CN214574819U - Bending energy-consuming type cable system support - Google Patents

Bending energy-consuming type cable system support Download PDF

Info

Publication number
CN214574819U
CN214574819U CN202120274081.XU CN202120274081U CN214574819U CN 214574819 U CN214574819 U CN 214574819U CN 202120274081 U CN202120274081 U CN 202120274081U CN 214574819 U CN214574819 U CN 214574819U
Authority
CN
China
Prior art keywords
steel
cable
steel cable
steel plate
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120274081.XU
Other languages
Chinese (zh)
Inventor
暴伟
梁展华
周向前
刘乾
林文哲
鲁建森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202120274081.XU priority Critical patent/CN214574819U/en
Application granted granted Critical
Publication of CN214574819U publication Critical patent/CN214574819U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

A bending energy-consumption type cable system support comprises a steel cable closed ring and 4 steel cables, wherein the steel cable closed ring is a rectangular steel cable ring, the 4 steel cables are located on the same plane, one end of each steel cable is fixedly connected with the steel cable closed ring, the 4 steel cables are respectively connected to 4 corners of the steel cable closed ring, and the other end of each steel cable is connected to a building frame structure. The utility model discloses under the effect of lateral force about, 4 cable wires all are in and are drawn the state, have better anti-seismic performance, belong to building structure support field.

Description

Bending energy-consuming type cable system support
Technical Field
The utility model relates to a building structure supports the field, concretely relates to crooked power consumption type cable system supports.
Background
The lateral rigidity and the shock resistance of the frame structure can be effectively improved through the support. The ordinary support is easy to generate buckling damage under the action of an earthquake, the difficulty of repair and reinforcement engineering after the damage is high, and the problem of support buckling is solved due to the appearance of the cable system support, but in the traditional cable system support, as shown in fig. 1-2, under a large vibration amplitude, only one steel cable provides lateral stiffness in a tensioned state, the other steel cable in a relaxed state does not contribute to the lateral force resistance of the structure, the steel cable is subjected to brittle failure under the lateral force due to the low ductility of the tensioned steel cable, the risk of structural collapse is increased, and the steel cable with low ductility contributes little or hardly contributes to the energy consumption capability of the lifting structure. Therefore, if the deformation tendencies of the two steel cables can be utilized simultaneously and the energy consumption measures are combined to consume energy, the support and the frame structure can be further prevented from being damaged.
The existing energy consumption measures are mainly characterized in that the energy consumption capacity of the structure is enhanced through metal or different types of dampers, the energy consumption measures can be mainly divided into axial yielding energy consumption, shearing yielding energy consumption and bending yielding energy consumption according to different energy consumption mechanisms, the existing energy consumption measures for bending yielding are mainly applied to the field of dampers, the research on the synergistic energy consumption of the dampers and supports is still lacked at present, and the excellent visual damage characteristic after yielding has great potential in the aspect of reinforcing and repairing the building structure.
The traditional cable system support is also provided with a hollow steel cylinder in the center, so that the steel cable can penetrate through the hollow steel cylinder at a larger gradient, and the steel cable at two sides can keep tension under the action of lateral force through the rotation limitation of the hollow steel cylinder. Tests show that the cable system support with the central steel cylinder can greatly reduce the increase of column pressure caused by the action of common support, and limit the interlayer displacement within a certain range, but the added hollow steel cylinder does not bring enough energy consumption capability to the structure, and cannot dissipate seismic energy under the action of earthquake.
In 2018, Babak proposes that a steel plate is additionally arranged at the support center of a cable system, and a steel cable is always in a tension state through the rotation of a middle steel plate under the action of lateral force, so that the lateral rigidity of the structure is improved.
In 2019, M.H.Mehrabi proposes that steel cables are connected together at intersection points by a pre-pressing spring in a traditional cable system supporting center, under the action of the pre-pressing spring force, when each steel cable is in a tension state, and a frame structure generates lateral displacement, the pre-pressing spring extends to delay the action of the steel cable, when the frame returns to the original position, the spring is compressed again, the system has stronger self-recovery capability through the spring, but the spring does not allow the shaping deformation, and the energy consumption capability under the elastic deformation is limited. After a single lateral force action, the self-recovery property of the spring still drives the structure to oscillate for a small period, and the oscillation is unfavorable for preventing resonance; under the action of strong earthquake, only one spring is utilized to prevent the system from responding more, the energy consumption capability is limited, if the spring enters a plastic deformation state, the difference between the system and the traditional cable system support is the same, and the performance of the system is directly determined by the performance of the spring. Additionally, bracing of the rigging with a center pre-stressed spring requires the spring to be completely horizontal, otherwise the stress of only one side of the spring is amplified and the overall balance is disturbed. And the steel cable has certain deflection angle requirement through the spring, which undoubtedly brings great difficulty to construction and needs high technical level installation. In addition, the degree of preload of the spring is difficult to grasp during construction.
SUMMERY OF THE UTILITY MODEL
To the technical problem who exists among the prior art, the utility model aims at: provides a bending energy-consuming type cable system support with better shock resistance.
A bending energy-consumption type cable system support comprises a steel cable closed ring and 4 steel cables, wherein the steel cable closed ring is a rectangular steel cable ring, the 4 steel cables are located on the same plane, one end of each steel cable is fixedly connected with the steel cable closed ring, the 4 steel cables are respectively connected to 4 corners of the steel cable closed ring, and the other end of each steel cable is connected to a building frame structure. After the structure is adopted, the steel cables are in a straightening state, when the building frame structure is subjected to left and right lateral forces, the 4 steel cables are in a pulled state only by the coordination of the steel cable closed rings and the steel cables, and the characteristic of the flexible tension member of the steel cables is greatly exerted.
Each steel cable is connected with an energy dissipation element, each energy dissipation element comprises an energy dissipation steel plate, each steel cable penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and two ends of each energy dissipation steel plate are connected with stabilizing steel plates; along the peripheral direction of the steel cable closed ring, the stabilizing steel plates are positioned between the steel cables, and the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected, so that the energy dissipation elements on the 4 steel cables are connected to form a closed steel plate loop. After the structure is adopted, when the structure is subjected to left and right lateral forces, the steel cable is only drawn, the tension of the steel cable is transferred to the bending of the steel plate by the energy-consuming steel plate on the premise that the steel cable is only drawn, large damping is generated by bending the steel plate, a large amount of seismic energy is absorbed, and the steel cable is prevented from being loosened under the large lateral forces.
Preferably, the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected by the rib plates along the peripheral direction of the steel cable closed ring.
Preferably, the energy dissipation element further comprises a high-strength steel pipe, the high-strength steel pipe penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and the high-strength steel pipe is sleeved on the steel cable.
Preferably, the steel cord is adhered to the high-strength steel pipe by epoxy resin, and the epoxy resin is filled in the high-strength steel pipe.
Preferably, the closed loop of steel cord is of square configuration.
Preferably, the energy dissipating steel plate is perpendicular to the steel cord passing through the energy dissipating steel plate.
Preferably, the stabilizing steel plates at both ends of the energy dissipating steel plate are parallel to the steel cable passing through the energy dissipating steel plate.
Preferably, the two ends of the energy consumption steel plate are welded with the stabilizing steel plate or connected through bolts.
Preferably, the stabilizing steel plate is welded or bolted to the rib plate.
When the bending energy-consuming type cable system support is used, the bending energy-consuming type cable system support is used on a rectangular building frame structure, a steel cable closed ring is located in the center of the building frame structure, the other ends of 4 steel cables are connected with 4 corner joints on the building frame structure, and the 4 steel cables are all in a straightening state.
The utility model has the advantages of as follows:
(1) the energy consumption capability is strong. The prior common cable system support has only one steel cable in a tension state under large lateral force and provides lateral rigidity, the other steel cable in a relaxation state does not contribute to the lateral force resistance of the structure, and the risk of structural collapse caused by the fracture of the tension steel cable under the lateral force is increased due to the low ductility of the steel cable. In the project, 4 steel ropes are kept in a pulled state under left and right lateral forces by utilizing the coordination action of the closed rings of the central ropes and the central steel ropes, the energy consumption steel plates and the steel ropes are utilized to generate large damping by bending the steel plates to dissipate the energy of earthquake, and the steel plate loop formed by the four energy consumption steel plates in the structure greatly improves the energy consumption capability of the building structure.
(2) The applicability is strong. The buckling of current support utilizes the support or yields to come for building structure power consumption more, and complicated heavy support or key technology node bring great degree of difficulty for the construction, and the damage of support often appears in inside, or has appeared but be difficult to restore and consolidate, the utility model discloses the cable wire of utilization is as one kind only receive tensile flexible element, perfect solution the problem of supporting the buckling, the installation of prestressing force cable wire does not need heavy equipment with the reinforcement simultaneously, influence and the noise that causes the environment is minimum, the convenience of certain construction is provided, the visual damage degree that the steel sheet looper that the while power consumption steel sheet is constituteed provided for building structure can directly be changed the steel sheet looper part after the damage, and is economic high-efficient, provides sufficient reinforcement and repair function for building structure, and the suitability is high.
Generally speaking, when building structure receives the sudden disasters load effect such as earthquake, explosion and typhoon, the utility model discloses a better regulating action can be played in crooked power consumption type cable system support to for the restoration after the calamity or consolidate provide great facility, the risk that the structure collapsed has significantly reduced.
Drawings
Fig. 1 is a conventional rigging support.
Fig. 2 is a deformation diagram of a conventional lashing support under a lateral force.
FIG. 3 is a schematic view showing the connection of the wire closing ring and the wire according to the first embodiment.
FIG. 4 is a deformation diagram of the wire rope closure ring in the first embodiment under a lateral force.
Fig. 5 is a schematic structural diagram of a bending energy-consuming type rigging support according to an embodiment.
Fig. 6 is a schematic connection diagram of the steel cable, the high-strength steel pipe and the energy-consuming steel plate in the first embodiment.
Fig. 7 is a deformation diagram of a bending energy dissipating tether support under lateral force according to one embodiment.
Fig. 8 is a schematic view of the connection between a bending energy-consuming rigging support and a building frame structure according to the first embodiment.
Wherein, 1 is the cable wire, 2 is cable wire closed loop, 3 is stable steel sheet, 4 is power consumption steel sheet, 5 is the floor, 6 is the high strength steel pipe, 7 is epoxy, 8 is building frame construction, and F is the yawing force.
Detailed Description
The present invention will be described in further detail with reference to specific embodiments.
Example one
As shown in fig. 3-8, a bending energy-consuming type cable system support comprises a cable closed loop and 4 cables, wherein the cable closed loop is a rectangular cable loop, the 4 cables are located on the same plane, one end of each cable is fixedly connected with the cable closed loop, the 4 cables are respectively connected to 4 corners of the cable closed loop, and the other end of each cable is connected to a building frame structure.
Each steel cable is connected with an energy dissipation element, each energy dissipation element comprises an energy dissipation steel plate, each steel cable penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and two ends of each energy dissipation steel plate are connected with stabilizing steel plates;
along the peripheral direction of the steel cable closed ring, the stabilizing steel plates are positioned between the steel cables, and the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected, so that the energy dissipation elements on the 4 steel cables are connected to form a closed steel plate loop.
Along the peripheral direction of the steel cable closed ring, the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected through ribbed plates.
The energy dissipation element also comprises a high-strength steel pipe, the high-strength steel pipe penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and the high-strength steel pipe is sleeved on the steel cable.
The steel cable is adhered to the high-strength steel pipe through epoxy resin, and the epoxy resin is filled in the high-strength steel pipe.
The closed ring of the steel cable is of a square structure.
The energy consumption steel plate is perpendicular to the steel cable penetrating through the energy consumption steel plate.
The stabilizing steel plates at the two ends of the energy consumption steel plate are parallel to the steel cable penetrating through the energy consumption steel plate.
And two ends of the energy-consuming steel plate are welded with the stabilizing steel plate.
The stabilizing steel plate is welded with the rib plate.
TaAnd TbAll are the pulling forces to which the steel cables are subjected.
Example two
In this embodiment, the power consumption steel sheet passes through bolted connection with the steel sheet of stabilizing, and steel sheet of stabilizing passes through bolted connection with the floor.
The embodiment does not mention the same parts as the first embodiment.
The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be equivalent replacement modes, and all are included in the scope of the present invention.

Claims (9)

1. The utility model provides a crooked power consumption type cable system support which characterized in that: the building frame structure comprises a steel cable closed ring and 4 steel cables, wherein the steel cable closed ring is a rectangular steel cable ring, the 4 steel cables are positioned on the same plane, one end of each steel cable is fixedly connected with the steel cable closed ring, the 4 steel cables are respectively connected to 4 corners of the steel cable closed ring, and the other end of each steel cable is connected to the building frame structure;
each steel cable is connected with an energy dissipation element, each energy dissipation element comprises an energy dissipation steel plate, each steel cable penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and two ends of each energy dissipation steel plate are connected with stabilizing steel plates;
along the peripheral direction of the steel cable closed ring, the stabilizing steel plates are positioned between the steel cables, and the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected, so that the energy dissipation elements on the 4 steel cables are connected to form a closed steel plate loop.
2. A bend dissipating rigging support according to claim 1, wherein: along the peripheral direction of the steel cable closed ring, the stabilizing steel plates between every two adjacent 2 steel cables are fixedly connected through ribbed plates.
3. A bend dissipating rigging support according to claim 1, wherein: the energy dissipation element also comprises a high-strength steel pipe, the high-strength steel pipe penetrates through the energy dissipation steel plate and is fixedly connected with the energy dissipation steel plate, and the high-strength steel pipe is sleeved on the steel cable.
4. A bend dissipating rigging support according to claim 3, wherein: the steel cable is adhered to the high-strength steel pipe through epoxy resin, and the epoxy resin is filled in the high-strength steel pipe.
5. A bend dissipating rigging support according to claim 1, wherein: the closed ring of the steel cable is of a square structure.
6. A bend dissipating rigging support according to claim 1, wherein: the energy consumption steel plate is perpendicular to the steel cable penetrating through the energy consumption steel plate.
7. A bend dissipating rigging support according to claim 1, wherein: the stabilizing steel plates at the two ends of the energy consumption steel plate are parallel to the steel cable penetrating through the energy consumption steel plate.
8. A bend dissipating rigging support according to claim 1, wherein: the two ends of the energy consumption steel plate are welded with the stabilizing steel plate or connected through bolts.
9. A bend dissipating rigging support according to claim 2, wherein: the stabilizing steel plate is welded with the rib plate or connected with the rib plate through a bolt.
CN202120274081.XU 2021-01-29 2021-01-29 Bending energy-consuming type cable system support Active CN214574819U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120274081.XU CN214574819U (en) 2021-01-29 2021-01-29 Bending energy-consuming type cable system support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120274081.XU CN214574819U (en) 2021-01-29 2021-01-29 Bending energy-consuming type cable system support

Publications (1)

Publication Number Publication Date
CN214574819U true CN214574819U (en) 2021-11-02

Family

ID=78348940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120274081.XU Active CN214574819U (en) 2021-01-29 2021-01-29 Bending energy-consuming type cable system support

Country Status (1)

Country Link
CN (1) CN214574819U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814190A (en) * 2021-01-29 2021-05-18 广州大学 Bending energy-consuming type cable system support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814190A (en) * 2021-01-29 2021-05-18 广州大学 Bending energy-consuming type cable system support

Similar Documents

Publication Publication Date Title
KR100952404B1 (en) Hybrid Buckling Restrained Brace
CN105256913B (en) A kind of anti-buckling support of shape memory alloy twisted wire Self-resetting friction
CN201687219U (en) Self-resetting anti-bending bracing member
CN101824922B (en) Self reset curvature-prevention support component
CN105696719B (en) A kind of flexion-proof energy consumption supporting structure constrained using GFRP angle steel
CN103967158B (en) A kind of dissipative cell and prestressing force exempt from energy consuming supporting member
CN104612449A (en) Giant buckling-preventing support frame structure system
CN214574819U (en) Bending energy-consuming type cable system support
CN102409774A (en) Viscoelastic damper used for buckling restrained braced building
CN105672523A (en) Assembling type high-bearing buckling-resisting support
CN111335145B (en) Displacement amplification type multidimensional energy dissipation device for preventing plastic hinge from being generated at end part of pier
CN113175116A (en) Truss type replaceable energy dissipation connecting beam with friction energy dissipation support
CN101550727B (en) Node of connection of column and beam
CN114046077B (en) Assembled double-sleeve self-resetting energy-consumption steel support with SMA cable
CN112814190A (en) Bending energy-consuming type cable system support
CN210288683U (en) Connection structure for improving earthquake resistance of PC frame node
CN214497935U (en) Stay cable type energy dissipation support
CN213837198U (en) Shear wall for steel frame
CN210369407U (en) Building shock attenuation power consumption structure
CN113685059B (en) Anti-buckling reinforcing device for improving stability of angle steel
CN112031197B (en) Novel damping energy dissipater device
CN214497937U (en) Self-recovery type energy dissipation support
CN111734003B (en) Assembled cold-bending square steel tube column base capable of being restored after earthquake
CN212689209U (en) Recoverable magnetorheological damper energy dissipation concrete frame structure
CN111691544A (en) Self-resetting steel frame lateral force resisting system

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant