CN214121987U - 一种基于光谱技术的茄子花青素测量系统 - Google Patents

一种基于光谱技术的茄子花青素测量系统 Download PDF

Info

Publication number
CN214121987U
CN214121987U CN202120151121.1U CN202120151121U CN214121987U CN 214121987 U CN214121987 U CN 214121987U CN 202120151121 U CN202120151121 U CN 202120151121U CN 214121987 U CN214121987 U CN 214121987U
Authority
CN
China
Prior art keywords
eggplant
light shield
spectrometer
sample
surface feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120151121.1U
Other languages
English (en)
Inventor
张东方
申书兴
陈雪平
范晓飞
张君
罗双霞
刘景艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei Agricultural University
Original Assignee
Heibei Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei Agricultural University filed Critical Heibei Agricultural University
Priority to CN202120151121.1U priority Critical patent/CN214121987U/zh
Application granted granted Critical
Publication of CN214121987U publication Critical patent/CN214121987U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种基于光谱技术的茄子花青素测量系统,系统包括:计算机、遮光罩、光源、待检测样品放置台和便携式地物光谱仪,遮光罩罩设在待检测样品放置台上方,待检测样品放置台用于放置茄子果皮样品,遮光罩的内部设置光源和便携式地物光谱仪,光源设置在遮光罩的顶部用于照射茄子果皮样品,遮光罩的顶部设置便携式地物光谱仪;便携式地物光谱仪通过数据线与计算机连接,便携式地物光谱仪用于采集茄子果皮样品在特征波段的反射光谱数据。本实用新型可以达到无损、快速、准确的鉴定茄子表皮花青素含量,同时本实用新型对于使用者要求较低,使用者可以直接使用光谱扫描即可得到茄子果皮花青素含量,操作简单,使用方便。

Description

一种基于光谱技术的茄子花青素测量系统
技术领域
本实用新型涉及农作物品质检测技术领域,特别是涉及一种基于光谱技术的茄子花青素测量系统。
背景技术
花青素是水溶性的黄酮类化合物,它是植物叶片色素中第三类主要色素,在植物幼小和衰老叶片中含量丰富。花青素能够修复叶片的光环境,具有潜在地调节光合作用限制光抑制与光漂白作用的能力,以及对光破坏的防御能力。花青素可以作为渗透调节物质,提高植物抗冰冻与抗干旱胁迫的能力。
传统的花青素含量测定主要采用湿化学法,包括用溶剂提取叶片中花青素,分光光度计测定花青素在溶剂中的吸光度,将测定的吸光度值转换成花青素含量等步骤。茄子中的花青素测定一般都是理化试验,取茄子皮使用化学试剂浸泡,取得浸泡的上清液,使用分光光度计测定吸光度,存在的问题如下:1.茄子皮获得的难度较高,大量测量茄子花青素时需要人工较多,劳动强度大,测量费时、费力;2.测量时间较长,一般同一批次花青素测量时间需要2-3天;3.理化试验步骤较为繁琐,所需化学试剂较多。因此,亟需一种准确、高效、实用的花青素含量测定方法。
实用新型内容
本实用新型的目的是提供一种基于光谱技术的茄子花青素测量系统,可以达到无损、快速、准确的鉴定茄子表皮花青素含量,同时本实用新型对于使用者要求较低,使用者可以直接使用光谱扫描即可得到茄子果皮花青素含量,操作简单,使用方便。
为实现上述目的,本实用新型提供了如下方案:
一种基于光谱技术的茄子花青素测量系统,该系统包括:计算机、遮光罩、光源、待检测样品放置台和便携式地物光谱仪,所述遮光罩罩设在所述待检测样品放置台上方,所述待检测样品放置台用于放置茄子果皮样品,所述遮光罩的内部设置所述光源和便携式地物光谱仪,所述光源设置在遮光罩的顶部用于照射所述茄子果皮样品,所述遮光罩的顶部设置便携式地物光谱仪;所述便携式地物光谱仪通过数据线与所述计算机连接,所述便携式地物光谱仪用于采集茄子果皮样品在特征波段的反射光谱数据。
进一步的,所述遮光罩的内侧壁固定连接有固定支架,所述光源通过所述固定支架固定在所述遮光罩内。
进一步的,所述光源设置有两组,对称设置在所述便携式地物光谱仪的两侧,所述便携式地物光谱仪设置在所述茄子果皮样品的正上方。
进一步的,所述便携式地物光谱仪的型号选用PSR-1100,光谱范围320-1100nm。
进一步的,所述光源选用卤素灯,其功率为35W,工作电压为230V。
根据本实用新型提供的具体实施例,本实用新型公开了以下技术效果:本实用新型提供的基于光谱技术的茄子花青素测量系统,通过设置遮光罩遮挡外界环境干扰,提高光谱数据采集质量,通过便携式地物光谱仪进行光谱扫描,具体采用计算机与便携式地物光谱仪相连,对于使用者要求较低,使用者可以直接使用光谱扫描即可得到茄子果皮花青素含量,工作效率高,人工成本低;基于光谱数据建立茄子果皮基于光谱的花青素含量模型,并使用主成分分析和连续投影算法提取特征波段,从而通过光谱数据获取了茄子果皮花青素含量,达到无损,快速,准确的鉴定茄子表皮花青素含量。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例基于光谱技术的茄子花青素测量系统的结构示意图;
图2是本实用新型实施例采用SG平滑滤波器法和SNV标准正态化方法处理过后的光谱数据曲线图;
图3是茄子花青素测量的回归曲线;
附图说明:1、遮光罩;2、光源;3、便携式地物光谱仪;4、固定支架;5、计算机;6、茄子果皮样品;7、待检测样品放置台。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型的目的是提供一种基于光谱技术的茄子花青素测量系统,可以达到无损、快速、准确的鉴定茄子表皮花青素含量,同时本实用新型对于使用者要求较低,使用者可以直接使用光谱扫描即可得到茄子果皮花青素含量,操作简单,使用方便。
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
如图1所示,本实用新型提供的基于光谱技术的茄子花青素测量系统,包括:计算机5、遮光罩1、光源2、待检测样品放置台7和便携式地物光谱仪3,所述遮光罩罩1设在所述待检测样品放置台7上方,所述待检测样品放置台7用于放置茄子果皮样品6,所述遮光罩1的内部设置所述光源2和便携式地物光谱仪3,所述光源2设置在遮光罩1的顶部用于照射所述茄子果皮样品6,所述遮光罩1的顶部设置便携式地物光谱仪3;所述便携式地物光谱仪3通过数据线与所述计算机5连接,所述便携式地物光谱仪3用于采集茄子果皮样品6在特征波段的反射光谱数据。
所述遮光罩1的内侧壁固定连接有固定支架4,所述光源2通过所述固定支架4固定在所述遮光罩1内。所述光源2设置有两组,对称设置在所述便携式地物光谱仪3的两侧。所述便携式地物光谱仪3设置在所述茄子果皮样品6的正上方。
所述便携式地物光谱仪3的型号选用PSR-1100,PSR-1100的光谱范围320-1100nm(紫外-可见-近红外),PSR-1100测量系统由光谱仪和光纤组成,是被动式测量反射率的光谱仪,包含512线阵探测器,由固定全息光栅作为色散元件,配有25°光纤探头。
所述光源2选用卤素灯,其功率为35W,工作电压为230V。
本实用新型还提供了一种基于光谱技术的茄子花青素测量方法,应用于上述的基于光谱技术的茄子花青素测量系统,包括以下步骤:
S1,选取多个茄子果皮样品,调整光源的光强,利用便携式地物光谱仪分别对每一个茄子果皮样品进行光谱扫描,得到光谱数据;
S2,使用主成分分析和连续投影算法对光谱数据进行处理,利用多元线性回归建模方法建立茄子花青素的预测模型,从各个函数关系式中筛选出最能够反映茄子果皮花青素含量的表达式。
其中,所述步骤S1中,利用便携式地物光谱仪分别对每一个茄子果皮样品进行光谱扫描,得到光谱数据,具体包括:
进行光谱数据采集,收集到320nm到1100nm波段的反射率,提出841nm,916nm、803nm、756nm、678nm、1045nm、467nm、321nm波段的反射率。
所述步骤S2中,使用主成分分析和连续投影算法对光谱数据进行处理,利用多元线性回归建模方法建立茄子花青素的预测模型,从各个函数关系式中筛选出最能够反映茄子果皮花青素含量的表达式,具体包括:
采用SG平滑滤波器法和SNV标准正态化方法对光谱数据进行预处理,如图2所示;采用SG平滑滤波器法:是一种基于多项式和的移动窗口,在时域内利用偏最小二乘法实现最佳拟合的方法,SG平滑既能提高信号的信噪比,又可较好的保持光谱中的有用信息;SNV标准正态化方法主要用来消除固体颗粒的大小、表面散射以及光程变化对近红外漫反射光谱的影响,其按如下公式进行计算:
Figure BDA0002907273550000041
Figure BDA0002907273550000051
式中:m—为波长点数;
k=1,2,...,m;
Figure BDA0002907273550000052
—为光谱曲线的平均值;
结合主成分分析与连续投影算法的预测模型;
根据决定系数从各个函数关系式中筛选出最能够反映茄子果皮花青素含量的表达式:
Y=20.168-269.924*X841+104.524*X916+242.748*X803-48.522*X756+6.384*X678-6.771*X1045+35.109*X467+7.049*X321
式中,X841、X916、X803、X756、X678、X1045、X467、X321分别表示841nm、916nm、803nm、756nm、678nm、1045nm、467nm、321nm波段的反射率。
决定系数R2如表1所示:
表1不同预处理光谱数据的结果
Figure BDA0002907273550000053
本实用新型通过理化试验测量茄子花青素和使用光谱扫描茄子表皮得到的光谱数据通过SG平滑滤波加SNV标准正态变化进行预处理得到的处理后的数据与茄子花青素含量进行建模得到的回归方程,该方程拟合度达到99%,如图3所示。
本实用新型提供的基于光谱技术的茄子花青素测量系统,通过设置遮光罩遮挡外界环境干扰,提高光谱数据采集质量,通过便携式地物光谱仪进行光谱扫描,具体采用计算机与便携式地物光谱仪相连,对于使用者要求较低,使用者可以直接使用光谱扫描即可得到茄子果皮花青素含量,工作效率高,人工成本低;基于光谱数据建立茄子果皮基于光谱的花青素含量模型,并使用主成分分析和连续投影算法提取特征波段,从而通过光谱数据获取了茄子果皮花青素含量,达到无损,快速,准确的鉴定茄子表皮花青素含量,为研究整个果实发育过程中色素的动态变化提供了可靠的信息。
本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (5)

1.一种基于光谱技术的茄子花青素测量系统,其特征在于,包括:计算机、遮光罩、光源、待检测样品放置台和便携式地物光谱仪,所述遮光罩罩设在所述待检测样品放置台上方,所述待检测样品放置台用于放置茄子果皮样品,所述遮光罩的内部设置所述光源和便携式地物光谱仪,所述光源设置在遮光罩的顶部用于照射所述茄子果皮样品,所述遮光罩的顶部设置便携式地物光谱仪;所述便携式地物光谱仪通过数据线与所述计算机连接,所述便携式地物光谱仪用于采集茄子果皮样品在特征波段的反射光谱数据。
2.根据权利要求1所述的基于光谱技术的茄子花青素测量系统,其特征在于,所述遮光罩的内侧壁固定连接有固定支架,所述光源通过所述固定支架固定在所述遮光罩内。
3.根据权利要求1所述的基于光谱技术的茄子花青素测量系统,其特征在于,所述光源设置有两组,对称设置在所述便携式地物光谱仪的两侧,所述便携式地物光谱仪设置在所述茄子果皮样品的正上方。
4.根据权利要求1所述的基于光谱技术的茄子花青素测量系统,其特征在于,所述便携式地物光谱仪的型号选用PSR-1100,光谱范围320-1100nm。
5.根据权利要求1所述的基于光谱技术的茄子花青素测量系统,其特征在于,所述光源选用卤素灯,其功率为35W,工作电压为230V。
CN202120151121.1U 2021-01-20 2021-01-20 一种基于光谱技术的茄子花青素测量系统 Active CN214121987U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120151121.1U CN214121987U (zh) 2021-01-20 2021-01-20 一种基于光谱技术的茄子花青素测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120151121.1U CN214121987U (zh) 2021-01-20 2021-01-20 一种基于光谱技术的茄子花青素测量系统

Publications (1)

Publication Number Publication Date
CN214121987U true CN214121987U (zh) 2021-09-03

Family

ID=77495542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120151121.1U Active CN214121987U (zh) 2021-01-20 2021-01-20 一种基于光谱技术的茄子花青素测量系统

Country Status (1)

Country Link
CN (1) CN214121987U (zh)

Similar Documents

Publication Publication Date Title
Cochrane Using vegetation reflectance variability for species level classification of hyperspectral data
CN100590417C (zh) 一种植物叶片生理指标无损检测方法
CN110160967A (zh) 一种作物冠层叶片的全氮含量估算方法
CN101915744A (zh) 物质成分含量的近红外光谱无损检测方法及装置
CN103278473B (zh) 白胡椒中胡椒碱及水分含量的测定和品质评价方法
CN103048278B (zh) 机炒龙井茶叶水分含量在线检测方法
Steele et al. Nondestructive estimation of leaf chlorophyll content in grapes
CN105548070B (zh) 一种苹果可溶性固形物近红外检测部位补偿方法及系统
CN102841063B (zh) 一种基于光谱技术的生物炭溯源鉴别方法
CN103472031A (zh) 一种基于高光谱成像技术的脐橙糖度检测方法
CN102042967B (zh) 一种基于近红外光谱技术的葡萄糖水溶液快速识别方法
CN114169165B (zh) 一种三波段植被指数估算镉胁迫下水稻叶绿素的模型方法
CN112858187A (zh) 一种基于光谱技术的茄子花青素测量系统及方法
CN103063603B (zh) 机炒龙井茶叶水分含量在线检测装置
CN214121987U (zh) 一种基于光谱技术的茄子花青素测量系统
CN113267458A (zh) 甘薯可溶性蛋白质含量定量预测模型的建立方法
Bansod et al. Near Infrared spectroscopy based a portable soil nitrogen detector design
CN114878534A (zh) 一种基于日光诱导叶绿素荧光的光合色素检测装置及方法
CN114166793B (zh) 基于光谱波段重叠分离的叶片叶绿素a、b含量反演方法
Surase et al. Estimation of water contents from vegetation using hyperspectral indices
CN114324215A (zh) 一种柠檬叶片叶绿素含量及其二维分布检测方法
CN114234805A (zh) 一种基于光谱成像技术的木材材积自动检尺系统及其方法
Wu et al. Recognition of wheat preharvest sprouting based on hyperspectral imaging
Zeyad Application of mathematical models and digital filters and their Processors of spectral analysis for aromatic compounds gas in a fluorescent chemical
CN215493143U (zh) 一种多光谱结合pls-da区分植物叶色细微差别的系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant