CN216436146U - 一种适用于Ka波段的波导槽隙天线结构及阵列天线 - Google Patents

一种适用于Ka波段的波导槽隙天线结构及阵列天线 Download PDF

Info

Publication number
CN216436146U
CN216436146U CN202220771760.2U CN202220771760U CN216436146U CN 216436146 U CN216436146 U CN 216436146U CN 202220771760 U CN202220771760 U CN 202220771760U CN 216436146 U CN216436146 U CN 216436146U
Authority
CN
China
Prior art keywords
waveguide
antenna structure
array antenna
slot antenna
resonant cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220771760.2U
Other languages
English (en)
Inventor
刘良
吴昊
余川
孟凡宝
杨瑜
李士锋
方翔鹤
陈世韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Electronics of CAEP
Original Assignee
Institute of Applied Electronics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Electronics of CAEP filed Critical Institute of Applied Electronics of CAEP
Priority to CN202220771760.2U priority Critical patent/CN216436146U/zh
Application granted granted Critical
Publication of CN216436146U publication Critical patent/CN216436146U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本实用新型提供了一种适用于Ka波段的波导槽隙天线结构,包括天线结构主体以及天线结构主体内部的谐振腔与矩形波导,谐振腔表面开有四个辐射槽隙形成辐射层,谐振腔底部与矩形波导连接形成馈电层。本实用新型提出的方案使与传统阵列天线相比可以显著提高功率容量,形成的阵列天线中谐振腔之间共用腔壁,结构紧凑,最大程度地提高了口径效率;输入输出共轴,适用于对轴向空间要求不高的场合;加工时可使用3D打印技术,能有效降低加工成本。

Description

一种适用于Ka波段的波导槽隙天线结构及阵列天线
技术领域
本实用新型涉及微波天线领域,特别涉及一种适用于Ka波段的波导槽隙天线结构及阵列天线。
背景技术
高功率微波(HPM)一般指1~300 GHz频率范围内峰值功率大于100 MW的电磁波。近年来,在向高频方向发展的通信系统、远程雷达和新型加速器等领域对微波源需求的引导下,高功率技术也向高频方向发展。根据已发表的文献,Ka波段高功率微波源的输出功率已达到500 MW。喇叭天线通常用于高功率微波系统,但其增益低、尺寸大,不利于实际场景应用。
传统的高功率微波天线,如Vlasov天线、COBRA天线和大口径抛物面天线,在一定程度上满足了实验和应用的需要,但尺寸大、结构复杂、辐射效率低等缺陷限制了这些天线的应用。随后发展的径向螺旋线阵列天线、径向线槽天线、传输阵列天线等类型的阵列天线具有优异的性能,但当微波频率提高、波长变短时,这些天线难以满足高功率微波对功率容量的需求,天线的加工也变得尤其困难。此外,馈电网络的复杂性也使这些天线难以组成大型阵列。
由于现有的Ka波段高功率容量天线存在功率容量不足、尺寸大、结构复杂等问题,不能满足高功率微波的应用需求。为了提高实用性,拓宽应用范围,开发高功率容量、结构简单、低成本的Ka波段高功率毫米波天线已成为亟待解决的问题。
实用新型内容
针对现有技术中存在的问题,提供了一种新型Ka波段高效高功率容量波导槽隙天线结构及阵列天线,其功率容量高、效率高、结构简单紧凑、易于加工,可以解决传统阵列天线功率容量不足、结构复杂的问题。
本实用新型采用的技术方案如下:一种适用于Ka波段的波导槽隙天线结构,包括天线结构主体以及天线结构主体内部的谐振腔与矩形波导,谐振腔表面开有四个辐射槽隙形成辐射层,谐振腔底部与矩形波导连接形成馈电层。
进一步的,所述谐振腔表面的辐射槽隙均作倒角处理。
进一步的,所述谐振腔表面的四个辐射槽隙呈2×2形式排列。
进一步的,所述谐振腔底部与矩形波导垂直连接,进行垂直馈电。
进一步的,所述天线结构主体口径面尺寸为13.5mm×13.5mm。
进一步的,所述四个辐射槽隙长度与宽度均为3.66mm×4.91mm,辐射槽隙横向间隔为2.66mm;谐振腔高度为4.318mm,矩形波导口径面尺寸为4.318mm×8.57mm。
本实用新型还提出了一种基于上述的适用于Ka波段的波导槽隙天线结构的阵列天线,其特征在于,由16个波导槽隙天线结构组成,整体呈2×8形式排列,每个相邻波导槽隙天线结构共用谐振腔壁;还包括一个H面波导功率分配器与两个8路E面波导功率分配器,H面波导功率分配器输出与两个8路E面波导功率分配器串联,两个8路E面波导功率分配器输出对应与16个波导槽隙天线结构的矩形波导连接,为16个谐振腔馈电。
进一步的,所述阵列天线能够通过3D打印技术加工成型。
与现有技术相比,采用上述技术方案的有益效果为:
1.本实用新型使用在谐振腔上开槽的方式形成辐射层,与传统阵列天线相比可以显著提高功率容量。
2.本实用新型使用矩形波导直接向谐振腔馈电,与波导缝隙馈电方式相比可以有效提高馈电功率容量,进一步提高阵列天线整体的功率容量。
3.本实用新型谐振腔之间共用腔壁,结构紧凑,最大程度地提高了口径效率。
4.本实用新型输入输出共轴,适用于对轴向空间要求不高的场合。
5.本实用新型加工时可使用3D打印技术,能有效降低加工成本。
附图说明
图1是本实用新型提出的2×2波导槽隙天线结构示意图。
图2是本实用新型一实施例中天线结构的电场分布图。
图3是本实用新型一实施例中天线结构的反射系数S11和增益的仿真结果图。
图4是本实用新型一实施例中天线结构的二维辐射方向性图。
图5是本实用新型一实施例中天线结构的中矩形波导模型的电场分布图。
图6是本实用新型提出的由2×2波导槽隙天线结构组成的阵列天线示意图。
图7是本实用新型一实施例中阵列天线的E面功率分配器的模型示意图和电场分布图。
图8是本实用新型一实施例中阵列天线的H面功率分配器的模型示意图和电场分布图。
图9是本实用新型一实施例中阵列天线的反射系数S11和传输系数S21的仿真结果图。
图10是本实用新型一实施例中阵列天线的反射系数S11和传输系数S21的仿真结果图。
图11是本实用新型一实施例中阵列天线示意图和电场分布图。
图12是本实用新型一实施例中阵列天线的反射系数S11和增益的仿真结果图。
图13是本实用新型一实施例中阵列天线的二维辐射方向性图。
图14是本实用新型一实施例中阵列天线的的反射系数S11测试结果与仿真结果的对比图。
图15是本实用新型一实施例中阵列天线的中E面功率分配器二维辐射方向性测试结果与仿真结果的对比图。
图16是本实用新型一实施例中阵列天线的中H面功率分配器二维辐射方向性测试结果与仿真结果的对比图。
图17是本实用新型一实施例中阵列天线在不同频率下测得的E面二维辐射方向性图。
图18是本实用新型一实施例中阵列天线的不同频率下测得的H面二维辐射方向性图。
图19是本实施例提出的阵列天线的增益随频率变化测试结果与仿真结果的对比图
附图标记:1-辐射槽隙,2-谐振腔,3-矩形波导。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。相反,本申请的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
实施例1
如图1所示,本实施例提出了一种适用于Ka波段的波导槽隙天线结构,包括天线结构主体以及天线结构主体内部的谐振腔2与矩形波导3,谐振腔2表面开有四个辐射槽隙1形成辐射层,谐振腔2底部与矩形波导3连接形成馈电层。在本实施例中,谐振腔表面的四个辐射槽隙呈2×2形式排列。
在本实施例中,通过直接在谐振腔上开槽,以此形成辐射层,并且对每个辐射槽隙均作倒角处理,这与传统天线相比,可以显著提高功率容量。
为了进一步的提高天线结构的功率容量,矩形波导与谐振腔底部垂直连接形成馈电层,而通过矩形波导直接向谐振腔垂直馈电的方式,与常规的波导缝隙馈电方式相比,可以有效避免缝隙处场强集中,以此提高馈电功率容量。
在实际应用过程中,微波通过矩形波导垂直馈入谐振腔,之后经谐振腔上表面的四个槽隙向外辐射。
在本实施例中,天线结构主体的口径面尺寸为w×w,w=13.5mm;槽隙长度为l1=3.66mm,宽度为w1=4.91mm,槽隙横向间隔为l2=2.66mm,振腔高度为h=4.318mm,矩形波导尺寸为l3×w2,l3=4.318mm,w2=8.57mm。
如图2所示为本实施例提出的天线结构的电场分布图,当输入功率为1W时,模型最大电场为10418V/m,结合真空条件下Ka波段的金属击穿阈值为750kV/cm的条件,可得出在真空条件下子阵列的功率容量为51.8MW。
图3是本实施例提出的天线结构的反射系数S11和增益的仿真结果图。在30~31GHz频带内子阵列的反射系数小于-18dB,中心频点增益为13.8dB,计算得到子阵列的口径效率为74%。
图4是本实施例提出的天线结构的二维辐射方向性图。
图5是本实施例提出的天线结构中矩形波导的电场分布图。波导尺寸为l3×w2,当输入功率为1W时,模型最大电场为7150.1V/m,真空中的功率容量约为100MW。
实施例2
如图6所示,本实施例提出了一种阵列天线,基于实施例1提出的适用于Ka波段的波导槽隙天线结构实现,该阵列填写由16个波导槽隙天线结构组成,整体呈2×8形式排列,每个相邻波导槽隙天线结构共用谐振腔壁;还包括一个H面波导功率分配器与两个8路E面波导功率分配器,H面波导功率分配器输出与两个8路E面波导功率分配器串联,两个8路E面波导功率分配器输出对应与16个波导槽隙天线结构的矩形波导连接,为16个谐振腔馈电。
为了进一步优化结构以及方便结构,谐振腔之间共用腔壁,结构紧凑,最大程度上提高了口径效率。
需要说明的是,不论是天线结构或由天线结构组成的阵列天线都能够通过3D打印技术加工成型。进一步的,整体可采用铝材,经3D打印技术制成。
图7~10分别是本实施例E面和H面功率分配器的示意图、电场分布图以及对应的反射系数S11和传输系数S21的仿真结果图。功率分配器的功率容量约为56MW,在30~31GHz频带内反射系数小于-10dB,透射系数约为-3dB。
图11是本实施例提出Ka波段高效高功率容量波导槽隙阵列天线的示意图和电场分布图。该阵列天线通过一个H面波导功率分配器串联两个8路E面波导功率分配器为16个谐振腔馈电,以此形成共用谐振腔壁的2×8阵列天线。在30.5GHz频率下,模型最大电场为10365V/m,真空中的功率容量约为50MW。
图12是本实施例提出的阵列天线的反射系数S11和增益的仿真结果图。在30~30.75GHz频带内阵列天线的反射系数小于-10dB,中心频点增益为25.9dB,计算得到口径效率为85.3%。
图13是本实施例提出的阵列天线的二维辐射方向性图。
图14是本实施例提出的阵列天线的反射系数S11测试结果与仿真结果的对比图。在30.4~30.9GHz频带内测得阵列天线的反射系数小于-10dB。与仿真结果相比,测试结果出现了约0.25GHz的中心频点偏移,相对偏移量小于1%。
图15~18分别是本实施例提出的阵列天线中 E面和H面功率分配器的二维辐射方向性测试结果与仿真结果的对比图以及不同频率下测得的E面和H面二维辐射方向性图。可以看出阵列天线在不同频率下方向性基本一致。
图19是本实施例提出的阵列天线的增益随频率变化测试结果与仿真结果的对比图。虚线表示口径效率为90%、80%、70%、60%时的增益。在30.5~30.9GHz频带内,阵列天线的增益大于25dB,口径效率大于70%,最高效率超过80%。
需要说明的是,在本实用新型实施例的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接连接,也可以通过中间媒介间接连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义;实施例中的附图用以对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种适用于Ka波段的波导槽隙天线结构,其特征在于,包括天线结构主体以及天线结构主体内部的谐振腔与矩形波导,谐振腔表面开有四个辐射槽隙形成辐射层,谐振腔底部与矩形波导连接形成馈电层。
2.根据权利要求1所述的适用于Ka波段的波导槽隙天线结构,其特征在于,谐振腔表面的辐射槽隙的棱角处作倒角处理。
3.根据权利要求1或2所述的适用于Ka波段的波导槽隙天线结构,其特征在于,谐振腔表面的四个辐射槽隙呈2×2形式排列。
4.根据权利要求1所述的适用于Ka波段的波导槽隙天线结构,其特征在于,所述谐振腔底部与矩形波导垂直连接,进行垂直馈电。
5.根据权利要求1所述的适用于Ka波段的波导槽隙天线结构,其特征在于,天线结构主体口径面尺寸为13.5mm×13.5mm。
6.根据权利要求5所述的适用于Ka波段的波导槽隙天线结构,其特征在于,四个辐射槽隙长度与宽度均为3.66mm×4.91mm,辐射槽隙横向间隔为2.66mm;谐振腔高度为4.318mm,矩形波导口径面尺寸为4.318mm×8.57mm。
7.一种基于权利要求1-6任一项所述的适用于Ka波段的波导槽隙天线结构的阵列天线,其特征在于,由16个波导槽隙天线结构组成,整体呈2×8形式排列,每个相邻波导槽隙天线结构共用谐振腔壁;还包括一个H面波导功率分配器与两个8路E面波导功率分配器,H面波导功率分配器输出与两个8路E面波导功率分配器串联,两个8路E面波导功率分配器输出对应与16个波导槽隙天线结构的矩形波导连接,为16个谐振腔馈电。
8.根据权利要求7所述的适用于Ka波段的波导槽隙天线结构的阵列天线,其特征在于,所述阵列天线通过3D打印技术加工成型。
CN202220771760.2U 2022-04-06 2022-04-06 一种适用于Ka波段的波导槽隙天线结构及阵列天线 Active CN216436146U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220771760.2U CN216436146U (zh) 2022-04-06 2022-04-06 一种适用于Ka波段的波导槽隙天线结构及阵列天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220771760.2U CN216436146U (zh) 2022-04-06 2022-04-06 一种适用于Ka波段的波导槽隙天线结构及阵列天线

Publications (1)

Publication Number Publication Date
CN216436146U true CN216436146U (zh) 2022-05-03

Family

ID=81320601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220771760.2U Active CN216436146U (zh) 2022-04-06 2022-04-06 一种适用于Ka波段的波导槽隙天线结构及阵列天线

Country Status (1)

Country Link
CN (1) CN216436146U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115483541A (zh) * 2022-09-06 2022-12-16 中国工程物理研究院应用电子学研究所 一种基于极化扭转的Ka波段高功率波束扫描阵列天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115483541A (zh) * 2022-09-06 2022-12-16 中国工程物理研究院应用电子学研究所 一种基于极化扭转的Ka波段高功率波束扫描阵列天线

Similar Documents

Publication Publication Date Title
CN106887716B (zh) 一种cts平板阵列天线
CN111082228B (zh) 用于毫米波通信系统的慢波基片集成波导h面喇叭天线
CN109546348B (zh) 一种新型小型化宽带sw-siw喇叭天线及其设计方法
CN114256626B (zh) 一种双频双圆极化高效共口径平板天线
Leung et al. Rectangular waveguide excitation of dielectric resonator antenna
CN111864377B (zh) 宽带共线缝波导缝隙天线
CN216436146U (zh) 一种适用于Ka波段的波导槽隙天线结构及阵列天线
CN113922075A (zh) 一种基于高阶模的慢波基片集成波导双工天线
CN106711601B (zh) 一种采用双抛物柱面馈电的宽带毫米波波导缝隙天线
CN112542696B (zh) 一种波导缝隙天线
Zhang et al. Design of a dual-band power combining architecture for high-power microwave applications
CN113300125A (zh) 一种三模谐振的宽带天线
Agharasuli et al. UWB stripline coupler with low loss and ripple
CN108448260B (zh) 基于间隙波导的低副瓣缝隙驻波阵
CN110854526A (zh) 一种基片集成波导馈电的介质端射天线
US20040032374A1 (en) Compact wide scan periodically loaded edge slot waveguide array
CN113363688A (zh) 用于微波驱动离子的近场微波转换装置及方法
Milijic et al. Design of asymmetrical slot antenna array in corner reflector
CN117060065B (zh) 一种毫米波超表面天线
CN216529367U (zh) 一种宽带毫米波波导缝隙天线
CN115663485B (zh) 毫米波太赫兹高增益缝隙阵列天线
Qiu et al. E-band microstrip patch array antenna based on hybrid feeding network
Liu et al. A 3D Printed Ka‐Band High‐Efficiency Wide‐Slit Antenna Array for High‐Power Microwave Applications
Kumar et al. Cavity-Backed Slot Loaded Substrate Integrated Waveguide Self-Diplexing Antenna for C Band Applications
CN215497074U (zh) 毫米波天线单元和数据发送单元

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant