CN213182176U - 一种黑光镜头 - Google Patents

一种黑光镜头 Download PDF

Info

Publication number
CN213182176U
CN213182176U CN202022342463.XU CN202022342463U CN213182176U CN 213182176 U CN213182176 U CN 213182176U CN 202022342463 U CN202022342463 U CN 202022342463U CN 213182176 U CN213182176 U CN 213182176U
Authority
CN
China
Prior art keywords
lens
equal
black light
less
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202022342463.XU
Other languages
English (en)
Inventor
姚晨
何剑炜
米士隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Yutong Optical Technology Co Ltd
Original Assignee
Dongguan Yutong Optical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Yutong Optical Technology Co Ltd filed Critical Dongguan Yutong Optical Technology Co Ltd
Priority to CN202022342463.XU priority Critical patent/CN213182176U/zh
Application granted granted Critical
Publication of CN213182176U publication Critical patent/CN213182176U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本实用新型实施例公开了一种黑光镜头,该黑光镜头包括沿光轴从物面至像面依次排列有第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜;第一透镜具有负光焦度,第二透镜具有负光焦度,第三透镜具有负光焦度,第四透镜具有正光焦度,第五透镜具有正光焦度,第六透镜具有负光焦度或正光焦度,第七透镜具有正光焦度,第八透镜具有负光焦度,第九透镜具有正光焦度。本实用新型提供的黑光镜头,在保证高性能、低成本的情况下,在微光条件下,以提高成像质量,满足高清像质需求。

Description

一种黑光镜头
技术领域
本实用新型实施例涉及光学器件技术领域,尤其涉及一种黑光镜头。
背景技术
随着安防监控设施的日益普及,监控设备对监控环境及画面要求越来越高,监控设备需要提供更高像素、更大通光量的监控画面。对于夜间及微光条件下,安防监控领域通常采用红外补光的方式来达到成像目的。但是红外补光的成像范围较小,色彩失真严重。为了达到更好的夜间成像效果,微光相机的需求日益增加。目前,市场上常见的高像质大光圈镜头多为F1.4,较少镜头能达到F1.2的大光圈,更少有能达到F1.1到F1.0的超大光圈镜头。而且,现有的镜头通常搭配1/2.7′的传感器,其靶面较小,镜头中多采用玻璃球面或玻璃非球面透镜,制造难度较大,生产成本较高。
实用新型内容
本实用新型实施例提供一种黑光镜头,在保证高性能、低成本的情况下,在微光条件下,以提高成像质量,满足高清像质需求。
第一方面,本实用新型实施例提供了一种黑光镜头,包括:沿光轴从物面至像面依次排列有第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜;
所述第一透镜具有负光焦度,所述第二透镜具有负光焦度,所述第三透镜具有负光焦度,所述第四透镜具有正光焦度,所述第五透镜具有正光焦度,所述第六透镜具有负光焦度或正光焦度,所述第七透镜具有正光焦度,所述第八透镜具有负光焦度,所述第九透镜具有正光焦度。
可选的,所述第一透镜、所述第四透镜和所述第五透镜均为玻璃球面透镜,所述第二透镜、所述第三透镜、所述第六透镜、所述第七透镜、所述第八透镜和所述第九透镜均为塑料非球面透镜。
可选的,所述黑光镜头还包括光阑;
所述光阑位于所述第六透镜与所述第七透镜之间的光路中。
可选的,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述第八透镜的焦距为f8,所述第九透镜的焦距为f9,光学系统的焦距为f,光学系统的入瞳直径为N;
其中,1.2≤|(f1+f2)/N|≤15;1.5≤|f3/f|;0.8≤|(f4+f5)/N|≤12;0.1≤|f6/f|;1.1≤|(f7+f9)/f8|≤9;
可选的,所述第一透镜的折射率为n1,阿贝数为v1;所述第四透镜的折射率为n4,阿贝数为v4;所述第五透镜的折射率为n5,阿贝数为v5;
其中,1.42≤n1≤1.8,26≤v1≤78;n4≥1.8,v4≤55;1.46≤n5≤1.9,19≤v5≤73。
可选的,所述第四透镜和所述第五透镜胶合固定。
可选的,所述第六透镜的近物面曲率半径为R61,近像面曲率半径为R62,所述第八透镜的近物面曲率半径为R81,近像面曲率半径为R82;
其中,0.3≤|R61/R62|≤2.6;0.16≤|R81/R82|≤4.5。
可选的,所述第六透镜为弯月透镜。
可选的,所述第七透镜和所述第八透镜的空气间隔为TH78,其中,TH78≥0。
可选的,所述黑光镜头的光圈为F,视场角为FOV;
其中,1.0≤F≤1.1;FOV≥100°。
本实用新型实施例提供的技术方案,通过合理设置黑光镜头中的透镜数量以及各透镜的光焦度的相对关系,在低成本的前提下,保证黑光镜头前后组镜片的入射角大小的均衡性,降低镜头的敏感性,提高生产的可能性,保证黑光镜头在-30~80℃环境下具有较高的解像力,提高成像质量,满足高清像质需求。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图虽然是本实用新型的一些具体的实施例,对于本领域的技术人员来说,可以根据本实用新型的各种实施例所揭示和提示的器件结构,驱动方法和制造方法的基本概念,拓展和延伸到其它的结构和附图,毋庸置疑这些都应该是在本实用新型的权利要求范围之内。
图1为本实用新型实施例一提供的一种黑光镜头的结构示意图;
图2为本实用新型实施例一提供的一种黑光镜头的球差曲线图;
图3为本实用新型实施例一提供的一种黑光镜头的光线光扇图;
图4为本实用新型实施例一提供的一种黑光镜头的5波长点列图;
图5为本实用新型实施例一提供的一种黑光镜头的场曲畸变图;
图6为本实用新型实施例一提供的一种黑光镜头的MTF图;
图7为本实用新型实施例二提供的一种黑光镜头的结构示意图;
图8为本实用新型实施例二中提供的一种黑光镜头的球差曲线图;
图9为本实用新型实施例二中提供的一种黑光镜头的光线光扇图;
图10为本实用新型实施例二中提供的一种黑光镜头的5波长点列图;
图11为本实用新型实施例二中提供的一种黑光镜头的场曲畸变图;
图12为本实用新型实施例二中提供的一种黑光镜头的MTF图。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚,以下将参照本实用新型实施例中的附图,通过实施方式清楚、完整地描述本实用新型的技术方案,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例所揭示和提示的基本概念,本领域的技术人员所获得的所有其他实施例,都属于本实用新型保护的范围。
实施例一
图1为本实用新型实施例一提供的一种黑光镜头的结构示意图,如图1所示,本实用新型实施例提供了一种黑光镜头,包括:沿光轴从物面至像面依次排列有第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、第七透镜170、第八透镜180和第九透镜190;
第一透镜110具有负光焦度,第二透镜120具有负光焦度,第三透镜130具有负光焦度,第四透镜140具有正光焦度,第五透镜150具有正光焦度,第六透镜160具有负光焦度或正光焦度,第七透镜170具有正光焦度,第八透镜180具有负光焦度,第九透镜190具有正光焦度。
示例性的,光焦度等于像方光束汇聚度与物方光束汇聚度之差,它表征光学系统偏折光线的能力。光焦度的绝对值越大,对光线的弯折能力越强,光焦度的绝对值越小,对光线的弯折能力越弱。光焦度为正数时,光线的屈折是汇聚性的;光焦度为负数时,光线的屈折是发散性的。光焦度可以适用于表征一个透镜的某一个折射面(即透镜的一个表面),可以适用于表征某一个透镜,也可以适用于表征多个透镜共同形成的系统(即透镜组)。在本实施例提供的黑光镜头中,可以将各个透镜固定于一个镜筒(图1中未示出)内,设置第一透镜110、第二透镜120、第三透镜130、第八透镜180为负光焦度透镜,第四透镜140、第五透镜150、第七透镜170、第九透镜190为正光焦度透镜,第一透镜110,第二透镜120和第三透镜130为负光焦度透镜,且都是弯月透镜,用于控制光学系统光线入射角,有助于缓解大角度的光线入射角,保证大的视场角;第四透镜140和第五透镜150可采用高折射和高色散材料相互搭配,具有很好的像差矫正功能,有助于提升系统光学性能以及改善公差;第七透镜170,第八透镜180,第九透镜190以正负正的光焦度进行搭配,有助于消整个光学系统的色差。整个镜头的折射率和光焦度按照一定比例分配,保证前后组镜片的入射角大小的均衡性,以降低镜头的敏感性,提高生产的可能性。
可选的,第一透镜110、第四透镜140和第五透镜150均为玻璃球面透镜,第二透镜120、第三透镜130、第六透镜160、第七透镜170、第八透镜180和第九透镜190均为塑料非球面透镜。
其中,非球面透镜起到矫正场曲、像散、球差、慧差等像差的作用。塑料非球面透镜的材质可为本领域技术人员可知的各种塑料,玻璃球面透镜的材质为本领域技术人员可知的各种类型的玻璃,本实用新型实施例一对此不赘述也不作限定。由于塑料材质的透镜成本远低于玻璃材质的透镜成本,本实用新型实施例一提供的黑光镜头中,通过设置6片塑料非球面镜片,像质好,成本低。且因两类材质具有互相补偿作用,可保证黑光镜头在高低温环境下仍可正常使用。
可选的,黑光镜头还包括光阑100;
光阑100位于第六透镜160与第七透镜170之间的光路中。
其中,通过将光阑100设置在第六透镜160与第七透镜170之间的光路中,可以调节光束的传播方向,调整光线入射角,有利于进一步提高成像质量。
可选的,第一透镜110的焦距为f1,第二透镜120的焦距为f2,第三透镜130的焦距为f3,第四透镜140的焦距为f4,第五透镜150的焦距为f5,第六透镜160的焦距为f6,第七透镜170的焦距为f7,第八透镜180的焦距为f8,第九透镜190的焦距为f9,光学系统的焦距为f,光学系统的入瞳直径为N;
其中,1.2≤|(f1+f2)/N|≤15;1.5≤|f3/f|;0.8≤|(f4+f5)/N|≤12;0.1≤|f6/f|;1.1≤|(f7+f9)/f8|≤9;
其中,通过合理分配各镜片焦距,有利于像差的矫正,保证黑光镜头具有较高的解像力。
可选的,第一透镜110的折射率为n1,阿贝数为v1;第四透镜140的折射率为n4,阿贝数为v4;第五透镜150的折射率为n5,阿贝数为v5;
其中,1.42≤n1≤1.8,26≤v1≤78;n4≥1.8,v4≤55;1.46≤n5≤1.9,19≤v5≤73。
其中,折射率是光在真空中的传播速度与光在该介质中的传播速度之比,主要用来描述材料对光的折射能力,不同的材料的折射率不同。阿贝数是用以表示透明介质色散能力的指数,介质色散越严重,阿贝数越小;反之,介质的色散越轻微,阿贝数越大。如此,通过搭配设置黑光镜头中各透镜的折射率和阿贝数,保证前后组镜片的入射角大小的均衡性,以降低镜头的敏感性,提高生产的可能性。
可选的,第四透镜140和第五透镜150胶合固定。
其中,第四透镜140像侧面和第五透镜150物侧面胶合固定,形成胶合结构,具有很好的像差矫正功能,有助于提升系统光学性能以及改善公差,同时减少第四透镜140和第五透镜150间的空气间隔,缩短镜头的长度,实现小型化。
可选的,第六透镜160的近物面曲率半径为R61,近像面曲率半径为R62,第八透镜180的近物面曲率半径为R81,近像面曲率半径为R82;
其中,0.3≤|R61/R62|≤2.6;0.16≤|R81/R82|≤4.5。
具体的,曲率半径的单位均为毫米(mm),通过设置第六透镜160近物面曲率半径为R61,近像面曲率半径为R62,满足0.3≤|R61/R62|≤2.6;第八透镜180的近物面曲率半径为R81,近像面曲率半径为R82,满足0.16≤|R81/R82|≤4.5;控制第六透镜160和第八透镜180的弯曲成程度,有利于实现黑光镜头的小型化设计,同时,通过优化第六透镜160和第八透镜180的形状,有利于提升黑光镜头的成像质量。
可选的,第六透镜160为弯月透镜。
其中,弯月形透镜由两个曲率半径较小,数值相差也很少的球面构成,通过设置第六透镜160为弯月透镜,能够起到校正场曲的作用。
可选的,第七透镜170和所述第八透镜180的空气间隔为TH78,其中,TH78≥0。
示例性的,设置TH78=0,可通过将第七透镜170的像方表面与第八透镜180的物方表面胶合,从而能够将第七透镜170和第八透镜180组合成胶合透镜;采用胶合透镜可有效减小第七透镜170和第八透镜180间的空气间隔,从而减小镜头总长。此外,胶合透镜可用于最大限度地减少色差或消除色差,使得黑光镜头的各种像差可得到充分校正,在结构紧凑的前提下,可提高分辨率,优化畸变、CRA等光学性能;并可减少镜片间反射引起光量损失,提升照度,从而改善像质、提升镜头成像的清晰度。另外,胶合透镜的使用还可减少两个镜片之间的组立部件,简化镜头制造过程中的装配程序,降低成本,并降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
可选的,黑光镜头的光圈为F,视场角为FOV;
其中,1.0≤F≤1.1;FOV≥100°。
其中,黑光镜头的光圈设置可满足较大光通过量,从而满足低照度微光条件下的监控需求。同时黑光镜头为一种超大视场角的黑光镜头,满足超大视场要求。
本实用新型实施例一提供的黑光镜头,通过合理分配各透镜的光焦度、面型、折射率、阿贝数等,在低成本的前提下,保证黑光镜头前后组镜片的入射角大小的均衡性,降低镜头的敏感性,保证黑光镜头具有较高的解像力,提高成像质量,满足高清像质需求;同时保证黑光镜头在-30~80℃环境下使用解像力满足成像要求,保证镜头在微光条件下的成像能力,实现像质在不同条件下的一致性。
作为一种可行的实施方式,下面对黑光镜头中各个透镜表面的曲率半径、厚度、材料和K系数进行说明。
表1黑光镜头的曲率半径、厚度、材料和K系数的设计值
面序号 表面类型 曲率半径 厚度 材料(nd) K系数
1 球面 30.41 0.75 1.65
2 球面 8.24 4.69
3 非球面 12.03 2.16 1.53 -1.18
4 非球面 6.50 1.88 -1.29
5 非球面 -31.83 2.42 1.63 -0.67
6 非球面 -106.45 0.05 49.97
7 球面 31.37 5.34 2.0
8 球面 219.70 4.96 1.59
9 球面 -13.99 7.18
10 非球面 -7.53 2.28 1.67 -6.96
11 非球面 -8.48 2.59 -2.70
STO PL Infinity -2.5
13 非球面 7.64 6.05 1.53 -4.77
14 非球面 -20.31 0.10 -3.95
15 非球面 -15.38 2.05 1.63 -34.70
16 非球面 8.11 0.41 -4.44
17 非球面 8.81 3.63 1.53 -8.47
18 非球面 -28.62 4.72 2.46
继续参考图1,本实用新型实施例一提供的黑光镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、第七透镜170、第八透镜180和第九透镜190。表1示出了实施例提供的黑光镜头中各透镜的曲率半径、厚度及材料等光学物理参数。其中,面序号根据各个透镜的表面顺序来进行编号,例如,“1”代表第一透镜110的物面表面,“2”代表第一透镜110的像面表面,“10”代表第五透镜150的物面表面,“11”代表第五透镜150的像面表面,依次类推;曲率半径代表镜片表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm)。
在上述实施例的基础上,可选的,第一透镜110、第四透镜140和第五透镜150均为玻璃球面透镜,第二透镜120、第三透镜130、第六透镜160、第七透镜170、第八透镜180和第九透镜190均为塑料非球面透镜。本实用新型实施例一提供的黑光镜头还包括光阑100(STO),通过增设光阑100可以调节光束的传播方向,有利于提高成像质量。光阑100可以位于第六透镜160与第七透镜170之间的光路中,但本实用新型实施例一对光阑100的具体设置位置不进行限定,通过将光阑设置在合适的位置处,有助于提高相对照度,并减小CRA。
第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、第七透镜170、第八透镜180和第九透镜190的非球面表面形状方程Z满足:
Figure BDA0002733689060000101
式中,Z为非球面沿光轴方向在高度为y的位置时,距非球面顶点的距离矢高;c=1/R,R表示镜面的近轴曲率半径;K为圆锥系数;A、B、C、D、E、F为高次非球面系数,其中,Z、R和y的单位均为mm。
示例性的,表2以一种可行的实施方式详细说明了本实施例中各透镜的非球面系数。
表2黑光镜头中非球面系数
Figure BDA0002733689060000102
Figure BDA0002733689060000111
其中,-1.10E-03表示面序号为3的系数A为-1.10*10-3,依此类推。
进一步的,图2为本实用新型实施例一提供的一种黑光镜头的球差曲线图,如图2所示,该黑光镜头在不同波长(0.436μm、0.486μm、0.546μm、0.588μm和0.656μm)下的球差均在0.05mm以内,不同波长曲线相对较集中,说明该黑光镜头的轴向像差很小,从而可知,本实用新型实施例一提供的黑光镜头能够较好地校正像差。
图3为本实用新型实施例一提供的一种黑光镜头的光线光扇图,如图3所示,不同波长光线(0.436μm、0.486μm、0.546μm、0.588μm和0.656μm)在该黑光镜头的不同视场角下的成像范围均在50μm以内且曲线非常集中,保证了不同视场区域的像差较小,也即说明了该黑光镜头较好地校正了光学系统的像差。
图4为本实用新型实施例一提供的一种黑光镜头的可见光点列图,其中,点列图是现代光学设计中最常用的评价方法之一。点列图是指由一点光源发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形。如图4所示,本实用新型实施例一提供的黑光镜头,五种不同波长的可见光线(0.436μm、0.4861μm、0.546μm、0.5876μm和0.6563μm)在各个视场下的弥散图形比较集中,分布也比较均匀,没有出现某个视场下的弥散图形随波长而上下分离得很开的现象,说明无明显紫边。同时,五种不同波长的可见光线(0.436μm、0.4861μm、0.546μm、0.5876μm和0.6563μm)在该黑光镜头的各视场位置处的均方根半径值(RMS radius)分别为2.558μm、3.840μm、4.329μm、3.190μm、3.745μm、4.624μm、4.836μm,表明各视场的RMS半径均小于5μm,也即说明了该黑光镜头在全视场下具有较低的色差和像差,解决了可见光波段成像的紫边问题,能够实现高分辨率的成像。
图5为本实用新型实施例一提供的一种黑光镜头的场曲畸变图,如图5所示,左侧坐标系中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图5可以看出,本实施例一提供的黑光镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小;右侧坐标系中,水平坐标表示畸变的大小,单位为%;垂直坐标表示归一化像高,没有单位;由图5可以看出,本实施例提供的黑光镜头的畸变得到了较好地矫正,成像畸变较小,满足低畸变的要求。
图6为本实用新型实施例一提供的一种黑光镜头的MTF图,如图6所示,MTF图显示的是镜头对比度的忠实再现情况,纵轴表示对比度的优劣,横轴表示与成像中心的距离。MTF曲线中的160线对/mm时传递函数基本都在0.2以上,能够满足4K像质需求。
综上所述,本实施例提供的黑光镜头,在微光条件下,具有超大视场角,高清像质且体积小的优势,设计采用9片式结构,在成本较低的情况下,在不同光焦度的搭配下,达到4K像质需求,采用玻塑混合的结构能够满足-30℃-80℃环境下的使用需求。
实施例二
图7为本实用新型实施例二提供的一种黑光镜头的结构示意图,如图7所示,本实用新型实施例二提供的黑光镜头,包括:沿光轴从物面至像面依次排列有第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、第七透镜170、第八透镜180和第九透镜190;
第一透镜110具有负光焦度,第二透镜120具有负光焦度,第三透镜130具有负光焦度,第四透镜140具有正光焦度,第五透镜150具有正光焦度,第六透镜160具有负光焦度或正光焦度,第七透镜170具有正光焦度,第八透镜180具有负光焦度,第九透镜190具有正光焦度。
其中,各个透镜的光焦度、焦距、折射率、阿贝数、面型、材料以及黑光镜头光阑位置设置与实施例一相同,这里不再赘述。
表3以另一种可行的实施方式,详细说明了本实用新型实施例二提供的黑光镜头中各个透镜的具体设置参数,表3中的黑光镜头对应图7所述的黑光镜头。
表3黑光镜头的曲率半径、厚度、材料和K系数的设计值
面序号 表面类型 曲率半径 厚度 材料(nd) K系数
1 球面 28.88 0.66 1.65
2 球面 8.24 4.69
3 非球面 12.01 2.17 1.53 -1.17
4 非球面 6.51 1.87 -1.29
5 非球面 32.29 2.43 1.63 -0.78
6 非球面 -107.39 0.04 51.18
7 球面 31.36 5.43 2.0
8 球面 192.99 5.00 1.59
9 球面 -14.00 7.20
10 非球面 -7.55 2.38 1.67 -6.82
11 非球面 -8.44 2.54 -2.69
STO PL Infinity -2.5
13 非球面 7.66 5.99 1.53 -4.58
14 非球面 -20.41 0.11 -3.87
15 非球面 -15.35 2.04 1.63 -34.98
16 非球面 8.08 0.42 -4.45
17 非球面 8.82 3.53 1.53 -8.47
18 非球面 -29.51 4.76 2.54
继续参考图7,本实用新型实施例二提供的黑光镜头包括沿光轴从物面到像面依次排列的第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250、第六透镜260、第七透镜270、第八透镜280和第九透镜290。表3示出了实施例提供的黑光镜头中各透镜的曲率半径、厚度及材料等光学物理参数。其中,面序号根据各个透镜的表面顺序来进行编号,例如,“1”代表第一透镜210的物面表面,“2”代表第一透镜210的像面表面,“10”代表第五透镜250的物面表面,“11”代表第五透镜250的像面表面,依次类推;曲率半径代表镜片表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm)。
在上述实施例的基础上,可选的,第一透镜210、第四透镜240和第五透镜250均为玻璃球面透镜,第二透镜220、第三透镜230、第六透镜260、第七透镜270、第八透镜280和第九透镜290均为塑料非球面透镜。本实用新型实施例一提供的黑光镜头还包括光阑200(STO),通过增设光阑200可以调节光束的传播方向,有利于提高成像质量。光阑200可以位于第六透镜260与第七透镜270之间的光路中,但本实用新型实施例二对光阑200的具体设置位置不进行限定,通过将光阑设置在合适的位置处,有助于提高相对照度,并减小CRA。第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250、第六透镜260、第七透镜270、第八透镜280和第九透镜290的非球面表面形状方程Z满足:
Figure BDA0002733689060000151
式中,Z为非球面沿光轴方向在高度为y的位置时,距非球面顶点的距离矢高;c=1/R,R表示镜面的近轴曲率半径;K为圆锥系数;A、B、C、D、E、F为高次非球面系数,其中,Z、R和y的单位均为mm。
示例性的,表4以一种可行的实施方式详细说明了本实施例中各透镜的非球面系数。
表4黑光镜头中非球面系数
Figure BDA0002733689060000152
Figure BDA0002733689060000161
其中,-1.10E-03表示面序号为3的系数A为-1.10*10-3,依此类推。
进一步的,图8为本实用新型实施例二提供的一种黑光镜头的球差曲线图,如图8所示,该黑光镜头在不同波长(0.436μm、0.486μm、0.546μm、0.588μm和0.656μm)下的球差均在0.05mm以内,不同波长曲线相对较集中,说明该黑光镜头的轴向像差很小,从而可知,本实用新型实施例二提供的黑光镜头能够较好地校正像差。
图9为本实用新型实施例二提供的一种黑光镜头的光线光扇图,如图9所示,不同波长光线(0.436μm、0.486μm、0.546μm、0.588μm和0.656μm)在该黑光镜头的不同视场角下的成像范围均在50μm以内且曲线非常集中,保证了不同视场区域的像差较小,也即说明了该黑光镜头较好地校正了光学系统的像差。
图10为本实用新型实施例二提供的一种黑光镜头的可见光点列图,其中,点列图是现代光学设计中最常用的评价方法之一。点列图是指由一点光源发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形。如图4所示,本实用新型实施例二提供的黑光镜头,五种不同波长的可见光线(0.4860μm、0.4861μm、0.5460μm、0.5876μm和0.6563μm)在各个视场下的弥散图形比较集中,分布也比较均匀,没有出现某个视场下的弥散图形随波长而上下分离得很开的现象,说明无明显紫边。同时,五种不同波长的可见光线(0.4860μm、0.4861μm、0.5460μm、0.5876μm和0.6563μm)在该黑光镜头的各视场位置处的均方根半径值(RMS radius)分别为3.167μm、4.027μm、4.053μm、3.605μm、4.482μm、5.101μm、5.429μm,表明各视场的RMS半径均小于6μm,也即说明了该黑光镜头在全视场下具有较低的色差和像差,解决了可见光波段成像的紫边问题,能够实现高分辨率的成像。
图11为本实用新型实施例二提供的一种黑光镜头的场曲畸变图,如图11所示,左侧坐标系中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图5可以看出,本实施例提供的黑光镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小;右侧坐标系中,水平坐标表示畸变的大小,单位为%;垂直坐标表示归一化像高,没有单位;由图11可以看出,本实施例提供的黑光镜头的畸变得到了较好地矫正,成像畸变较小,满足低畸变的要求。
图12为本实用新型实施例二提供的一种黑光镜头的MTF图,如图12所示,MTF图显示的是镜头对比度的忠实再现情况,纵轴表示对比度的优劣,横轴表示与成像中心的距离。MTF曲线中的160线对/mm时传递函数基本都在0.15以上,能够满足4K像质需求。
综上所述,本实施例提供的黑光镜头,在微光条件下,具有超大视场角,高清像质且体积小的优势,设计采用9片式结构,在成本较低的情况下,在不同光焦度的搭配下,达到4K像质需求,采用玻塑混合的结构能够满足-30℃-80℃环境下的使用需求。
注意,上述仅为本实用新型的较佳实施例及所运用技术原理。本领域技术人员会理解,本实用新型不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互组合和替代而不会脱离本实用新型的保护范围。因此,虽然通过以上实施例对本实用新型进行了较为详细的说明,但是本实用新型不仅仅限于以上实施例,在不脱离本实用新型构思的情况下,还可以包括更多其他等效实施例,而本实用新型的范围由所附的权利要求范围决定。

Claims (10)

1.一种黑光镜头,其特征在于,包括沿光轴从物面至像面依次排列有第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜;
所述第一透镜具有负光焦度,所述第二透镜具有负光焦度,所述第三透镜具有负光焦度,所述第四透镜具有正光焦度,所述第五透镜具有正光焦度,所述第六透镜具有负光焦度或正光焦度,所述第七透镜具有正光焦度,所述第八透镜具有负光焦度,所述第九透镜具有正光焦度。
2.根据权利要求1所述的黑光镜头,其特征在于,所述第一透镜、所述第四透镜和所述第五透镜均为玻璃球面透镜,所述第二透镜、所述第三透镜、所述第六透镜、所述第七透镜、所述第八透镜和所述第九透镜均为塑料非球面透镜。
3.根据权利要求1所述的黑光镜头,其特征在于,所述黑光镜头还包括光阑;
所述光阑位于所述第六透镜与所述第七透镜之间的光路中。
4.根据权利要求1所述的黑光镜头,其特征在于,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述第八透镜的焦距为f8,所述第九透镜的焦距为f9,光学系统的焦距为f,光学系统的入瞳直径为N;
其中,1.2≤|(f1+f2)/N|≤15;1.5≤|f3/f|;0.8≤|(f4+f5)/N|≤12;0.1≤|f6/f|;1.1≤|(f7+f9)/f8|≤9。
5.根据权利要求1所述的黑光镜头,其特征在于,所述第一透镜的折射率为n1,阿贝数为v1;所述第四透镜的折射率为n4,阿贝数为v4;所述第五透镜的折射率为n5,阿贝数为v5;
其中,1.42≤n1≤1.8,26≤v1≤78;n4≥1.8,v4≤55;1.46≤n5≤1.9,19≤v5≤73。
6.根据权利要求1所述的黑光镜头,其特征在于,所述第四透镜和所述第五透镜胶合固定。
7.根据权利要求1所述的黑光镜头,其特征在于,所述第六透镜的近物面曲率半径为R61,近像面曲率半径为R62,所述第八透镜的近物面曲率半径为R81,近像面曲率半径为R82;
其中,0.3≤|R61/R62|≤2.6;0.16≤|R81/R82|≤4.5。
8.根据权利要求1所述的黑光镜头,其特征在于,所述第六透镜为弯月透镜。
9.据权利要求5所述的黑光镜头,其特征在于,所述第七透镜和所述第八透镜的空气间隔为TH78,其中,TH78≥0。
10.根据权利要求1所述的黑光镜头,其特征在于,所述黑光镜头的光圈为F,视场角为FOV;
其中,1.0≤F≤1.1;
FOV≥100°。
CN202022342463.XU 2020-10-20 2020-10-20 一种黑光镜头 Active CN213182176U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202022342463.XU CN213182176U (zh) 2020-10-20 2020-10-20 一种黑光镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202022342463.XU CN213182176U (zh) 2020-10-20 2020-10-20 一种黑光镜头

Publications (1)

Publication Number Publication Date
CN213182176U true CN213182176U (zh) 2021-05-11

Family

ID=75779136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202022342463.XU Active CN213182176U (zh) 2020-10-20 2020-10-20 一种黑光镜头

Country Status (1)

Country Link
CN (1) CN213182176U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369097A (zh) * 2023-12-08 2024-01-09 武汉墨光科技有限公司 一种大光圈大靶面微型鱼眼镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369097A (zh) * 2023-12-08 2024-01-09 武汉墨光科技有限公司 一种大光圈大靶面微型鱼眼镜头
CN117369097B (zh) * 2023-12-08 2024-02-27 武汉墨光科技有限公司 一种大光圈大靶面微型鱼眼镜头

Similar Documents

Publication Publication Date Title
CN112130289A (zh) 一种黑光镜头
CN213338185U (zh) 一种定焦镜头
CN111983789A (zh) 一种鱼眼镜头
CN112526728A (zh) 一种定焦镜头
CN213182176U (zh) 一种黑光镜头
CN117492179A (zh) 成像镜头
CN111796402A (zh) 一种定焦镜头
CN111983788A (zh) 一种广角镜头
CN216285930U (zh) 一种定焦镜头
CN216013795U (zh) 一种定焦镜头
CN112327452B (zh) 一种超短4k黑光定焦镜头
CN215729053U (zh) 一种定焦镜头
CN214225558U (zh) 一种定焦镜头
CN113189747A (zh) 一种定焦镜头
CN209895076U (zh) 一种定焦镜头
CN213182174U (zh) 一种黑光镜头
CN210323549U (zh) 一种定焦镜头
CN213338183U (zh) 一种鱼眼镜头
CN112305717A (zh) 一种定焦镜头
CN218497248U (zh) 一种定焦镜头
CN213182175U (zh) 一种黑光镜头
CN212483965U (zh) 一种鱼眼镜头
CN218848437U (zh) 一种定焦镜头
CN214669831U (zh) 一种定焦镜头
CN115373104B (zh) 一种大光圈定焦镜头

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant