CN215484069U - Steel pipe concrete truss prestressing force superposed beam - Google Patents
Steel pipe concrete truss prestressing force superposed beam Download PDFInfo
- Publication number
- CN215484069U CN215484069U CN202121570255.3U CN202121570255U CN215484069U CN 215484069 U CN215484069 U CN 215484069U CN 202121570255 U CN202121570255 U CN 202121570255U CN 215484069 U CN215484069 U CN 215484069U
- Authority
- CN
- China
- Prior art keywords
- truss
- concrete
- steel
- steel pipe
- stirrup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 91
- 239000010959 steel Substances 0.000 title claims abstract description 91
- 239000004567 concrete Substances 0.000 title claims abstract description 55
- 210000002435 tendon Anatomy 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 19
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 abstract description 14
- 238000010276 construction Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000011178 precast concrete Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Rod-Shaped Construction Members (AREA)
Abstract
The utility model discloses a steel tube concrete truss prestress superposed beam which comprises a steel tube, truss web reinforcements, stirrups, a concrete bottom plate and prestress reinforcements, wherein two truss web reinforcements which are obliquely arranged oppositely are fixedly welded on two sides of the steel tube, and the two truss web reinforcements are symmetrically arranged relative to the steel tube, so that a steel tube truss is formed. In the assembly production process of the device, the operation process is simple and convenient, and the technical requirement on plant operators is not high; in the field construction process, ordinary steel bars are laid on the prefabricated bottom plate and anchored in the column or the beam, then upper longitudinal bars are laid, and finally the prefabricated bottom plate and the column can be cast in situ to form a whole, so that the problem of poor node performance of the traditional fabricated building and the problem of putting up the prefabricated member beam column steel bars are solved, and the prefabricated member beam column steel bars have the advantages of good earthquake resistance and overall performance and the like.
Description
Technical Field
The utility model particularly relates to the technical field of building construction, and particularly relates to a steel pipe concrete truss prestress superposed beam.
Background
In the development of domestic assembly type buildings, most of the existing assembly type superposed beams are composed of common reinforced concrete, and in a large-span heavy load structure, because the strength of a reinforced material is low, the content of the reinforced concrete is high, the consumption of the concrete is large, the self weight of a component is large, a factory processing mold is complex, more embedded parts are arranged, the standardization of the component cannot be realized, the cost of the component is large, the connection of primary and secondary beam components and the connection structure of a beam column are complex, the on-site conflict between the prefabricated beam reinforced steel and the column reinforced steel is serious, and the on-site installation is very difficult.
Aiming at the problems, the utility model provides a steel pipe truss prestressed composite beam, which adopts a factory precast concrete member, and pours concrete on site after binding reinforcing steel bars on the precast member on site to form the high-strength prestressed composite beam.
SUMMERY OF THE UTILITY MODEL
Therefore, the utility model provides a prestressed composite beam of a concrete filled steel tube truss to solve the problems in the background technology.
In order to achieve the purpose, the utility model provides the following technical scheme: the steel tube concrete truss prestress superposed beam comprises a steel tube, truss web reinforcements, stirrups, a concrete bottom plate and prestress reinforcements, wherein two truss web reinforcements which are obliquely arranged oppositely are fixedly welded on two sides of the steel tube, and the two truss web reinforcements are symmetrically arranged relative to the steel tube, so that a steel tube truss is formed;
the stirrup is provided with a plurality of, and a plurality of the stirrup is arranged along a straight line direction equidistance, a plurality of the interval is provided with a plurality of in the stirrup on the bottom surface prestressing tendons, a plurality of stirrup, a plurality of prestressing tendons and be located a plurality of bottom surface intermediate position in the stirrup the steel pipe truss is fixed mutually and constitutes the prefabricated component steel skeleton, thereby concrete has been pour to the bottom of prefabricated component steel skeleton and has been formed concrete bottom plate.
Further, as preferred, all adopt the reinforcing bar to carry out the ligature fixedly between prestressing tendons and the stirrup, between stirrup and the truss web muscle and between prestressing tendons and the truss web muscle, just prestressing tendons's both ends all extend there is sufficient anchor part.
Further, preferably, the thickness of the concrete bottom plate is set to be 50-200 mm.
Further, preferably, the steel pipe truss is located in the middle of the upper surface of the concrete bottom plate, and the steel pipes in the steel pipe truss are arranged in parallel with the prestressed tendons.
Preferably, the steel pipe is filled with high-strength mortar.
Further, as preferred, a plurality of ordinary reinforcing bars are laid on the upper surface of the concrete bottom plate, and each ordinary reinforcing bar is anchored to the concrete column.
By adopting the technology, compared with the prior art, the utility model has the following beneficial effects:
1. the device of the utility model replaces part of the steel bars by the pretensioned prestressing tendons, so that the prestressed composite beam has higher ultimate bearing capacity, deformation resistance, earthquake resistance and cracking resistance compared with the traditional cast-in-place beam.
2. In the device, the steel pipe concrete truss provides the rigidity of the member, and has little or no support in construction, thereby having the characteristics of saving and environmental protection; the assembly and the pouring forming are carried out on site, and the construction process is partially mechanized, so that the construction period is greatly shortened.
3. The utility model provides a steel tube concrete truss prestress superposed beam which is small in concrete volume, light in self weight and easy to hoist compared with a traditional precast beam.
4. In the device, the precast concrete part is thin, non-prestressed steel bars can be paved on site, the prestressed steel bars are supplemented insufficiently, the ductility of the member is improved, and steel bar conflict among the prefabricated members is avoided in installation, so that the problems of difficult manufacturing of precast beam nodes and poor node performance can be solved.
5. Compared with the traditional precast beam and cast-in-place beam, the device of the utility model utilizes the truss steel pipe to replace a large amount of stirrups, fully combines the mechanical properties of concrete, steel bars and steel pipes, exerts the high tensile strength of steel and the high compressive strength of concrete, and greatly reduces the use of the stirrups in the beam with the same volume, thereby saving the cost for engineering.
Drawings
FIG. 1 is a schematic structural diagram of steel tubes in a concrete filled steel tube truss prestressed composite beam;
FIG. 2 is a schematic structural diagram of truss web reinforcements in a steel pipe concrete truss prestressed composite beam;
FIG. 3 is a schematic structural view of a steel pipe truss in a steel pipe concrete truss prestressed composite beam;
FIG. 4 is a schematic structural diagram of stirrups in a steel tube concrete truss prestressed composite beam;
FIG. 5 is a schematic structural diagram of a prestressed tendon in a steel tube concrete truss prestressed composite beam;
FIG. 6 is a structural diagram of a steel skeleton of a prefabricated member in a prestressed composite beam of a concrete filled steel tube truss;
FIG. 7 is a schematic structural diagram of a concrete bottom plate in a steel pipe concrete truss prestressed composite beam;
fig. 8 is a structural schematic diagram of a steel pipe concrete truss prestressed composite beam after pouring.
In the figure: 1. a steel pipe; 2. truss web ribs; 3. hooping; 4. concrete; 5. ordinary steel bars; 6. and (6) prestressed reinforcement.
Detailed Description
The technical solution of the embodiment of the present invention will be clearly and completely described below with reference to the accompanying drawings.
Example (b): referring to fig. 1-8, the present invention provides a technical solution: the utility model provides a steel pipe concrete truss prestressing force superposed beam, it includes steel pipe 1, truss web member 2, stirrup 3, concrete bottom plate 4 and prestressing tendons 6, its characterized in that: two truss web ribs 2 which are obliquely arranged oppositely are fixedly welded on two sides of the steel pipe 1, and the two truss web ribs 2 are symmetrically arranged relative to the steel pipe 1, so that a steel pipe truss is formed; specifically, the inclination angle of the truss web reinforcement 2 and the size of the steel pipe 1 need to be determined according to the pre-design, and the steel pipe 1 replaces the traditional stirrup in the laminated beam, so as to form a steel bar framework with other steel bars, bear the shearing force and the torque, and prevent or inhibit the generation and the development of the beam section inclined crack.
Stirrup 3 is provided with a plurality of, and a plurality of stirrup 3 is arranged along a linear direction equidistance, and the interval is provided with a plurality of prestressing tendons 6 on the bottom surface in the 3 of a plurality of stirrup, and a plurality of stirrup 3, a plurality of prestressing tendons 6 and the steel pipe truss that is located the bottom surface intermediate position in the 3 of a plurality of stirrup are fixed mutually and are constituted prefabricated component steel skeleton, thereby the bottom of prefabricated component steel skeleton is pour and has the concrete form concrete bottom plate 4.
In this embodiment, all adopt the reinforcing bar to carry out the ligature between prestressing tendons 6 and the stirrup 3, between stirrup 3 and the truss web member 2 and between prestressing tendons 6 and the truss web member 2 fixed, in order to fix the position of stirrup 3 and steel pipe truss, and prestressing tendons 6's both ends all extend there is sufficient anchor part, makes it not take place the displacement behind the pouring in-process.
In this embodiment, the thickness of the concrete bottom plate 4 is set to 50-200 mm.
In this embodiment, the steel pipe truss is located at the middle position of the upper surface of the concrete bottom plate 4, and the steel pipes 1 in the steel pipe truss are all arranged in parallel with each prestressed tendon 6.
In this embodiment, the steel pipe 1 is filled with high-strength mortar or high-strength grouting material.
In the embodiment, a plurality of common steel bars 5 are laid on the upper surface of the concrete bottom plate 4, and each common steel bar 5 is anchored in a concrete column or a concrete beam; specifically, after the on-site component is installed, the common steel bars 5 are laid on the surface of the concrete bottom plate 4, then the steel bars on the top surface of the beam are bound, and after the side mold is fixed, concrete is poured to form the complete pre-tensioned pre-stressed composite beam.
In specific implementation, the utility model provides a steel pipe truss prestressed composite beam which can be prefabricated in a factory, can be directly conveyed to a construction site for hoisting and fixing to perform secondary reinforcement binding and non-prestressed reinforcement on-site binding, can be solved on-site reinforcement avoidance of the beam and the column, and can be cast in situ with a plate, the column and the like to form a whole in the on-site construction process.
The above-mentioned embodiments are only used for illustrating the technical solutions of the present invention, and not for limiting the same; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.
Claims (6)
1. The utility model provides a steel pipe concrete truss prestressing force superposed beam, its includes steel pipe (1), truss web member (2), stirrup (3), concrete bottom plate (4) and prestressing tendons (6), its characterized in that: two truss web ribs (2) which are obliquely arranged oppositely are fixedly welded on two sides of the steel pipe (1), and the two truss web ribs (2) are symmetrically arranged relative to the steel pipe (1), so that a steel pipe truss is formed;
stirrup (3) are provided with a plurality of, and a plurality of stirrup (3) are arranged along a straight line direction equidistance, a plurality of interval is provided with a plurality of on stirrup (3) bottom surface prestressing tendons (6), a plurality of stirrup (3), a plurality of prestressing tendons (6) and be located a plurality of bottom surface intermediate position in stirrup (3) the steel pipe truss is fixed mutually and is constituted prefabricated component steel skeleton, thereby concrete has been pour to the bottom of prefabricated component steel skeleton and has been formed concrete bottom plate (4).
2. The steel tube concrete truss prestressed composite beam of claim 1, wherein: between prestressing tendons (6) and stirrup (3), between stirrup (3) and truss web member (2) and all adopt the reinforcing bar to carry out the ligature between prestressing tendons (6) and truss web member (2) and fix, just the both ends of prestressing tendons (6) all extend there is sufficient anchor part.
3. The steel tube concrete truss prestressed composite beam of claim 1, wherein: the thickness of the concrete bottom plate (4) is set to be 50-200 mm.
4. The steel tube concrete truss prestressed composite beam of claim 3, wherein: the steel pipe truss is located in the middle of the upper surface of the concrete bottom plate (4), and the steel pipes (1) and the prestressed tendons (6) in the steel pipe truss are arranged in parallel.
5. The steel tube concrete truss prestressed composite beam of claim 4, wherein: and high-strength mortar is filled in the steel pipe (1).
6. The steel tube concrete truss prestressed composite beam of claim 4, wherein: a plurality of common steel bars (5) are laid on the upper surface of the concrete bottom plate (4), and each common steel bar (5) is anchored in the concrete column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121570255.3U CN215484069U (en) | 2021-07-07 | 2021-07-07 | Steel pipe concrete truss prestressing force superposed beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121570255.3U CN215484069U (en) | 2021-07-07 | 2021-07-07 | Steel pipe concrete truss prestressing force superposed beam |
Publications (1)
Publication Number | Publication Date |
---|---|
CN215484069U true CN215484069U (en) | 2022-01-11 |
Family
ID=79725899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202121570255.3U Active CN215484069U (en) | 2021-07-07 | 2021-07-07 | Steel pipe concrete truss prestressing force superposed beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN215484069U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114704024A (en) * | 2022-04-27 | 2022-07-05 | 福建工程学院 | Novel laminated beam plate and preparation method thereof |
-
2021
- 2021-07-07 CN CN202121570255.3U patent/CN215484069U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114704024A (en) * | 2022-04-27 | 2022-07-05 | 福建工程学院 | Novel laminated beam plate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103074941A (en) | Assembly type recycled concrete node with steel bar truss girders at end parts and manufacturing method thereof | |
CN114197753B (en) | UHPC shuttering type steel reinforced concrete composite cylinder-shaped steel beam combined frame and construction method | |
CN107476470A (en) | Steel pipe built in assembled and GFRP pipe regeneration concrete compound shear walls and its construction method | |
CN113216409A (en) | Connecting structure of precast concrete tubular pile column with diagonal bracing and hollow floor or flat floor | |
CN201915534U (en) | Load-bearing composite slab for steel structural residence | |
CN112982142B (en) | A cold-formed thin-walled steel web composite PC box girder | |
CN212773070U (en) | Hollow superimposed sheet of one-way prefabricated two-way atress | |
CN215484069U (en) | Steel pipe concrete truss prestressing force superposed beam | |
CN110863418A (en) | An assembled external prestressed steel truss composite beam structure and its construction method | |
CN114075855A (en) | Large-span bidirectional prestressed concrete multi-ribbed sandwich composite floor slab | |
CN101230659A (en) | Force-bearing type underplate component | |
CN216340451U (en) | Thin-bottom prestressed concrete composite beam | |
CN215888962U (en) | Thin-bottom groove type prestressed concrete superposed beam | |
CN213927079U (en) | A concrete-filled steel tubular truss prestressed composite beam | |
CN220565524U (en) | Large-width prestressed reinforcement truss composite floor slab | |
CN112324051A (en) | Steel pipe concrete truss prestressing force superposed beam | |
CN216338993U (en) | Longitudinal joint for steel-UHPC (ultra high performance concrete) assembled pi-shaped combination beam | |
CN101230664A (en) | Force-bearing type underplate component | |
CN213927078U (en) | A partially prefabricated assembled steel-concrete hybrid beam with a prefabricated plate with an angle steel connector | |
CN213772892U (en) | A semi-through steel truss bridge | |
CN115928882A (en) | Assembled composite structure hybrid connection node suitable for coastal region | |
CN210105041U (en) | Self-supporting prefabricated steel reinforced concrete wallboard component, wall and structural system | |
CN108277918B (en) | Assembled type toothed joint edge-punched steel sheet ribbed floor | |
CN114108806A (en) | A prefabricated steel tube UHPC composite hollow column-section steel beam composite frame | |
CN114809072B (en) | Underground space prestress steel reinforced concrete top cover under oversized span heavy load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |