
实用新型内容
为了解决现有技术中的不足,本实用新型提供一种基于V型沟槽导流栅片的减阻弯头装置,结构简单容易实现,V型沟槽导流栅片可对流体涡旋进行分割,减小部分涡流和二次流,并对装置内的紊乱流动进行整流,上游缓冲段和下游缓冲段内的流速方向得到有效调整,降低了弯管段的压力损失,而且减小了V型沟槽壁面的剪切应力,降低了V型沟槽壁面的摩擦阻力损失。
为实现上述目的,本实用新型提供如下技术方案:一种基于V型沟槽导流栅片的减阻弯头装置,包括弯管段,弯管段内固定设置有降低流体阻力的V型沟槽导流栅片,V型沟槽导流栅片呈弧形,弯管段与V型沟槽导流栅片的弧度相同,V型沟槽导流栅片两侧均设置有多个相互平行的V型沟槽,V型沟槽的延伸方向与流体的流动方向平行。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述V型沟槽导流栅片两侧的V型沟槽交错分布。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述弯管段两端分别固定连接有上游缓冲段和下游缓冲段。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述弯管段的弧度为π/2。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述V型沟槽的无量纲间距S+≤30,无量纲高度H+≤25。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述V型沟槽导流栅片位于所述弯管段中L/D=0.5处,其中,L为V型沟槽导流栅片距弯管段外壁的距离,D为弯管段的管道直径。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述V型沟槽导流栅片的粗糙度为0.04mm。
作为上述一种基于V型沟槽导流栅片的减阻弯头装置的进一步优化:所述上游缓冲段和所述下游缓冲段的长度均为其水力直径的30倍。
有益效果是:本实用新型提供了一种基于V型沟槽导流栅片的减阻弯头装置,结构简单容易实现,操作方便且成本较低易控制,又便于维护。一方面,V型沟槽导流栅片可对流体涡旋进行分割,减小部分涡流和二次流,并对弯管段的紊乱流动进行整流,上游缓冲段和下游缓冲段内流体的流动方向得到有效调整,降低了弯管段的压力损失;另一方面,V型沟槽内部可以形成相对稳定、独立的涡旋,涡旋内流体的运动速度很小,相当于增加了粘性底层的厚度,减小了V型沟槽表面的平均速度梯度,从而减小了V型沟槽壁面的剪切应力,降低了V型沟槽壁面的摩擦阻力损失。
附图说明
图1是弯头装置的结构示意图;
图2是弯管段的结构示意图;
图3是图2的截面示意图;
图4是V型沟槽导流栅片的截面示意图;
图5是本实用新型数值模拟的弯头本体混合网格划分示意图;
图6是本实用新型数值模拟的V型沟槽导流栅片的非结构网格划分示意图。
附图说明:1、弯管段,2、上游缓冲段,3、V型沟槽导流栅片,4、下游缓冲段。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
鉴于湍流流动的复杂性和不稳定性,利用沟槽面进行减阻的机理尚未统一。总的来说,对沟槽减阻机理的研究形成了以下三种主要的观点。
第一种是“第二涡群论”,这种观点认为湍流猝发过程中由于低速流带上升至离壁面一定高度后急剧上升并同时向下游运动,产生速度振荡(即涡旋),最终型成“第二涡群”。该涡群的发展可以减弱流向涡对的强度,从而抑制了它集结低速条带并使其上升的能力,也就是抑制了湍流的猝发,削弱了湍流强度,使得近壁面流动更加稳定缓和。
第二种是“突出高度论”。“突出高度”指沟槽尖端到沟槽表面对应的等价光滑表面的距离。“突出高度论”认为沟槽的存在使得沟槽内部流动缓慢。相当于增加了粘性底层的厚度,减小了壁面上的平均速度梯度,从而减小了壁面的摩擦阻力。
第三种理论是“空气轴承论”,该理论认为流动的小涡由于自身的涡能滞留在合适的凹槽内继续转动(或不转动),就像一支微型的空气轴承,根据滚动摩擦远小于滑动摩擦的原理,获得减阻效果。
本实用新型采用第二种观点,设计一种基于V型沟槽导流栅片的减阻弯头装置。请参阅图1至图4,一种基于V型沟槽导流栅片的减阻弯头装置,包括弯管段1,弯管段1内固定设置有降低流体阻力的V型沟槽导流栅片3,V型沟槽导流栅片3呈弧形,弯管段1与V型沟槽导流栅片3的弧度相同,V型沟槽导流栅片3两侧均设置有多个相互平行的V型沟槽,V型沟槽的延伸方向与流体的流动方向平行。所述弯管段1的弧度为π/2。
图1至图4中,各个符号的定义为:R为弯管段1的曲率半径,D为弯管段1的管道直径,L为V型沟槽导流栅片3距弯管段1外壁的距离,θ为V型沟槽导流栅片3份的中心角度,S为相邻两个V型沟槽的间距,H为V型沟槽高度。
所述V型沟槽导流栅片3两侧的V型沟槽交错分布。
V型沟槽导流栅片3上,一侧的一个V型沟槽位于另一侧的相邻两个V型沟槽之间,V型沟槽导流栅片3的截面如图4所示,呈折线状。当流体经过时,V型沟槽导流栅片3能对流体涡旋进行均匀分割,减小甚至消除部分涡流和二次流,并对弯管段1内的紊乱流动进行整流,降低了弯管段1内的压力损失,而且,V型沟槽内部可以形成相对稳定、独立的涡旋,涡旋内流体的运动速度很小,相当于增加了粘性底层的厚度,减小了V型沟槽表面的平均速度梯度,从而减小了V型沟槽壁面的剪切应力,降低了V型沟槽壁面的摩擦阻力损失。
所述弯管段1两端分别固定连接有上游缓冲段2和下游缓冲段4。
上游缓冲段2和下游缓冲段4均与弯管段1平滑连接,上游缓冲段2、下游缓冲段4和弯管段1的内外壁均为光滑表面,上游缓冲段2与弯管段1的入口端连接,下游缓冲段4与弯管段1的出口端连接。V型沟槽导流栅片3对弯管段1内的紊乱流动进行整流的同时,也对上游缓冲段2和下游缓冲段4内的流速方向进行调整。
实际使用时:流体先在上游缓冲段2内流动,随后流入弯管段1,再通过下游缓冲段4,最后流出弯头装置。在这个过程中,流体流经弯管段1时,弯管段1内的流场会呈现出十分复杂的流动特性。例如:流速范围变化较大;在管壁附近形成分离区,管道横截面上产生二次流动;流场分布不均匀。这些现象不仅造成流体能量的耗散,而且形成的局部障碍区域也使流动系统的阻力增大,导致能量损失。
通过在弯管段1内加装V型沟槽导流栅片3,能对弯管段1内的紊乱流动进行整流,同时上游缓冲段2和下游缓冲段4内流体的流动方向得到有效调整。
V型沟槽减阻所涉及的计算公式及相关参数如下。
局部阻力系数:
Figure BDA0003392128610000051
其中,ζ是弯管段1的局部阻力系数,为无量纲量;是局部阻力损失;Pi-P0是全压阻力损失;Pf是沿程阻力损失,相当于具有相同弯管段1长度的直管的压力损失;Pv是局部装置中的平均速度下的动压;v为流体速度;ρ为流体密度。
减阻率:
Figure BDA0003392128610000052
其中,η是减阻率;ζET表示不带V型沟槽导流栅片3的传统弯管段1的局部阻力系数;ζEN表示带有V型沟槽导流栅片3的弯管段1的局部阻力系数。
V型沟槽无量纲间距:S+=S×uτ/ν。
V型沟槽无量纲高度:H+=H×uτ/ν。
式中,ν为运动粘滞系数;uτ为壁面摩擦速度,uτ=(τw/ρ)1/2,其中,τw为壁面剪切应力。
所述V型沟槽的无量纲间距S+≤30,无量纲高度H+≤25。
本实用新型基于湍流黏性耗散理论下分析减阻的原理,采用CFD数值模拟方法,研究液体输配管道90°传统弯头装置加装V型沟槽导流栅片后的减阻效果。弯管段1产生的涡旋对上游流场的影响长度为5~7倍管径,对下游流场的影响长度为30~50倍管径。本实用新型采用ICEM19.2进行网格划分,用Fluent19.0进行数值计算,用Realizable k-ε湍流模型进行模拟,流体为常温常压下的液态水,弯管段1外壁面为无滑移壁面,入口边界条件为速度入口,出口边界条件为压力出口,V型沟槽导流栅片的粗糙度设置为0.04mm,用流体的初始流速对入口处进行初始化,压力速度耦合采用SIMPLE算法,求解器中动量、湍流动能、湍流黏性耗散率均采用二阶迎风格式进行离散,迭代计算约3000步达到收敛。得到的局部阻力系数及减阻率计算表见下表,表中第一行的数据是不带V型沟槽导流栅片2的弯头装置,第二行的数据是带有V型沟槽导流栅片3的弯头装置。
V型沟槽导流栅片3相对于弯管段1的位置为:所述V型沟槽导流栅片3位于所述弯管段1中L/D=0.5处。
选用的上游缓冲段2和下游缓冲段4的长度为:所述上游缓冲段2和所述下游缓冲段4的长度均为其水力直径的30倍。
Figure BDA0003392128610000061
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:包括弯管段(1),弯管段(1)内固定设置有降低流体阻力的V型沟槽导流栅片(3),V型沟槽导流栅片(3)呈弧形,弯管段(1)与V型沟槽导流栅片(3)的弧度相同,V型沟槽导流栅片(3)两侧均设置有多个相互平行的V型沟槽,V型沟槽的延伸方向与流体的流动方向平行。
2.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述V型沟槽导流栅片(3)两侧的V型沟槽交错分布。
3.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述弯管段(1)两端分别固定连接有上游缓冲段(2)和下游缓冲段(4)。
4.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述弯管段(1)的弧度为π/2。
5.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述V型沟槽的无量纲间距S+≤30,无量纲高度H+≤25。
6.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述V型沟槽导流栅片(3)位于所述弯管段(1)中L/D=0.5处,其中,L为V型沟槽导流栅片(3)距弯管段(1)外壁的距离,D为弯管段(1)的管道直径。
7.如权利要求1所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述V型沟槽导流栅片(3)的粗糙度为0.04mm。
8.如权利要求3所述的一种基于V型沟槽导流栅片的减阻弯头装置,其特征在于:所述上游缓冲段(2)和所述下游缓冲段(4)的长度均为其水力直径的30倍。
CN202123018932.3U 2021-12-03 2021-12-03 一种基于v型沟槽导流栅片的减阻弯头装置 Active CN216555903U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202123018932.3U CN216555903U (zh) 2021-12-03 2021-12-03 一种基于v型沟槽导流栅片的减阻弯头装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202123018932.3U CN216555903U (zh) 2021-12-03 2021-12-03 一种基于v型沟槽导流栅片的减阻弯头装置

Publications (1)

Publication Number Publication Date
CN216555903U true CN216555903U (zh) 2022-05-17

Family

ID=81538110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202123018932.3U Active CN216555903U (zh) 2021-12-03 2021-12-03 一种基于v型沟槽导流栅片的减阻弯头装置

Country Status (1)

Country Link
CN (1) CN216555903U (zh)

Similar Documents

Publication Publication Date Title
US11215404B2 (en) Heat transfer tube and cracking furnace using the same
US20140202577A1 (en) Duct fitting apparatus with reduced flow pressure loss and method of formation thereof
CN102518602B (zh) 一种离心风机叶轮及离心风机
CN106523830A (zh) 一种带导流筋板90°弯管
CN105574288A (zh) 高性能大流量泵站进水流道三维形体过流面设计方法
CN101832625B (zh) 低阻力方形弯头
CN216555903U (zh) 一种基于v型沟槽导流栅片的减阻弯头装置
CN102087079A (zh) 放射式强化换热翅片
CN113983266A (zh) 一种基于v型沟槽导流栅片的减阻弯头装置
CN201527210U (zh) 热交换器结构改良
CN101813224A (zh) 低阻力方形渐扩变径构件
CN112160941B (zh) 一种改善蜗壳式离心泵驼峰不稳定现象的导叶组合结构
CN203906376U (zh) 一种脊状表面减阻的翼型叶片
CN108644993B (zh) 一种均匀送风的低流动阻力管道装置
CN201653223U (zh) 可调节换热性能和压降的插入件式换热管
CN217784544U (zh) 一种有压输水管道弯道
EP1860330A1 (en) Method for producing a flow which forms tornado-type jets incorporated into a stream and a surface for carrying out said method
CN211779583U (zh) 一种基于耗散函数对比分析的变弧线变径三通
CN204344532U (zh) 用于泵的导流装置
CN108999846B (zh) 一种超疏水减阻肋条结构
CN112325398B (zh) 一种旋流增效装置
CN110849200B (zh) 超临界c02管路式换热器的导流结构
CN212080461U (zh) T型三通管
CN110296032B (zh) 一种双向全贯流水轮机
CN111981231A (zh) 一种基于耗散函数对比分析的变弧线变径三通

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant