CN216519263U - All-metal coupling capable of being used in narrow space - Google Patents

All-metal coupling capable of being used in narrow space Download PDF

Info

Publication number
CN216519263U
CN216519263U CN202122469578.XU CN202122469578U CN216519263U CN 216519263 U CN216519263 U CN 216519263U CN 202122469578 U CN202122469578 U CN 202122469578U CN 216519263 U CN216519263 U CN 216519263U
Authority
CN
China
Prior art keywords
shaft
clamping grooves
clearance fit
narrow space
convex blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122469578.XU
Other languages
Chinese (zh)
Inventor
金鑫
赵崇碧
李成志
潘祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Stf Hydraulic Transmissions Co ltd
Original Assignee
Ningbo Stf Hydraulic Transmissions Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Stf Hydraulic Transmissions Co ltd filed Critical Ningbo Stf Hydraulic Transmissions Co ltd
Priority to CN202122469578.XU priority Critical patent/CN216519263U/en
Application granted granted Critical
Publication of CN216519263U publication Critical patent/CN216519263U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Plates (AREA)

Abstract

The utility model discloses an all-metal coupling capable of being used in a narrow space, which comprises a connecting piece, a sliding piece in a square structure and a clearance fit structure capable of compensating installation deviation between shafts, wherein the connecting piece consists of a connecting shaft and a connecting base plate, two shaft ends of the connecting shaft are respectively connected with a driving shaft and the front side of the connecting base plate, the clearance fit structure consists of clamping grooves formed in four corner regions of the sliding piece, two first convex blocks symmetrically arranged on the back side of the connecting base plate and two second convex blocks symmetrically arranged on the end surface of the driven shaft facing the driving shaft, the two clamping grooves on each diagonal line of the sliding piece are symmetrical, the two first convex blocks are embedded into the two symmetrical clamping grooves, the two second convex blocks are embedded into the other two symmetrical clamping grooves, and the first convex blocks are in clearance fit with the corresponding clamping grooves and the second convex blocks are in clearance fit with the corresponding clamping grooves; the connecting device has the advantages that the connecting device can be applied to an axial narrow space, has long service life and low maintenance cost, and can connect a driving shaft and a driven shaft with large axial difference.

Description

All-metal coupling capable of being used in narrow space
Technical Field
The utility model relates to a coupler, in particular to an all-metal coupler which can be used in a narrow space.
Background
The coupling is a device for connecting two shafts or a shaft and a rotating part, rotating together in the process of transmitting motion and power and not being separated under normal conditions. Sometimes the coupling is also used as a safety device to prevent the coupled machine parts from bearing excessive load, plays the role of overload protection, and can be widely applied to transmitting torque in mechanical shafting of hoisting, engineering transportation, mines, petroleum, ships, coal, rubber, paper machines and other heavy machine industries. The couplings can be divided into high-pressure damping rubber couplings, diaphragm couplings, plum-blossom-shaped couplings, bellows-type couplings, crosshead shoe couplings, rigid couplings, universal couplings, etc. according to different structures.
The large-scale machinery equipment is difficult to realize coaxiality by adjusting two shafts of the driving shaft and the driven shaft, so that a coupler which is long in service life and convenient to replace easily damaged parts is usually installed between the driving shaft and the driven shaft, and the effects of transmitting torque, compensating installation deviation between shafts, absorbing equipment vibration, buffering load impact and the like are achieved. However, the existing non-all-metal coupling has the problems of short service life and sensitivity to high temperature and high pollution environment compared with the all-metal coupling, for example, the quincunx coupling belongs to the non-all-metal coupling, the quincunx coupling comprises a small metal shaft sleeve, a large metal shaft sleeve matched with the small metal shaft sleeve and a non-metal elastomer arranged in a cavity formed after the small metal shaft sleeve and the large metal shaft sleeve are matched, the non-metal elastomer is easily interfered by the working environment (environment influenced by high temperature, chemical industry and the like on non-metal materials), and the service life can be directly influenced. The part of all-metal couplings also have the problem of limited service life, for example, a diaphragm type coupling does not need lubrication and maintenance, so that the economic benefit is improved, the environmental pollution is small, but the fatigue degree of an elastomer formed by a plurality of diaphragms is low, the durability is poor, and the service life can be directly influenced. In addition, the existing couplings have the following problems: 1) the problem of long axial length exists, and in order to facilitate the installation and maintenance of the coupling, the coupling is mainly applied to the machine equipment with enough installation space between a driving shaft and a driven shaft at present, but is difficult to apply in an axial narrow space; 2) the driving shaft and the driven shaft with large difference of the shaft diameters cannot be directly connected.
Disclosure of Invention
The utility model aims to solve the technical problem of providing an all-metal coupling capable of being used in a narrow space, which can be applied in an axial narrow space, has long service life and low maintenance cost, can directly connect a driving shaft and a driven shaft with larger axial difference, and can be suitable for some complex working environments with high temperature and high corrosion.
The technical scheme adopted by the utility model for solving the technical problems is as follows: the utility model provides an all-metal coupling that can use in narrow space, its characterized in that is including the connecting piece that is used for being connected with the actuating shaft of machine equipment, be the gleitbretter of square structure and can compensate the clearance fit structure of installation deviation between the axle, the connecting piece constitute by connecting axle and connection substrate, one of them axle head of connecting axle with drive shaft connection, another axle head of connecting axle with connection substrate's positive fixed connection, clearance fit structure by set up in four draw-in grooves altogether on four angular regions of gleitbretter, symmetry set up in two first lugs on connection substrate's the back, symmetry set up in the passive axle orientation of machine equipment two second lugs on the axle head terminal surface of drive shaft constitute, every diagonal two of gleitbretter draw-in groove symmetry, two first lug embedding one of them diagonal two of gleitbretter draw-in the draw-in groove And the two second convex blocks are embedded into the two clamping grooves on the other diagonal line of the sliding sheet, and the first convex blocks are in clearance fit with the corresponding clamping grooves and the second convex blocks are in clearance fit with the corresponding clamping grooves.
The clamping groove is a rectangular groove with an opening facing the outer part of the sliding sheet, and the first lug and the second lug are rectangular blocks with the same size. The clamping grooves are designed into the rectangular grooves, the first protruding blocks and the second protruding blocks are designed into the rectangular blocks, and the first protruding blocks can be better matched with the corresponding clamping grooves in a clearance fit mode, and the second protruding blocks can be better matched with the corresponding clamping grooves in a clearance fit mode.
After the first lug is embedded into the corresponding clamping groove, the single-side gap between the first lug and the corresponding clamping groove is 4 micrometers, and after the second lug is embedded into the corresponding clamping groove, the single-side gap between the second lug and the corresponding clamping groove is 4 micrometers. In order to enable the sliding sheet to move freely in a radial plane (the radial plane of the driving shaft and the driven shaft), a single-side gap between the first convex block and three corresponding edges (two side edges and a bottom edge of the clamping groove) of the clamping groove is designed to be 4 micrometers, a single-side gap between the second convex block and three corresponding edges of the clamping groove is also designed to be 4 micrometers, and the value of 4 micrometers is an optimal value determined through a large number of experiments.
The connecting substrate is strip-shaped, and the two first lugs are symmetrically arranged on the length direction of the back surface of the connecting substrate. Because the two clamping grooves matched with the two first lugs are positioned on one diagonal line of the sliding sheet, and the matching of the two second lugs and the two corresponding clamping grooves cannot be influenced by the connecting substrate after the two first lugs are matched with the two corresponding clamping grooves, the connecting substrate is designed into a long strip shape, and the strength, the cost and the attractiveness can be simultaneously considered in the actual design process.
The connecting shaft and the driving shaft are connected by adopting a spline or a flat key or adopt other existing connecting structures.
Compared with the prior art, the utility model has the advantages that:
1) the slip sheet is of a sheet structure and can be thinned as much as possible under the condition of ensuring the strength, the connecting substrate of the connecting piece is as thin as possible under the condition of ensuring the strength as the slip sheet is, the length of the connecting shaft of the connecting piece can be reliably connected with the driving shaft, and therefore the axial length of the whole all-metal coupling is greatly reduced compared with that of the existing coupling, and the all-metal coupling can be applied to realize power transmission in an axial narrow space.
2) Because the slip sheet, the connecting piece, the first lug and the second lug in the all-metal coupler are all metal pieces, and the connection between the slip sheet and the connecting substrate as well as the connection between the slip sheet and the driven shaft are all rigid connections, the service life of the all-metal coupler is greatly prolonged.
3) The all-metal coupler is simple in structure composition, high in fatigue degree and low in maintenance cost.
4) Because the main stress point of the all-metal coupler is arranged at the first lug and the clamping groove and the second lug and the clamping groove, the diameter of the driven shaft can be selected within a large range as long as the shaft diameter of the driving shaft is unchanged within a light range, so that the all-metal coupler can be directly connected with the driving shaft and the driven shaft which have larger difference in the shaft diameter.
5) The all-metal coupler has two degrees of freedom in a radial plane, and the sliding sheet can move randomly within the range of the gaps between the first protruding blocks and the corresponding clamping grooves and between the second protruding blocks and the corresponding clamping grooves, so that the inter-shaft installation deviation can be well compensated.
6) Because the components of the whole structure are made of metal materials, surface treatment and material selection can be carried out on any component according to the working environment so as to adapt to different working environments, particularly complex working environments such as high temperature, high corrosion and the like.
Drawings
Fig. 1 is a schematic overall perspective view of an all-metal coupling according to the present invention;
FIG. 2 is a schematic overall side view of the all-metal coupling of the present invention;
fig. 3 is an exploded view of the all-metal coupling of the present invention.
Detailed Description
The utility model is described in further detail below with reference to the accompanying examples.
The utility model provides an all-metal coupling capable of being used in a narrow space, which comprises a connecting piece 1 used for being connected with a driving shaft (not shown in the figure, such as an output shaft of a motor) of machine equipment, a sliding piece 2 in a square structure and a clearance fit structure 3 capable of compensating installation deviation between shafts, wherein the connecting piece 1 consists of a connecting shaft 11 and a connecting base plate 12, one shaft end of the connecting shaft 11 is connected with the driving shaft, the other shaft end of the connecting shaft 11 is fixedly connected with the front surface of the connecting base plate 12, the clearance fit structure 3 consists of four clamping grooves 31 which are arranged on four corner regions of the sliding piece 2, two first convex blocks 32 which are symmetrically arranged on the back surface of the connecting base plate 12 and two second convex blocks 33 which are symmetrically arranged on the end surface of a driven shaft 9 of the machine equipment, which faces to the shaft end, and two clamping grooves 31 on each diagonal line of the sliding piece 2 are symmetrical, the two first bumps 32 are embedded into the two slots 31 on one diagonal of the slide 2, the two second bumps 33 are embedded into the two slots 31 on the other diagonal of the slide 2, and the first bumps 32 and the corresponding slots 31 and the second bumps 33 and the corresponding slots 31 are in clearance fit.
In the present embodiment, the slot 31 is a rectangular slot with an opening facing the outside of the slider 2, and the first protrusion 32 and the second protrusion 33 are rectangular blocks with the same size. The card slot 31 is designed to be a rectangular slot, and the first projection 32 and the second projection 33 are designed to be rectangular blocks, so that the clearance fit between the first projection 32 and the corresponding card slot 31 and the clearance fit between the second projection 33 and the corresponding card slot 31 can be better ensured.
In this embodiment, after the first bump 32 is inserted into the corresponding card slot 31, a single-side gap between the first bump 32 and the corresponding card slot 31 is 4 micrometers, and after the second bump 33 is inserted into the corresponding card slot 31, a single-side gap between the second bump 33 and the corresponding card slot 31 is 4 micrometers. In order to enable the sliding sheet 2 to move freely in a radial plane (a radial plane of the driving shaft and the driven shaft 9), single-side gaps between the first protruding blocks 32 and three corresponding edges of the clamping grooves 31 (two side edges and bottom edges of the clamping grooves 31) are designed to be 4 micrometers, single-side gaps between the second protruding blocks 33 and three corresponding edges of the clamping grooves 31 are designed to be 4 micrometers, and the value of 4 micrometers is an optimal value determined through a large number of experiments.
In the embodiment, the connection substrate 12 is in a strip shape, and the two first bumps 32 are symmetrically disposed in the length direction of the back surface of the connection substrate 12. Because the two card slots 31 matched with the two first bumps 32 are located on one diagonal line of the sliding piece 2, and the connection substrate 12 cannot affect the matching of the two second bumps 33 and the two corresponding card slots 31 after the two first bumps 32 are matched with the two corresponding card slots 31, the connection substrate 12 is designed into a long strip shape, and the connection substrate can be designed with strength, cost and beauty taken into consideration in the actual design process, for example, into the shape as shown in the figure.
In the present embodiment, the connecting shaft 11 and the driving shaft are connected by a spline or a flat key, or by other connecting structures.

Claims (5)

1. The all-metal coupling capable of being used in a narrow space is characterized by comprising a connecting piece connected with a driving shaft of machine equipment, a slip sheet in a square structure and a clearance fit structure capable of compensating installation deviation between shafts, wherein the connecting piece consists of a connecting shaft and a connecting base plate, one shaft end of the connecting shaft is connected with the driving shaft, the other shaft end of the connecting shaft is fixedly connected with the front surface of the connecting base plate, the clearance fit structure consists of four clamping grooves which are arranged in four corner regions of the slip sheet, two first convex blocks which are symmetrically arranged on the back surface of the connecting base plate and two second convex blocks which are symmetrically arranged on a driven shaft of the machine equipment and face the end surface of the shaft end of the driving shaft, and the two clamping grooves on each diagonal line of the slip sheet are symmetrical, the two first lugs are embedded into the two clamping grooves on one diagonal of the sliding sheet, the two second lugs are embedded into the two clamping grooves on the other diagonal of the sliding sheet, and the first lugs are in clearance fit with the corresponding clamping grooves and the second lugs are in clearance fit with the corresponding clamping grooves.
2. An all-metal coupling usable in a narrow space according to claim 1, wherein said locking groove is a rectangular groove opening to the outside of said slip-sheet, and said first projection and said second projection are rectangular blocks having the same size.
3. An all-metal coupling usable in a narrow space according to claim 2, wherein a single-sided gap between the first projection and the corresponding card slot after the first projection is fitted into the corresponding card slot is 4 μm, and a single-sided gap between the second projection and the corresponding card slot after the second projection is fitted into the corresponding card slot is 4 μm.
4. An all-metal coupling used in narrow spaces according to any one of claims 1 to 3, wherein said connection substrate has a long bar shape, and two of said first protrusions are symmetrically disposed on the length direction of the back surface of said connection substrate.
5. An all-metal coupling usable in a narrow space according to claim 1, wherein said connecting shaft is connected to said driving shaft by a spline or a flat key.
CN202122469578.XU 2021-10-14 2021-10-14 All-metal coupling capable of being used in narrow space Active CN216519263U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122469578.XU CN216519263U (en) 2021-10-14 2021-10-14 All-metal coupling capable of being used in narrow space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122469578.XU CN216519263U (en) 2021-10-14 2021-10-14 All-metal coupling capable of being used in narrow space

Publications (1)

Publication Number Publication Date
CN216519263U true CN216519263U (en) 2022-05-13

Family

ID=81522655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122469578.XU Active CN216519263U (en) 2021-10-14 2021-10-14 All-metal coupling capable of being used in narrow space

Country Status (1)

Country Link
CN (1) CN216519263U (en)

Similar Documents

Publication Publication Date Title
CN110657988B (en) Bearing axial test mechanism
CN216519263U (en) All-metal coupling capable of being used in narrow space
CN113983078A (en) All-metal coupling capable of being used in narrow space
US6358154B1 (en) Flexible coupling
CN108317184B (en) One-way clutch between shafts
CN2921431Y (en) Pin key type synchronous universal coupling
CN213628556U (en) Axial buffer coupling
AU2018455574B2 (en) Drum gear
CN210919877U (en) Helicopter diaphragm coupling
CN209539848U (en) A kind of insulating coupling
CN208619537U (en) A kind of diaphragm shaft joint
CN219774641U (en) Short-distance diaphragm coupler
CN212928566U (en) Shaft coupling device for ore body slotting machine
CN219035380U (en) Torque limiting coupler
CN220452545U (en) Anti-movement limiting elastic coupling
CN210178792U (en) Combined elastic coupling
RU2419001C1 (en) Driving middle clutch disk
CN220687877U (en) Multi-claw coupling device for connecting motor and pump head and oil gas recovery pump thereof
CN112963460B (en) Rolling coupler
CN221120671U (en) Vibration-proof bearing of fan and shaft thereof
CN210423473U (en) Bidirectional arc roller universal coupling
US2715325A (en) Constant velocity universal joint
CN215293323U (en) Flexible connecting device for coupling connection
CN221097252U (en) Plum blossom coupling
CN219954011U (en) Film disc coupling

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant