CN215865741U - 基于光学衍射的薄膜均匀性检测系统 - Google Patents
基于光学衍射的薄膜均匀性检测系统 Download PDFInfo
- Publication number
- CN215865741U CN215865741U CN202121962899.7U CN202121962899U CN215865741U CN 215865741 U CN215865741 U CN 215865741U CN 202121962899 U CN202121962899 U CN 202121962899U CN 215865741 U CN215865741 U CN 215865741U
- Authority
- CN
- China
- Prior art keywords
- film
- unit
- roller
- diffraction
- uniformity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
本实用新型公开了一种基于光学衍射的薄膜均匀性检测系统,包括成像单元、采集单元、处理单元、存储单元、控制单元;采集单元的输出端连接处理单元的输入端,处理单元的输出端连接存储单元,控制单元分别与成像单元、采集单元、处理单元相互连接;所述成像单元用于产生衍射光条纹图像,依次包括光源、滤光片和滚筒,光源发出光线经过滤光片来进行光源光强和波长调节,再经过滚筒和安放在载物台上的滚轮之间的缝隙得到衍射光条纹图像;所述采集单元包括载物台、多个线阵相机,载物台上薄膜被测区域形成的条纹图像反射到对应的线阵相机。本实用新型能够满足柔性薄膜均匀性检测所需的图像质量要求,实现薄膜表面的均匀性检测。
Description
技术领域
本实用新型涉及薄膜均匀性检测技术领域,特别是涉及一种基于光学衍射的薄膜均匀性检测系统。
背景技术
薄膜广泛应用于液晶电视、平板电脑、智能手机、车载显示屏等领域,受生产工艺或生产环境等条件的限制,薄膜在生产过程中容易产生质量缺陷,主要表现在厚度不均匀、表面出现划痕、内部产生气泡,或薄膜内部掺入杂质、尘埃等,因此,薄膜均匀性检测成为薄膜类材料生产质量控制的重要一环。
传统的检测一般由有经验的检测人员目测和简单测量来实现,检测结果缺乏可靠性以及精确性,无法量化评价且难以进行长时间的观测。
因此亟需提供一种新型的基于光学衍射的薄膜均匀性检测系统来解决上述问题。
发明内容
本实用新型所要解决的技术问题是提供一种基于光学衍射的薄膜均匀性检测系统,能够实现表面反光的柔性薄膜均匀性检测。
为解决上述技术问题,本实用新型采用的一个技术方案是:提供一种基于光学衍射的薄膜均匀性检测系统,包括成像单元、采集单元、处理单元、存储单元、控制单元;采集单元的输出端连接处理单元的输入端,处理单元的输出端连接存储单元,控制单元分别与成像单元、采集单元、处理单元相互连接;
所述成像单元用于产生衍射光条纹图像,依次包括光源、滤光片和滚筒,光源发出光线经过滤光片来进行光源光强和波长调节,再经过滚筒和安放在载物台上的滚轮之间的缝隙得到衍射光条纹图像;所述采集单元包括载物台、多个线阵相机,载物台上薄膜被测区域形成的条纹图像反射到对应的线阵相机。
在本实用新型一个较佳实施例中,所述滚筒上安放有作为参考基准的薄膜样本,通过所述滚筒上的薄膜样本和所述载物台滚轮上的待检测薄膜的同步移动,获得薄膜被测区域上的衍射条纹图像。
进一步的,所述滚筒设置在与载物台位置相对的第一滑动导轨上,且所述滚筒和载物台上滚轮的中心位于同一轴线上。
在本实用新型一个较佳实施例中,所述滤光片包括多个带通滤光片。
在本实用新型一个较佳实施例中,所述采集单元还包括第二滑动导轨,所述载物台位于第二滑动导轨上。
进一步的,所述载物台上设置有滚轮,滚轮上承载有待检测薄膜,配合外置的薄膜传送系统实现待检测薄膜的高精度成像。
进一步的,所述载物台在起始位置和终点位置分别安装有起始位置传感器和终点位置传感器。
在本实用新型一个较佳实施例中,所述线阵相机采用线阵CCD相机或/和CMOS相机。
在本实用新型一个较佳实施例中,所述存储单元的输出端还连接有显示单元,所述显示单元采用手机、平板、电脑中的一种或多种。
在本实用新型一个较佳实施例中,所述存储单元的输出端还连接有执行单元,所述执行单元包括报警器、语音播放器。
本实用新型的有益效果是:
(1)本实用新型通过将光源采用空间划分多通道方式产生多束分光束,不同束的分光束经过不同的带通滤光片实现滤光后,经过滚筒上的薄膜样本和载物台上的待检测薄膜之间缝隙生成薄膜被测区域的衍射条纹图像,避免了复杂光路设计,能满足柔性薄膜均匀性检测所需的图像质量要求;
(2)本实用新型通过对滚筒上的薄膜样本进行不同选取,比如选为指定缺陷类型的典型薄膜、薄膜均匀一致的典型薄膜或者待检测薄膜,可以实现指定缺陷类型快速检测、薄膜均匀性一致与否快速检测或者一次性对两个薄膜进行均匀性检测,检测方式更加灵活。
附图说明
图1是本实用新型基于光学衍射的薄膜均匀性检测系统一较佳实施例的结构框图;
图2是所述成像单元的光路框图;
图3是所述检测系统的光路原理图。
具体实施方式
下面结合附图对本实用新型的较佳实施例进行详细阐述,以使本实用新型的优点和特征能更易于被本领域技术人员理解,从而对本实用新型的保护范围做出更为清楚明确的界定。
请参阅图1,本实用新型实施例包括:
一种基于光学衍射的薄膜均匀性检测系统,包括成像单元、采集单元、处理单元、存储单元、控制单元、显示单元、执行单元。采集单元的输出端连接处理单元的输入端,处理单元的输出端连接存储单元,存储单元的输出端连接显示单元和执行单元,控制单元分别与成像单元、采集单元、处理单元相互连接。该系统中各单元均为现有市售产品。
结合图2,所述成像单元用于产生衍射光条纹图像,包括光源、滚筒和滤光片。光源发出光线经过滤光片来进行光源光强和波长调节,再经过滚筒和安放在载物台上的滚轮之间的缝隙得到衍射光条纹图像。所述滚筒和载物台上滚轮的中心位于同一轴线上,优选的,所述滚筒设置在与载物台位置相对的第一滑动导轨上。
进一步的,所述光源为可见光光源、激光光源或红外光源,采用空间划分多通道方式产生多束分光束。
所述滚筒上安放有作为参考基准的薄膜样本,通过所述滚筒上的薄膜样本和所述载物台滚轮上的待检测薄膜的同步移动,获得薄膜被测区域上的衍射条纹图像。所述滚筒需标定相关参数,使其满足预设要求,包括:分析条纹图像中条纹大小是否与预设的识别算法匹配;若不匹配,调节所述滚筒和所述载物台滚轮之间缝隙和投射距离,直至条纹图像与投射距离和识别算法匹配。所述投射距离指的是光源与缝隙、缝隙与线阵相机之间的距离。
具体的,所述薄膜样本可为指定缺陷类型的典型薄膜,用于指定缺陷类型检测;可为薄膜均匀一致的典型薄膜,用于薄膜均匀性一致与否检测;还可为待检测薄膜,用于实现一次性对两个薄膜进行均匀性检测。
进一步的,所述滤光片包括多个带通滤光片,使得不同束的所述分光束经过不同的所述带通滤光片实现滤光。
结合图3,所述采集单元包括载物台、滚轮、第二滑动导轨和多个线阵相机,用于采集所述条纹图像,并进行多相机标定。每组所述带通滤光片、对应的线阵相机沿不同所述分光束的光路前后依次设置,使得不同束的所述分光束经过不同的所述带通滤光片实现滤光后,将载物台上薄膜被测区域形成的条纹图像反射到所述对应的线阵相机。通过采用多组分别沿分光束的光路前后设置的滤光片和对应的线阵相机,采集到的多路薄膜条纹图像能够极大表征薄膜均匀性信息,结合特征提取网络和多模态融合网络,能准确、客观地检测薄膜均匀性。
进一步的,所述线阵相机可采用线阵CCD相机或/和CMOS相机,以提高成像效率。
所述载物台位于第二滑动导轨上,可以是第二滑动导轨的某一区域。外置的薄膜传送系统将待检测薄膜传送至第二滑动导轨上。所述载物台上设置有滚轮,用于承载待检测薄膜,配合外置的薄膜传送系统可以实现待检测薄膜的高精度成像,如同流水线生产环节,待检测薄膜源源不断地在所述载物台的滚轮上经过,与所述滚筒上的薄膜样本对应位置形成缝隙连续产生衍射图像,不需要停留便能实现图像采集、检测。
具体的,所述载物台在起始位置和终点位置分别安装有起始位置传感器和终点位置传感器,在传感器的信号辨别下,以对齐所述载物台滚轮上的待检测薄膜和所述滚筒上的薄膜样本至所述起始位置处,以自动开启和关闭图像采集、检测。
所述多相机标定方法为:首先,通过安装在所述载物台靠近终点处的位置传感器对齐待检测薄膜至该处,给出坐标原点O,此时所述待检测薄膜整个区域均在所述载物台上,以水平传送方向为X轴,垂直方向为Y轴,建立世界坐标系;其次,在所述载物台上安放多个已知位置关系的标定板,每个所述线阵相机至少都能拍摄到一个标定板,各个标定板的坐标值在世界坐标系下给出;最后,每个线阵相机采集所述载物台包含标定板的图像并采用张正友标定法进行标定,各自建立相机坐标系,获得标定板在所述相机坐标系中各自的像素坐标,建立每个所述相机视觉单元中的像素坐标系,确定整个像素坐标系的每个像素单元坐标值与世界坐标系对应坐标值的映射关系,依据所述映射关系给出所述条纹点坐标值,实现多相机标定。
所述处理单元用于采用预设的薄膜均匀性检测模型对所述条纹图像进行识别,检测所述条纹图像是否发生畸变,从而实现薄膜均匀一致性判别。
为了提高检测准确度,所述处理单元还可对条纹图像信息进行预处理,预处理包括对获取的监控区域图像进行中值滤波、高斯滤波或小波阈值滤波去噪。
进一步的,所述处理单元还可对所述条纹图像发生的畸变类别进行判别,给出薄膜缺陷类型。
所述存储单元用于预存各类滤波算法,包括中值滤波、高斯滤波、小波阈值滤波和新息自适应卡尔曼滤波算法,薄膜均匀性检测模型和所述线阵相机获得的薄膜均匀一致和非一致典型条纹图像库,还用于预存薄膜缺陷类型、薄膜传送速度与光源、线阵相机的参数关系字典。
进一步的,所述薄膜均匀性检测模型提供两种检测模式,包括精准模式和简单模式,用于分别给出更准确但相对耗时的检测结果和较准确但相对快速的检测结果,薄膜均匀性检测更具灵活性。
具体的,所述精准模式使用并列的特征提取网络分别提取每个所述线阵相机获得的薄膜被测区域图像特征,然后使用多模态融合网络进行融合构建并通过标注后的薄膜均匀一致和非一致条纹图像集进行训练得到。
其中,所述特征提取网络包括但不限于CNN、RNN、LSTM等网络模型及其组合或者变体。
所述多模态融合网络采用全连接网络,一般选用2~4层。前一层全连接网络的输出作为后一层全连接网络的输入,第一层全连接网络的输入为特征提取网络得到的特征向量,最后一层全连接网络的输出为表征薄膜均匀性情况的特征向量,该特征向量的长度等于输入的一组检测数据中含有的薄膜均匀性情况标签种类数(对薄膜均匀一致性与否检测为一致和不一致两类,对缺陷类型检测为缺陷类型数),该特征向量的各元素分别表示各类薄膜均匀性情况的概率,概率最大并且概率超过设定阈值的类别就是判定的薄膜均匀性分类,同时给出所述缺陷在薄膜被测区域中的条纹点坐标范围。
优选的,所述特征提取网络可采用ResNeXt改进后的U-Net网络,引入了残差模块,主要包括降采样和上采样两部分。降采样采用典型的卷积网络结构,每个特征尺度采用两个3×3卷积,然后用2×2的最大池化做降采样,每次降采样特征的通道数都会增加一倍。上采样使用最大池化的上卷积(特征通道数量减少一半),与同尺度的降采样部分的特征图直接拼接,然后再用两个3×3的卷积,最后用1×3卷积将特征图映射到实际需要的分类数目的通道数进行分类检测。
为了进一步压缩网络参数、减少计算量,所述3×3卷积可分解为非对称卷积,比如使用3×1卷积核的卷积操作后接一个1×3卷积核的卷积操作。
具体的,所述简单模式通过将每个所述线阵相机获得的薄膜被测区域图像与所述典型条纹图像库中对应线阵相机获得的图像进行相似度比对,按照设定的检测条件给出薄膜均匀一致性与否或者指定缺陷类型的快速简单检测。例如下表1所示的均匀一致性与否检测,对于判断为待定的结果可通过编码标记、界面弹窗、语音提醒相关人员进行人工再次检测。
所述设定的检测条件可通过定量分析相似度、相机数目等因素,构建专家打分的判断矩阵,定量分析该因素对检测结果的影响权重,给出基于该因素的专家打分值,在此基础上进行检测结果评估并分级判别,比如对于薄膜均匀一致性与否检测,为一致、待定、不一致。
表1
所述控制单元用于对成像单元、采集单元和处理单元的各种控制参数进行设定,包括电子光栅电参数、滤光片带宽、光源照射角度、线阵相机明暗域位置及采集行频和检测模式。特别是控制线阵相机的采集行频,使其与薄膜传送速度匹配,并根据采集行频来限制薄膜的最大传送速度,两者关系满足f=v*b/s,其中f表示采集行频,v表示薄膜传送速度,b表示成像单元放大率,s表示线阵相机的像元尺寸大小。所述薄膜传送速度包括所述载物台滚轮上的待检测薄膜和所述滚筒上的薄膜样本传送速度,两者需保持同步。
进一步的,所述控制单元接收外置的薄膜传送系统中的编码器感知的薄膜传送速度信息,并采用新息自适应卡尔曼滤波算法进行高精度测速,根据薄膜缺陷类型、薄膜传送速度与光源、线阵相机的参数关系字典进行查找,得到当前光源、线阵相机的参数值并进行设定。
所述显示单元用于将每一个薄膜均匀性检测情况进行大屏可视化展示,包括当前检测薄膜的批次编号、系统编号、检测时间、操作员信息等,以及已检测薄膜数目、待检测薄膜数目、合格薄膜数目等。
进一步的,显示单元支持手机、平板、电脑等终端显示,可以一键给出不合格薄膜的批次编号,并支持数据导出。
所述执行单元用于检测到不合格薄膜后的操作。
进一步的,所述执行单元可以按照客户需求定制,如提供一个告警信息,或者进行语音播放不合格薄膜批次编号等。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (10)
1.一种基于光学衍射的薄膜均匀性检测系统,其特征在于,包括成像单元、采集单元、处理单元、存储单元、控制单元;采集单元的输出端连接处理单元的输入端,处理单元的输出端连接存储单元,控制单元分别与成像单元、采集单元、处理单元相互连接;
所述成像单元用于产生衍射光条纹图像,依次包括光源、滤光片和滚筒,光源发出光线经过滤光片来进行光源光强和波长调节,再经过滚筒和安放在载物台上的滚轮之间的缝隙得到衍射光条纹图像;所述采集单元包括载物台、多个线阵相机,载物台上薄膜被测区域形成的条纹图像反射到对应的线阵相机。
2.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述滚筒上安放有作为参考基准的薄膜样本,通过所述滚筒上的薄膜样本和所述载物台滚轮上的待检测薄膜的同步移动,获得薄膜被测区域上的衍射条纹图像。
3.根据权利要求1或2所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述滚筒设置在与载物台位置相对的第一滑动导轨上,且所述滚筒和载物台上滚轮的中心位于同一轴线上。
4.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述滤光片包括多个带通滤光片。
5.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述采集单元还包括第二滑动导轨,所述载物台位于第二滑动导轨上。
6.根据权利要求1或5所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述载物台上设置有滚轮,滚轮上承载有待检测薄膜,配合外置的薄膜传送系统实现待检测薄膜的高精度成像。
7.根据权利要求1或5所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述载物台在起始位置和终点位置分别安装有起始位置传感器和终点位置传感器。
8.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述线阵相机采用线阵CCD相机或/和CMOS相机。
9.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述存储单元的输出端还连接有显示单元,所述显示单元采用手机、平板、电脑中的一种或多种。
10.根据权利要求1所述的基于光学衍射的薄膜均匀性检测系统,其特征在于,所述存储单元的输出端还连接有执行单元,所述执行单元包括报警器、语音播放器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121962899.7U CN215865741U (zh) | 2021-08-19 | 2021-08-19 | 基于光学衍射的薄膜均匀性检测系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121962899.7U CN215865741U (zh) | 2021-08-19 | 2021-08-19 | 基于光学衍射的薄膜均匀性检测系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN215865741U true CN215865741U (zh) | 2022-02-18 |
Family
ID=80240758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202121962899.7U Active CN215865741U (zh) | 2021-08-19 | 2021-08-19 | 基于光学衍射的薄膜均匀性检测系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN215865741U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624457A (zh) * | 2021-08-19 | 2021-11-09 | 中国科学院合肥物质科学研究院 | 基于光学衍射的薄膜均匀性检测系统 |
-
2021
- 2021-08-19 CN CN202121962899.7U patent/CN215865741U/zh active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624457A (zh) * | 2021-08-19 | 2021-11-09 | 中国科学院合肥物质科学研究院 | 基于光学衍射的薄膜均匀性检测系统 |
CN113624457B (zh) * | 2021-08-19 | 2024-04-30 | 中国科学院合肥物质科学研究院 | 基于光学衍射的薄膜均匀性检测系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102680481B (zh) | 棉纤维杂质的检测方法 | |
WO2014139231A1 (zh) | 光源光强均一性测调系统及测调方法 | |
CN107884414B (zh) | 一种剔除灰尘影响的镜面物体表面缺陷检测系统及方法 | |
CN113624458B (zh) | 基于双路全投射光的薄膜均匀性检测系统 | |
CN109406527B (zh) | 一种微型摄像模组镜头精细外观缺陷检测系统及方法 | |
CN101424514A (zh) | 基于图像处理的卷尺刻度在线自动检测系统及方法 | |
CN106524955A (zh) | 一种平面等厚干涉数显测量装置及测量平晶平面度的方法 | |
CN114280075B (zh) | 一种管类零件表面缺陷在线视觉检测系统及检测方法 | |
CN104596638B (zh) | 一种高分辨率多波长激光强度分布探测器及其测量方法 | |
CN215865741U (zh) | 基于光学衍射的薄膜均匀性检测系统 | |
CN102663340A (zh) | 一种对板材进行分类识别的装置和方法 | |
CN215865743U (zh) | 基于线结构光的薄膜均匀性检测系统 | |
CN215865742U (zh) | 基于双路全投射光的薄膜均匀性检测系统 | |
US20200167924A1 (en) | Method, apparatus and system for cell detection | |
CN115187553A (zh) | 基于显示散斑图像的dic应变检测装置及方法 | |
CN111830046B (zh) | 基于多光谱分光成像的表面缺陷自动光学检测系统及方法 | |
CN215865745U (zh) | 基于光学干涉的薄膜均匀性检测系统 | |
CN215865744U (zh) | 基于相干层析成像的薄膜均匀性检测系统 | |
CN113740034B (zh) | 基于光学干涉的薄膜均匀性检测系统 | |
CN116091506B (zh) | 一种基于yolov5的机器视觉缺陷质检方法 | |
CN113624459B (zh) | 基于相干层析成像的薄膜均匀性检测系统 | |
EP3940370A1 (en) | Method for extracting spectral information of object to be detected | |
CN113624457B (zh) | 基于光学衍射的薄膜均匀性检测系统 | |
CN112098415A (zh) | 一种杨梅品质无损检测方法 | |
CN113624461B (zh) | 基于线结构光的薄膜均匀性检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |