CN216013719U - 一种可实现光学分形的光子晶体结构 - Google Patents

一种可实现光学分形的光子晶体结构 Download PDF

Info

Publication number
CN216013719U
CN216013719U CN202122069046.7U CN202122069046U CN216013719U CN 216013719 U CN216013719 U CN 216013719U CN 202122069046 U CN202122069046 U CN 202122069046U CN 216013719 U CN216013719 U CN 216013719U
Authority
CN
China
Prior art keywords
photonic crystal
crystal structure
dielectric
sequence
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN202122069046.7U
Other languages
English (en)
Inventor
张亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Science and Technology
Original Assignee
Hubei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Science and Technology filed Critical Hubei University of Science and Technology
Priority to CN202122069046.7U priority Critical patent/CN216013719U/zh
Application granted granted Critical
Publication of CN216013719U publication Critical patent/CN216013719U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本实用新型提供了一种可实现光学分形的光子晶体结构,属于光学技术领域。所述光子晶体结构的多层结构满足二元鲁丁‑夏皮诺(Rudin‑Shapiro:RS)序列排列规则,二元RS序列如下迭代规则:S0=H,S1=HH,S2=HHHL,S3=HHHLHHLH,……,SN=SN‑1(HH→HHHL,HL→HHLH,LH→LLHL,LL→LLLH),……所述第一电介质和第二电介质的厚度为各自折射率对应的1/4光学波长。本实用新型能够形成可用于多通道光子滤波器的光学分形态。

Description

一种可实现光学分形的光子晶体结构
技术领域
本实用新型属于光学技术领域,涉及一种可实现光学分形的光子晶体结构。
背景技术
将折射率不同的电介质在空间呈周期性排列,可以构成一维、二维或三维光子晶体。光子晶体具有能带和带隙结构,该特性使得光子晶体可以对光波进行全透射和全反射。缺陷光子晶体的带隙中存在单一的缺陷模,也叫透射模。缺陷会增强光场的局域性,从而提高光波的共振。于是,缺陷模的透射率极大,而反射极小。
准周期光子晶体也具有能带结构。准周期光子晶体中存在天然的缺陷层,其有序性介于周期性光子晶体和非周期光子晶体之间,常将其用于获得缺陷模输出。另外,准周期光子晶体中缺陷模的数量和位置可以通过增大晶体的序列序号来扩展,且这些缺陷模具有自相似特性,故将这种现象叫光学分形效应,对应的共振模叫光学分形态。光学分形态可被应用于电场局域、反射增强、激光器和滤波器等。
特别地,滤波器根据幅频特性可分为带通、带阻、低通和高通四种类型。在波分复用技术中,需要对多信道进行滤波,这就要用到多通道滤波器。传统的光波分复用器是通过调控光纤光栅的空间周期的来实现对信道的滤波和分离。人造光子晶体的出现,为多通道滤波器的设计提供了新的选择。
准周期光子晶体中,存在许多的透射模,对应着一系列的光学分形态。可以将准周期光子晶体中的光学分形态应用于多通道光滤波器中,信道的数量可以通过序列的序号来扩展,信道的位置可以通过改变光波的入射角大小来灵活地调控。
实用新型内容
本实用新型的目的是针对现有的技术存在的上述问题,提供一种可实现光学分形的光子晶体结构,本实用新型所要解决的技术问题是涉及具有光学分形态的光子晶体结构以应用于多通道光滤波器中。
本实用新型的目的可通过下列技术方案来实现:一种可实现光学分形的光子晶体结构,其特征在于,所述光子晶体结构的多层结构满足二元鲁丁-夏皮诺(Rudin-Shapiro:RS)序列排列规则,二元RS序列如下迭代规则:S0=H,S1=HH,S2=HHHL,S3=HHHLHHLH,……,SN=SN-1(HH→HHHL,HL→HHLH,LH→LLHL,LL→LLLH),……,其中N(N=0,1,2,3,……)序列的序号,SN表示序列的第N项,HH→HHHL表示将SN-1中的HH替换成HHHL,HL→HHLH表示将SN-1中的HL替换成HHLH,LH→LLHL表示将SN-1中的LH替换成LLHL,LL→LLLH表示将SN-1中的LL替换成LLLH;H、L分别表示折射率高、低不同的第一电介质和第二电介质;所述第一电介质和第二电介质的厚度为各自折射率对应的1/4光学波长。
进一步的,所述第一电介质为二氧化钛,所述第二电介质为二氧化硅。
进一步的,所述光子晶体结构可用于多通道光子滤波器,滤波的信道数量通过增加二元RS序列的序号来扩展,所述光子晶体结构的信道中心波长通过入射角来调控。
在数学上,二元鲁丁-夏皮诺(Rudin-Shapiro:RS)序列是一种准周期序列,其对应的二元RS光子晶体是一种准周期光子晶体,也叫准光子晶体。在二元RS光子晶体中,存在一系列的透射模,对应着一系列的光学分形态。可以将光学分形态应用于多通道光滤波器中,信道的数量可以通过二元RS序列的序号来控制,信道的位置可以通过光波的入射角来灵活调控。
附图说明
图1是二元RS序列光子晶体结构示意图。
图2中(a)图是N=2时二元RS光子晶体对应的透射谱;图2中(b)图是N=3时二元RS光子晶体对应的透射谱;图2中(c)图是N=4时二元RS光子晶体对应的透射谱;图2中(d)图是N=5时二元RS光子晶体对应的透射谱。
图3是N=3时不同入射角对应的二元RS光子晶体透射谱。
图4中(a)图是图3中信道1的透射率随入射角变化关系;图4中(b)图是图3中信道1的归一化频率随入射角变化关系。
图中,H、第一电介质;L、第二电介质。
具体实施方式
以下是本实用新型的具体实施例并结合附图,对本实用新型的技术方案作进一步的描述,但本实用新型并不限于这些实施例。
数学上,二元鲁丁-夏皮诺(Rudin-Shapiro:RS)序列的迭代规则为:S0=H,S1=HH,S2=HHHL,S3=HHHLHHLH,……,SN=SN-1(HH→HHHL,HL→HHLH,LH→LLHL,LL→LLLH),……,其中N(N=0,1,2,3,……)序列的序号,SN表示序列的第N项,HH→HHHL表示将SN-1中的HH替换成HHHL。在对应的RS光子晶体中,字母H、L分别表示折射率高、低不同的两种均匀电介质薄片。
图1分别给出了序号N=0,1,2和3的二元RS光子晶体结构,其中,H为高折射率材料二氧化钛,其折射率为nH=2.1;L为低折射率材料二氧化硅,其折射率为nL=1.45。入射光为横磁波。H和L的厚度均为1/4光学波长,即H的厚度为dH=λ0/4/nH=0.1685μm(μm表示微米),其中λ0=1.55μm为中心波长,L的厚度为dL=λ0/4/nL=0.2672μm。
在准光子晶体中,存在光学分形效应。可以利用光学分形效应得到多通道滤波器,以及对滤波通道进行扩展。当横磁波垂直入射时,图2(a)给出的是N=2的二元RS光子晶体对应的透射谱。纵坐标T表示透射率,横坐标(ω-ω0)/ωgap表示归一化角频率,其中ω=2πc/λ、ω0=2πc/λ0和ωgap=4ω0arcsin│(na-nb)/(na+nb)|2/π分别表示入射光角频率、入射光中心角频率和角频率带隙,c为真空中光速,arcsin为求反正弦函数。可以看到,在在归一化频率为(-3,3)区间内,透射峰的数目为3。因此该结构中的滤波通道数为3。图2(b)给出的是N=3的二元RS光子晶体对应的透射谱,透射峰的数目为7,该结构中的滤波通道数为7。图2(c)给出的是N=4的二元RS光子晶体对应的透射谱,透射峰的数目为11,则该结构中的滤波通道数为11。图2(d)给出的是N=5的二元RS光子晶体对应的透射谱,透射峰的数目为23,则该结构中的滤波通道数为23。
光学分形态具有自相似特性。图2(a)中虚线框中的三个分形态分别沿着路径I、II和III与图2(b)、2(c)和2(d)虚线框中的三个分形态相似。而图2(c)中左、右两个虚线框的三个分形态分别沿着路径IV和V与图2(d)中两个虚线框中的三个分形态相似。
为了对比清晰,在表1中给出了不同序列序号N的二元RS光子晶体对应的滤波通道数目。该表中给出的条件为:光波垂直入射,归一化频率区间为(-3,3)。从表中可以看到,随着序号N的增加,滤波通道的数目迅速地增加,此效应可以被用来扩展滤波通道的数目。
表1不同序号的二元RS光子晶体中滤波通的道数目
Figure BDA0003236597520000051
在上述内容中曾提到:当N=3,横磁波垂直入射时,二元RS光子晶体在归一化频率区间为(-3,3)的滤波通道数目为7。这里将改变光波入射角的大小,从而调控各滤波通道的中心频率。保持序号N=3的二元RS光子晶体结构不变,图3分别给出的入射角分别为θ=0°、15°、30°和45°对应的透射谱。可以看到,尽管入射角的大小在变化,但在区间(-3,3)内滤波通道的数目仍然保持不变。只是随着入射角的增大,透射谱整体上向右移动。因此,可以通过调整入射角的大小来改变滤波通道的中心频率。为对比方便,选取中心位置的滤波通道来定量地说明,用椭圆圈定这个通道的位置,并用*标记,将其命名为信道1。
将图3中通道1对应的中心透射率记为T1,对应的透射模中心频率记为ω1。图4(a)给出的是图3中通道1的透射率T1随入射角θ的变化关系。可以看到,随着入射角的增大,透射率T1随之略微地减小;当θ从=0°升到到60°时,透射率T1从1减小到0.999996。图4(b)给出的是图3中通道1的透射模中心频率ω1随入射角的变化关系。可以看到,随着入射角的增大,透射率ω1随之增大;当θ从0°升到到60°时,(ω10)/ωgap从0升高到0.421。
总之,二元RS光子晶体中存在光学分形态,对应着不同的透射模。这些透射模可被用于多通道光子滤波,滤波通道的数目可以通过增加序列序号来扩展,各滤波通道的中心频率可以通过改变入射角的大小来灵活地调控。
本文中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。

Claims (3)

1.一种可实现光学分形的光子晶体结构,其特征在于,所述光子晶体结构的多层结构满足二元鲁丁-夏皮诺序列排列规则,二元RS序列如下迭代规则:S0=H,S1=HH,S2=HHHL,S3=HHHLHHLH,……,SN=SN-1,即SN中的HHHL替代SN-1中的HH,SN中的HHLH替代SN-1中的HL,SN中的LLHL替代SN-1中的LH,SN中的LLLH替代SN-1中的LL,……,其中N序列的序号,SN表示序列的第N项,HH→HHHL表示将SN-1中的HH替换成HHHL,HL→HHLH表示将SN-1中的HL替换成HHLH,LH→LLHL表示将SN-1中的LH替换成LLHL,LL→LLLH表示将SN-1中的LL替换成LLLH;H、L分别表示折射率高、低不同的第一电介质和第二电介质;所述第一电介质和第二电介质的厚度为各自折射率对应的1/4光学波长。
2.根据权利要求1所述一种可实现光学分形的光子晶体结构,其特征在于,所述第一电介质为二氧化钛,所述第二电介质为二氧化硅。
3.根据权利要求1或2所述一种可实现光学分形的光子晶体结构,其特征在于,所述光子晶体结构的可用于多通道光子滤波器,滤波信道的数量通过增加二元RS序列的序号来扩展,所述光子晶体结构的信道中心波长通过入射角来调控。
CN202122069046.7U 2021-08-30 2021-08-30 一种可实现光学分形的光子晶体结构 Withdrawn - After Issue CN216013719U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122069046.7U CN216013719U (zh) 2021-08-30 2021-08-30 一种可实现光学分形的光子晶体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122069046.7U CN216013719U (zh) 2021-08-30 2021-08-30 一种可实现光学分形的光子晶体结构

Publications (1)

Publication Number Publication Date
CN216013719U true CN216013719U (zh) 2022-03-11

Family

ID=80532090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122069046.7U Withdrawn - After Issue CN216013719U (zh) 2021-08-30 2021-08-30 一种可实现光学分形的光子晶体结构

Country Status (1)

Country Link
CN (1) CN216013719U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534301A (zh) * 2021-08-30 2021-10-22 湖北科技学院 一种可实现光学分形的光子晶体结构
CN113534301B (zh) * 2021-08-30 2024-06-07 湖北科技学院 一种可实现光学分形的光子晶体结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534301A (zh) * 2021-08-30 2021-10-22 湖北科技学院 一种可实现光学分形的光子晶体结构
CN113534301B (zh) * 2021-08-30 2024-06-07 湖北科技学院 一种可实现光学分形的光子晶体结构

Similar Documents

Publication Publication Date Title
Mehdizadeh et al. All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems
Ghorbanpour et al. 2-channel all optical demultiplexer based on photonic crystal ring resonator
Trabelsi et al. Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures
CN103076647B (zh) 金属-介质-金属结构的表面等离子体型平坦多信道滤波器
CN114265130A (zh) 基于全介质超表面的透反射光调控器件及其工作方法
CN215833643U (zh) 一种基于二元Rudin-Shapiro光子晶体对的多信道光子滤波器
CN216013719U (zh) 一种可实现光学分形的光子晶体结构
CN215415966U (zh) 一种基于Cantor光子晶体和石墨烯复合结构的光子滤波器
CN113534301A (zh) 一种可实现光学分形的光子晶体结构
CN215415968U (zh) 一种基于周期倍增光子晶体的多通道滤波器
CN113934024A (zh) 基于pd光子晶体与石墨烯复合结构的光子滤波器
CN113534301B (zh) 一种可实现光学分形的光子晶体结构
CN215575741U (zh) 一种基于Cantor光子晶体的多通道滤波器
CN113777674B (zh) 一种可实现光学频率梳的光子晶体结构
Mehdizadeh et al. All optical 8-channel wavelength division demultiplexer based on photonic crystal ring resonators
CN113640901A (zh) 一种基于周期倍增光子晶体的多通道滤波器
CN215641906U (zh) 一种基于Rudin-Shapiro光子晶体对的可调多通道光子滤波器
CN215415967U (zh) 一种可调双通道光子滤波器
CN113934023A (zh) 一种基于中心对称pd光子晶体的多通道滤波器
CN114185115A (zh) 一种基于Cantor光子晶体的多通道滤波器
CN108196338B (zh) 一种级联准周期结构的全方位反射器
CN113687451A (zh) 一种基于二元Rudin-Shapiro光子晶体对的多信道光子滤波器
Ben-Ali et al. Two-channel demultiplexer based on 1D photonic star waveguides using defect resonators modes
CN106054318B (zh) 一维膜腔型不等带宽光交错复用器的设计方法
CN215415969U (zh) 一种基于四元Rudin-Shapiro光子晶体的光子带阻滤波器结构

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20220311

Effective date of abandoning: 20240607

AV01 Patent right actively abandoned

Granted publication date: 20220311

Effective date of abandoning: 20240607