CN215072322U - Testing device for underwater potential induced attenuation of photovoltaic module - Google Patents

Testing device for underwater potential induced attenuation of photovoltaic module Download PDF

Info

Publication number
CN215072322U
CN215072322U CN202120421672.5U CN202120421672U CN215072322U CN 215072322 U CN215072322 U CN 215072322U CN 202120421672 U CN202120421672 U CN 202120421672U CN 215072322 U CN215072322 U CN 215072322U
Authority
CN
China
Prior art keywords
photovoltaic module
cavity
testing
water
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120421672.5U
Other languages
Chinese (zh)
Inventor
高祺
C.莫诺克劳索斯
章翊驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TUV RHEINLAND (SHANGHAI)CO Ltd
Original Assignee
TUV RHEINLAND (SHANGHAI)CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TUV RHEINLAND (SHANGHAI)CO Ltd filed Critical TUV RHEINLAND (SHANGHAI)CO Ltd
Priority to CN202120421672.5U priority Critical patent/CN215072322U/en
Application granted granted Critical
Publication of CN215072322U publication Critical patent/CN215072322U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The utility model relates to a testing device for the underwater potential induced attenuation of a photovoltaic module, which comprises a shell, a water mist generation cavity and a testing cavity, wherein the water mist generation cavity and the testing cavity are arranged in the shell; the water mist generating cavity and the testing cavity are separated by a porous partition plate; a water injection assembly, a water mist generation unit and a water heating unit are arranged in the water mist generation cavity; the single-side lifting assembly is provided with a heating metal plate, and the photovoltaic assembly is arranged on the heating metal plate; the test cavity is also internally provided with a test frame, a power supply module and an ammeter unit; the heating metal plate and the high-voltage output unit are respectively connected with the power module, and the high-voltage output unit is connected with the main grid line of the photovoltaic module to form a negative bias applying structure. Compared with the prior art, the utility model discloses can simulate the concrete operating condition of photovoltaic module, only need monitor the decay condition that the change curve of parallelly connected resistance along with time comes the analysis battery piece, avoided complicated testing process among the prior art to can modulate humidity scene high-efficiently, with this satisfied test demand.

Description

Testing device for underwater potential induced attenuation of photovoltaic module
Technical Field
The utility model belongs to the technical field of the photovoltaic test and specifically relates to a testing arrangement of photovoltaic module induced attenuation of electric potential under water is related to.
Background
Along with the reduction of the components of the cost of the photovoltaic components, the development mode of the photovoltaic power station is greatly expanded, wherein the overwater photovoltaic power station becomes one of the directions of the most promising future photovoltaic power station due to the characteristics of low occupied area cost, high environmental friendliness and the like.
The available space of the photovoltaic power station on water is large, the photovoltaic modules are generally connected in a long photovoltaic array mode, and the voltage of the array terminal can reach 1000-1500V. In addition, the general humidity of the environment where the overwater photovoltaic power station is located is large, the condition that the components are even immersed in water exists in a specific application scene, and the environmental condition is more complex than that of a ground power station. The high voltage and high humidity conditions make photovoltaic modules in waterborne photovoltaic power stations more susceptible to potential-induced degradation. Because the test standard and the method of the photovoltaic component for the photovoltaic power station on water are still in a starting stage, no corresponding potential induced attenuation test device exists in the industry.
SUMMERY OF THE UTILITY MODEL
The utility model aims at providing a photovoltaic module is testing arrangement of induced decay of potential under water in order to overcome the defect that above-mentioned prior art exists, can simulate the concrete operating condition of photovoltaic module, only need monitor the decay condition that parallelly connected resistance analysis battery piece along with the change curve of time, avoided complicated testing process among the prior art to can modulate humidity scene high-efficiently, with this satisfied test demand.
The purpose of the utility model can be realized through the following technical scheme:
the testing device for the underwater potential induced attenuation of the photovoltaic module in the technical scheme comprises a shell, and a water mist generating cavity and a testing cavity which are arranged in the shell;
the water mist generating cavity and the testing cavity are separated by a porous partition plate;
a water injection assembly, a water mist generation unit and a water heating unit are arranged in the water mist generation cavity;
a unilateral lifting assembly is arranged in the test cavity, a heating metal plate is arranged on the unilateral lifting assembly, the photovoltaic assembly is arranged on the heating metal plate, and the inclination posture of the photovoltaic assembly can be adjusted through unilateral lifting;
the test cavity is also internally provided with a test frame, a power supply module and an ammeter unit;
the test frame is provided with a high-voltage output unit;
the heating metal plate and the high-voltage output unit are respectively connected with the power module, and the high-voltage output unit is connected with a main grid line of the photovoltaic module to form a negative bias applying structure;
and the positive and negative ends of the photovoltaic module are also connected with a test resistor in parallel, and the ammeter unit measures voltage values at the two ends of the test resistor.
Further, the power module comprises a high-voltage power supply, and the output voltage is 50-2000V.
Further, the photovoltaic module is a single solar cell or a combination of a plurality of solar cells.
Further, a heater is matched with one end or two ends of the heating metal plate.
Further, the high voltage output unit is a sliding connector;
the testing jig is fixed on the inner wall surface of the shell, a sliding rail is arranged on the lower surface of the testing jig, and the high-voltage output unit is movably arranged on the sliding rail and can linearly displace along the sliding rail.
Furthermore, one end of the high-voltage output unit is connected with the high-voltage output unit through a wire, the other end of the high-voltage output unit is provided with an elastic wire, one end of the elastic wire is provided with a clamping terminal, and the clamping terminal is connected with a main grid line of the photovoltaic module.
Further, the electric meter unit is in wireless communication connection with an external computer terminal.
Furthermore, the water injection assembly comprises an electromagnetic valve and a water feed pump which are arranged on a water inlet of the water mist generation cavity, and the water level height in the water mist generation cavity can be controlled through the injection of water flow so as to control the distance between the water surface and the photovoltaic assembly;
and a stirring paddle is also arranged in the water mist generation cavity.
Furthermore, the unilateral lifting assembly comprises a lifting electric cylinder and a supporting plate, wherein one side of the supporting plate is hinged to the porous partition plate, and meanwhile, an output rod of the lifting electric cylinder is abutted against the lower surface of the supporting plate.
Furthermore, a temperature sensor and a humidity sensor are further arranged in the test cavity and are in wireless communication connection with an external computer terminal.
Compared with the prior art, the utility model discloses following technical advantage has:
1) according to the technical scheme, the photovoltaic module is heated to a specific temperature through the heating metal plate, the heating metal plate simultaneously achieves the purpose of heating and being electrically connected with the back electrode of the photovoltaic module, meanwhile, the cross-linking of a photovoltaic module adhesive film can be achieved through heating, so that the specific operation working condition of the photovoltaic module can be simulated, the attenuation condition of the battery piece is analyzed only by monitoring the change curve of the parallel resistance along with time, and the complex test process in the prior art is avoided.
2) According to the technical scheme, potential induced attenuation equipment of the overwater photovoltaic module is researched and established, the water level height in the water mist generation cavity is controlled through the injection of water flow, the distance between the water surface and the photovoltaic module is controlled, the humidity value in the test cavity is rapidly adjusted through the water heating unit and the water mist generation unit, and the humidity scene is efficiently modulated, so that the test requirement is met.
3) The photovoltaic module composed of the unilateral lifting module in the technical scheme is set to be in a posture closer to the working state of the actual photovoltaic module, and the potential induced attenuation test can be carried out based on different inclined postures.
Drawings
Fig. 1 is a schematic structural diagram of a testing apparatus for underwater potential induced attenuation of a photovoltaic module in the technical scheme.
In the figure: 1. the device comprises a porous partition plate, 2, a water mist generation unit, 3, a water heating unit, 4, a test frame, 5, a power supply module, 6, a test resistor, 7, a high-voltage output unit, 8, an electromagnetic valve, 9, an electric meter unit, 10, a heating metal plate, 11, a water feeding pump, 12, a lifting electric cylinder, 13, a support plate, 14, a temperature sensor, 16, a humidity sensor, 17, a baffle, 18 and a stirring paddle.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
The testing device for the underwater potential induced attenuation of the photovoltaic module in the embodiment comprises a shell 0, and a water mist generation cavity and a testing cavity which are arranged in the shell 0, and referring to fig. 1, when materials are specifically selected, the shell 0 is made of rigid high polymer materials. The object tested in the technical scheme is a photovoltaic module which can be a single solar cell or a combination of a plurality of solar cells. A temperature sensor 14 and a humidity sensor 15 are further arranged in the testing cavity, and the temperature sensor 14 and the humidity sensor 15 are in wireless communication connection with an external computer terminal.
The water mist generation cavity and the test cavity are separated by the porous partition plate 1, the porous partition plate 1 plays a role in separation and support, the porous partition plate is selected to be a rigid plate with holes, and a plurality of small holes are formed in the rigid plate, so that the introduction of water or water vapor is realized, and the regulation of a humidity scene is extremely important.
A water injection assembly, a water mist generation unit 2 and a water heating unit 3 are arranged in the water mist generation cavity, wherein the water mist generation unit 2 is a humidifier.
Be equipped with the unilateral in the test chamber and lift the subassembly, the unilateral is lifted and is equipped with heating metal sheet 10 on the subassembly, and photovoltaic module locates on the heating metal sheet 10, lift through the unilateral and can carry out the adjustment of photovoltaic module slope gesture, still be equipped with test jig 4, power module 5, ammeter unit 9 in the test chamber. The unilateral lifting assembly comprises a lifting electric cylinder 12 and a supporting plate 13, one side of the supporting plate 13 is hinged to the porous partition plate 1, meanwhile, an output rod of the lifting electric cylinder 12 is abutted to the lower surface of the supporting plate 13, two sides of the supporting plate 13 are provided with baffle plates, one end of each baffle plate is used for preventing the photovoltaic assembly from sliding downwards, and the other end of each baffle plate is used for avoiding the end part of the lifting electric cylinder 12 from being separated from the supporting plate 13. The photovoltaic module formed by the unilateral lifting module is arranged in an attitude closer to the working state of the actual photovoltaic module, and the potential induced attenuation test can be carried out based on different inclined attitudes.
The testing frame 4 is provided with a high-voltage output unit 7, the heating metal plate 10 and the high-voltage output unit 7 are respectively connected with the power module 5, and the high-voltage output unit 7 is connected with a main grid line of the photovoltaic assembly to form a negative bias applying structure; the photovoltaic module positive and negative terminals are also connected in parallel with a test resistor 6, and an ammeter unit 9 measures voltage values at the two ends of the test resistor 6. One or both ends of the heating metal plate 10 are matched with heaters.
According to the technical scheme, the photovoltaic module is heated to a specific temperature through the heating metal plate 10, the heating metal plate 10 simultaneously achieves the purpose of heating and being electrically connected with the back electrode of the photovoltaic module, meanwhile, the cross-linking of a photovoltaic module adhesive film can be achieved through heating, so that the specific operation working condition of the photovoltaic module can be simulated, the attenuation condition of the cell piece is analyzed only by monitoring the change curve of the parallel resistance along with time, and the complex test process in the prior art is avoided.
The power module 5 comprises a high-voltage power supply, the output voltage is 50-2000V, the potential induced attenuation of the photovoltaic module is accelerated by adopting high-temperature water and water mist in the embodiment, the 100% RH humidity condition is realized, and 1500V high voltage is loaded on the output end and the surface of the photovoltaic module during testing.
The high-voltage output unit 7 is a sliding connector, the testing jig 4 is fixed on the inner wall surface of the shell 0, a sliding rail is arranged on the lower surface of the testing jig 4, and the high-voltage output unit 7 is movably arranged on the sliding rail and can linearly displace along the sliding rail, so that the adjustment of a voltage application position is facilitated.
One end of the high-voltage output unit 7 is connected with the high-voltage output unit 7 through a wire, the other end of the high-voltage output unit is provided with an elastic wire, one end of the elastic wire is provided with a clamping terminal, and the clamping terminal is connected with a main grid line of the photovoltaic assembly. The electricity meter unit 9 is connected with an external computer terminal in wireless communication.
The water injection subassembly is including locating solenoid valve 8 and the feed pump 11 on the water inlet of water smoke generation chamber, can control the water level height in the water smoke generation chamber through the injection control water flow to this distance between control surface of water and the photovoltaic module. The water mist generation cavity is also provided with a stirring paddle 18 and a matched servo motor, so that the actual working scene, such as a sea surface wave scene, is simulated through the turbulence of water. The water level height in the water mist generating cavity is controlled through the injection of water flow, the distance between the water surface and the photovoltaic module is controlled, the humidity value in the testing cavity is rapidly adjusted through the water heating unit and the water mist generating unit, and the humidity scene is efficiently adjusted, so that the testing requirement is met.
The embodiments described above are intended to facilitate the understanding and use of the invention by those skilled in the art. It will be readily apparent to those skilled in the art that various modifications to these embodiments may be made, and the generic principles described herein may be applied to other embodiments without the use of the inventive faculty. Therefore, the present invention is not limited to the above embodiments, and those skilled in the art should make improvements and modifications within the scope of the present invention according to the disclosure of the present invention.

Claims (10)

1. The device for testing the underwater potential induced attenuation of the photovoltaic module is characterized by comprising a shell (0), and a water mist generating cavity and a testing cavity which are arranged in the shell (0);
the water mist generating cavity and the testing cavity are separated by a porous partition plate (1);
a water injection assembly, a water mist generation unit (2) and a water heating unit (3) are arranged in the water mist generation cavity;
a unilateral lifting assembly is arranged in the test cavity, a heating metal plate (10) is arranged on the unilateral lifting assembly, the photovoltaic assembly is arranged on the heating metal plate (10), and the inclination posture of the photovoltaic assembly can be adjusted through unilateral lifting;
the test cavity is also internally provided with a test frame (4), a power module (5) and an ammeter unit (9);
a high-voltage output unit (7) is arranged on the test frame (4);
the heating metal plate (10) and the high-voltage output unit (7) are respectively connected with the power module (5), and the high-voltage output unit (7) is connected with a main grid line of the photovoltaic module to form a negative bias applying structure;
the photovoltaic module positive and negative electrode two ends are also connected with a test resistor (6) in parallel, and an ammeter unit (9) measures voltage values at two ends of the test resistor (6).
2. The photovoltaic module underwater potential induced attenuation test device according to claim 1, characterized in that the power supply module (5) comprises a high voltage power supply.
3. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 1, wherein the photovoltaic module is a single solar cell or a combination of a plurality of solar cells.
4. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 1, characterized in that one or both ends of the heating metal plate (10) are matched with a heater.
5. The photovoltaic module underwater potential induced attenuation test device according to claim 1, characterized in that the high voltage output unit (7) is a sliding connector;
the testing jig (4) is fixed on the inner wall surface of the shell (0), a sliding rail is arranged on the lower surface of the testing jig (4), and the high-voltage output unit (7) is movably arranged on the sliding rail and can linearly displace along the sliding rail.
6. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 5, wherein one end of the high voltage output unit (7) is connected with the high voltage output unit (7) through a wire, the other end of the high voltage output unit is provided with an elastic wire, one end of the elastic wire is provided with a clamping terminal, and the clamping terminal is connected with a main grid line of the photovoltaic module.
7. The photovoltaic module underwater potential induced attenuation test device according to claim 1, characterized in that the electric meter unit (9) is in wireless communication connection with an external computer terminal.
8. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 1, wherein the water injection module comprises an electromagnetic valve (8) and a water feeding pump (11) which are arranged on a water inlet of the water mist generation cavity, and the water level in the water mist generation cavity can be controlled by injecting water flow so as to control the distance between the water level and the photovoltaic module;
and a stirring paddle is also arranged in the water mist generation cavity.
9. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 1, wherein the single-side lifting assembly comprises a lifting electric cylinder (12) and a supporting plate (13), one side of the supporting plate (13) is hinged on the porous partition plate (1), and meanwhile, an output rod of the lifting electric cylinder (12) is abutted against the lower surface of the supporting plate (13).
10. The device for testing the underwater potential induced attenuation of the photovoltaic module according to claim 1, wherein a temperature sensor (14) and a humidity sensor (15) are further arranged in the test cavity, and the temperature sensor (14) and the humidity sensor (15) are in wireless communication connection with an external computer terminal.
CN202120421672.5U 2021-02-25 2021-02-25 Testing device for underwater potential induced attenuation of photovoltaic module Active CN215072322U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120421672.5U CN215072322U (en) 2021-02-25 2021-02-25 Testing device for underwater potential induced attenuation of photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120421672.5U CN215072322U (en) 2021-02-25 2021-02-25 Testing device for underwater potential induced attenuation of photovoltaic module

Publications (1)

Publication Number Publication Date
CN215072322U true CN215072322U (en) 2021-12-07

Family

ID=79253633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120421672.5U Active CN215072322U (en) 2021-02-25 2021-02-25 Testing device for underwater potential induced attenuation of photovoltaic module

Country Status (1)

Country Link
CN (1) CN215072322U (en)

Similar Documents

Publication Publication Date Title
CN109713334B (en) Fuel cell stack test bench and use method thereof
CN210243168U (en) All-round fuel cell hydrogen system testboard
CN111063920B (en) Method for detecting fluid distribution consistency of fuel cell stack
CN110764011A (en) Fuel cell testing platform
CN111413255B (en) Micro-electrode system and method for testing oxygen mass transfer coefficient of proton exchange membrane
CN103076549B (en) The humid heat test device and method of photovoltaic module
CN111505508A (en) Cylindrical lithium battery charging and discharging test integrated machine and charging and discharging test method
CN112803894A (en) Testing device for underwater potential induced attenuation of photovoltaic module
CN106057702B (en) A kind of detection method of the solar battery sheet with qualified hot spot temperature range
CN110854417A (en) Hydrogen fuel cell durability acceleration test system
CN215072322U (en) Testing device for underwater potential induced attenuation of photovoltaic module
CN103063997B (en) A kind of pilot system and method thereof of testing solar photovoltaic assembly ageing resistance
CN110104211A (en) Micro-nano satellite multicomponent thermal vacuum batch experimental rig and test method
CN111987337B (en) Proton exchange membrane fuel cell activation method and device
CN207992109U (en) Ni―Ti anode reinforcing life test device
CN202434644U (en) Integral fuel cell test platform for assembling, activating and checking electric pile
CN109935871A (en) The system and method adjusted for the MEA in fuel cell
CN114171760A (en) Fuel cell testing method combined with simulation model
CN205986785U (en) Solar cell light aging device
CN117607025B (en) System and method for testing corrosion resistance of metal bipolar plate of fuel cell
CN111416571A (en) Testing method and system for solar cell of stratospheric airship
CN216133177U (en) Fuel cell start-stop life test equipment
CN115483414A (en) Pile anode outlet environmental simulation equipment
CN206178061U (en) Detection apparatus for phosphate that multielement adulterateed is anodal
CN220711446U (en) Constant temperature cooling device for solar cell test

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant