CN213132610U - Waste gas treatment system in nitrogen trifluoride preparation process - Google Patents

Waste gas treatment system in nitrogen trifluoride preparation process Download PDF

Info

Publication number
CN213132610U
CN213132610U CN202021023994.6U CN202021023994U CN213132610U CN 213132610 U CN213132610 U CN 213132610U CN 202021023994 U CN202021023994 U CN 202021023994U CN 213132610 U CN213132610 U CN 213132610U
Authority
CN
China
Prior art keywords
tower
waste gas
packing
nitrogen trifluoride
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021023994.6U
Other languages
Chinese (zh)
Inventor
武建鹏
冀延治
齐航
宋富财
岳立平
郑阳光
张帅
吕随强
黄英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peric Special Gases Co Ltd
Original Assignee
Peric Special Gases Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peric Special Gases Co Ltd filed Critical Peric Special Gases Co Ltd
Priority to CN202021023994.6U priority Critical patent/CN213132610U/en
Application granted granted Critical
Publication of CN213132610U publication Critical patent/CN213132610U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The utility model relates to a preparation nitrogen trifluoride's exhaust-gas treatment technical field especially relates to a waste gas treatment system in nitrogen trifluoride preparation process. Waste gas generated by preparing nitrogen trifluoride sequentially passes through a cracking tower, a cooler, a buffer tower, a water washing tower, a reduction tower and an alkaline washing tower to be treated one by one, so that industrial waste gas meeting the emission standard can be obtained, safety accidents caused by the waste gas of nitrogen trifluoride are avoided, and the emission of the waste gas also meets the emission standard of industrial gas and the requirements of environmental protection.

Description

Waste gas treatment system in nitrogen trifluoride preparation process
Technical Field
The utility model relates to a preparation nitrogen trifluoride's exhaust-gas treatment technical field especially relates to a waste gas treatment system in nitrogen trifluoride preparation process.
Background
Nitrogen trifluoride (NF)3) The gas is colorless, odorless and stable at normal temperature, is used in the industries of microelectronics, semiconductors, photoelectrons, photovoltaics and the like, and is one of the gases with more use frequencies. The classical preparation method of nitrogen trifluoride is to electrolyze fused salt of ammonium bifluoride and hydrogen fluoride for preparation, and the method has the advantages of high production efficiency, simple and convenient preparation process and the like. But simultaneously, a large amount of waste gas is generated in the process of preparing nitrogen trifluoride by the method, and great influence is generated on environmental protection and the safety of a process system. Safety hazards caused by exhaust gases from the nitrogen trifluoride production process account for the vast majority of process systems. And the waste gas discharged in the process of preparing nitrogen trifluoride can not be treated to meet the standard of environmental protection, thereby causing the case of environmental protection. Therefore, the treatment of waste gas in the production process of nitrogen trifluoride is required to be both safe for production and environmentally friendly. HealdIn addition, safe, reliable, efficient and green production environment is always the target of chemical production process systems, and a waste gas treatment system can be arranged to be necessary for the nitrogen trifluoride production industry.
At present, the method for preparing nitrogen trifluoride is widely used for electrolyzing fused salt of ammonium bifluoride and hydrogen fluoride, and the primary waste gas generated in the process mainly comprises multiple nitrogen fluorides, hydrogen fluoride, carbon dioxide, fluorodioxygen and the like, contains various types of acidic components, oxidizing components and the like, and has complex composition. The traditional scheme of absorbing alkali liquor can only effectively remove acid components, but cannot remove oxidizing substances such as fluorodioxygen and the like and polyfluorinated nitrogen. And only the absorption of alkali liquor is adopted, a large amount of waste fluorine-containing solids can be generated, and secondary pollution is easy to cause. None of the patents and literature published at present have been examined on the treatment process of exhaust gas in the production process of nitrogen trifluoride.
SUMMERY OF THE UTILITY MODEL
To above problem, the utility model provides a waste gas treatment system in nitrogen trifluoride preparation process, organic combination through each processing unit, produced waste gas passes through the schizolysis tower in proper order in the nitrogen trifluoride preparation process, the cooler, the buffer tower, the washing tower, the reduction tower, the alkaline washing tower is handled one by one, thereby can effectively get rid of acidity wherein, oxidability and thermal instability harmful component, obtain the industrial waste gas who accords with emission standard, reduce because of the produced incident of nitrogen trifluoride waste gas, and the emission of waste gas has also accorded with green's requirement.
In order to solve the technical problem, the utility model discloses a realize like this:
a waste gas treatment system in a nitrogen trifluoride preparation process comprises a cracking tower, a cooler, a buffer tower, a water washing tower, a reduction tower, an alkaline washing tower and a regulating valve; the cracking tower is connected with a cooler through a pipeline; the cooler is connected with the buffer tower through a pipeline; the buffer tower is connected with the washing tower through a pipeline; the water washing tower is connected with a reduction tower flange through a pipeline; the reduction tower is connected with an alkaline washing tower flange through a pipeline;
the method comprises the following steps of firstly introducing original waste gas containing multi-fluorine nitrogen, hydrogen fluoride, carbon dioxide and fluorine dioxide components generated in the preparation process of nitrogen trifluoride into a cracking tower for cracking treatment, wherein the multi-fluorine nitrogen components can be heated and decomposed into fluorine gas and nitrogen gas;
the cooler removes hydrogen fluoride gas in the waste gas from the cracking tower by condensation by controlling the cooling temperature according to the difference of the boiling points of all components in the waste gas;
the buffer tower is used for buffering the waste gas from the cooler and stabilizing the pressure fluctuation inside the system;
the water washing tower is used for absorbing and removing water-soluble components such as hydrogen fluoride and fluorine in the waste gas from the buffer tower;
the reduction tower is used for absorbing and removing oxidizing components in the waste gas from the water washing tower through oxidation-reduction reaction;
the alkaline washing tower is used for removing acid components in the waste gas from the reduction tower through neutralization reaction, and finally obtaining the gas which meets the industrial gas emission standard and is directly discharged into the atmosphere.
Preferably, the cracking tower adopts a random packing tower, the random packing is made of stainless steel or nickel, the packing is Bohr ring or intalox saddle ring packing, and the heating mode is heating by covering an electric heating tile; the temperature control range of the cracking tower is 150-300 ℃.
Preferably, the cooler adopts a U-shaped tubular heat exchanger; the outlet temperature of the cooler is controlled within the range of-60 ℃ to-50 ℃.
Preferably, the buffer column volume is the same as the cracking column volume.
Preferably, the washing tower adopts a packing absorption tower, the absorption liquid is tap water or lime water, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing material is stainless steel.
Preferably, the reduction tower adopts a packing absorption tower, the volume of the reduction tower is the same as that of the water washing tower, the absorption liquid is sodium sulfite or sodium thiosulfate solution, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing is made of stainless steel.
Preferably, the alkaline washing tower adopts a filler absorption tower, the volume of the alkaline washing tower is the same as that of the water washing tower, the absorption liquid is potassium hydroxide or sodium hydroxide solution, the absorption mode is spray absorption, the filler adopts regular metal corrugated plate filler, and the filler is made of stainless steel.
Preferably, waste gas inlets of the water scrubber, the reduction tower and the alkaline washing tower are all tower bottoms, and waste gas introduced from the tower bottoms contacts with sprayed absorption liquid on the surface of the packing.
Has the advantages that:
technical scheme process is reasonable, convenient operation. Aiming at the characteristics of complex components and different properties of waste gas in the preparation process of nitrogen trifluoride, the scheme organically combines the treatment equipment unit, so that the treatment process is safe and stable, the operation cost is low, various harmful substances in the waste gas can be effectively removed, and the emission standard of industrial gas is reached.
Drawings
FIG. 1 is a schematic diagram of an exhaust gas treatment system and a treatment method in a nitrogen trifluoride production process.
In the figure: 101. a cracking tower; 102. a cooler; 103. a buffer tower; 104. washing the tower with water; 105. a reduction tower; 106. an alkaline washing tower; 107-111, regulating valve.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings by way of examples.
As shown in the figure 1, the system comprises a cracking tower 101, a cooler 102, a buffer tower 103, a water washing tower 104, a reduction tower 105, an alkaline washing tower 106 and regulating valves 107-111. The cracking tower 101 is connected with a cooler 102 through a pipeline connected with a first regulating valve 107; the cooler 102 is connected with the buffer tower 103 through a pipeline connected with a second regulating valve 108; the buffer tower 103 is in flange connection with the water washing tower 104 through a pipeline connected with a third regulating valve 109; the water washing tower 104 is in flange connection with a reduction tower 105 through a pipeline connected with a fourth regulating valve 110; the reduction tower 105 is flanged with the caustic tower 106 through a pipeline connected with a fifth regulating valve 111.
Further optimizing the technical scheme, the cracking tower 101 adopts a random packing tower, the random packing is made of stainless steel or nickel, the packing is Bohr ring or intalox saddle ring packing, and the heating mode is heating by covering an electric heating tile. The cooler 102 is a U-tube heat exchanger. The buffer column 103 has the same volume as the cracking column 101. The washing tower 104 adopts a packing absorption tower, the absorption liquid is tap water or lime water, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing material is stainless steel. The reduction tower 105 adopts a packing absorption tower, the volume of the reduction tower is the same as that of the washing tower 104, the absorption liquid is sodium sulfite or sodium thiosulfate solution, the absorption mode is spray absorption, the packing adopts regular corrugated metal plate packing, and the packing is made of stainless steel. The alkaline washing tower 106 adopts a packing absorption tower, the volume of the tower is the same as that of the water washing tower 104, the absorption liquid is potassium hydroxide or sodium hydroxide solution, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing is made of stainless steel. The volume of the equipment is the same, the flow rate fluctuation of the gas in the system is smaller, and the system runs more stably.
The waste gas in the preparation process of nitrogen trifluoride mainly comprises components such as multi-fluorinated nitrogen, hydrogen fluoride, carbon dioxide, fluorodioxy, nitrogen, oxygen and the like. The waste gas sequentially enters a cracking tower 101, a cooler 102, a buffer tower 103, a water washing tower 104, a reduction tower 105 and a caustic washing tower 106 for treatment. Wherein the content of the first and second substances,
the cracking tower 101 is responsible for the cracking process: the method comprises the following steps of introducing original waste gas generated in the nitrogen trifluoride preparation process into a cracking tower 101 for cracking treatment, wherein the temperature control range of the cracking tower is (150-300) DEG C, and the aim of the step is to remove dangerous components, namely multi-fluorinated nitrogen, in the waste gas firstly. The component has thermal instability, can be cracked into fluorine gas and nitrogen gas by heating to a certain temperature, and the fluorine gas can be absorbed and removed in the subsequent process to obtain the waste gas A.
The cooler 102 is responsible for the cooling process: and (2) introducing the waste gas A obtained through cracking treatment into a cooler 102 along a pipeline for cooling treatment, wherein the outlet temperature of the cooler is controlled within the range of (-60 to-50) DEG C, and according to different boiling points of the components, Hydrogen Fluoride (HF) with a higher boiling point is removed through condensation to obtain a waste gas B, so that the subsequent alkali liquor treatment capacity and the generation of fluorine-containing waste solids can be obviously reduced.
The buffer tower 103 is responsible for the buffering treatment: waste gas B obtained through cooling treatment is introduced into the buffer tower 103 along the pipeline for buffer treatment, the pressure fluctuation inside the buffer treatment system avoids subsequent water solution liquid return through the volumetric setting, the condensation effect of the cooler is influenced, and waste gas C is obtained.
The water washing tower 104 is responsible for water washing treatment: the waste gas C obtained after the buffering treatment is introduced into the water washing tower 104 from the bottom along a pipeline and contacts with the sprayed absorption liquid on the surface of the packing, and the residual components which are easy to dissolve in water, such as hydrogen fluoride, fluorine gas and the like, can be absorbed and removed, so that the waste gas D is obtained.
The reduction column 105 is responsible for the reduction treatment: and introducing the waste gas D obtained through the water washing treatment into the reduction tower 105 from the tower bottom along a pipeline, and contacting the waste gas D with a sprayed sodium sulfite or sodium thiosulfate absorption liquid on the surface of a filler, wherein oxidizing components such as fluorodioxygen in the waste gas and the like are absorbed and removed by oxidation-reduction reaction with the reducing solution due to the strong reducibility of the absorption liquid, so as to obtain the waste gas E.
The caustic tower 106 is responsible for caustic washing treatment: and introducing the waste gas E obtained through reduction treatment into an alkaline washing tower 106 from the tower bottom along a pipeline, contacting with a sprayed sodium hydroxide or potassium hydroxide absorption liquid on the surface of a filler, carrying out neutralization reaction on the alkaline solution and acidic components such as carbon dioxide and hydrogen fluoride in the alkaline solution to remove the components, and finally obtaining gas meeting the industrial gas emission standard and directly discharging the gas into the atmosphere. The pollution factor fluoride in the discharged gas meets the emission limit value (6 mg/m) in GB31573-2015 discharge Standard for pollutants for inorganic chemical industry3) And (4) requiring.
The utility model treats the waste gas generated by preparing nitrogen trifluoride one by one through the cracking tower, the cooler, the buffer tower, the water scrubber, the reduction tower and the alkaline washing tower in sequence; aiming at the characteristics of complex components and different properties of waste gas in the preparation process of nitrogen trifluoride, the scheme organically combines the treatment equipment unit, so that the treatment process is safe and stable, the operation cost is low, various harmful substances in the waste gas can be effectively removed, the industrial gas emission standard is reached, the safety accident caused by the waste gas of nitrogen trifluoride is avoided, and the emission of the waste gas also meets the green and environment-friendly standard.
Example 1
The cracking tower 101 is filled with nickel pall ring random packing, and the temperature control range of the cracking tower is (220-250) DEG C. Introducing all the waste gas into a cracking tower 101 for cracking treatment, and cracking at the temperature of 220-250 ℃ to remove a nitrogen polyfluoride component to obtain waste gas A;
the outlet temperature of the cooler 102 is controlled within (-55 +/-2) DEG C. Introducing the waste gas A obtained through cracking treatment into a cooler 102 along a pipeline and a first regulating valve 107 for cooling treatment, and removing a hydrogen fluoride component in the waste gas A under the action of cooling temperature (-55 +/-2) DEG C to obtain waste gas B;
for the buffer tower 103, the waste gas B obtained after cooling treatment is introduced into the buffer tower 103 along a pipeline and a second regulating valve 108 to obtain waste gas C;
the water washing tower 104 is filled with 316L metal corrugated plate regular packing, and tap water is used as absorption liquid. Introducing the waste gas C obtained through the buffering treatment into the water washing tower 104 from the bottom of the tower along a pipeline and a third regulating valve 109, contacting with the sprayed absorption liquid on the surface of the filler, and absorbing the components which are easily dissolved in water, such as hydrogen fluoride, fluorine gas and the like in the waste gas C by the absorption liquid to obtain a waste gas D;
the reduction tower 105 is filled with 316L metal corrugated plate structured packing, and the absorption liquid adopts sodium sulfite solution. Introducing the waste gas D obtained through the water washing treatment into the reduction tower 105 from the tower bottom along a pipeline and a fourth regulating valve 110, contacting with the sprayed absorption liquid on the surface of the filler, and removing oxidizing components such as fluorine dioxide and the like in the waste gas D by the absorption liquid to obtain waste gas E;
the caustic tower 106 is filled with 316L metal corrugated plate structured packing, and the absorption liquid adopts sodium hydroxide solution. Waste gas E obtained through reduction treatment is introduced into the alkaline washing tower 106 from the tower bottom along a pipeline and a fifth regulating valve 111, and is in contact with sprayed absorption liquid on the surface of a filler to remove acidic components such as carbon dioxide, hydrogen fluoride and the like in the waste gas E, and finally, the waste gas E is directly discharged to the atmospheric environment, and pollution factors fluoride in the discharged gas conform to GB31573-2015 inorganic chemistry industryEmission limit value (6 mg/m) in trade pollutant emission Standard3) And (4) requiring.
Example 2
The cracking tower 101 is filled with nickel pall ring random packing, and the temperature control range of the cracking tower is 230-260 ℃. Introducing all the waste gas into a cracking tower 101 for cracking treatment, and cracking at the temperature of 230-260 ℃ to remove a nitrogen polyfluoride component to obtain waste gas A;
the outlet temperature of the cooler 102 is controlled within a range of (-58 +/-2) DEG C. Introducing the waste gas A obtained through cracking treatment into a cooler 102 along a pipeline and a first regulating valve 107 for cooling treatment, and removing a hydrogen fluoride component in the waste gas A under the action of cooling temperature (-58 +/-2) DEG C to obtain waste gas B;
for the buffer tower 103, the waste gas B obtained after cooling treatment is introduced into the buffer tower 103 along a pipeline and a second regulating valve 108 to obtain waste gas C;
the washing tower 104 is filled with 316L metal corrugated plate regular packing, and the absorption liquid adopts lime water. Introducing the waste gas C obtained through the buffering treatment into the water washing tower 104 from the bottom of the tower along a pipeline and a third regulating valve 109, contacting with the sprayed absorption liquid on the surface of the filler, and absorbing the components which are easily dissolved in water, such as hydrogen fluoride, fluorine gas and the like in the waste gas C by the absorption liquid to obtain a waste gas D;
the reduction tower 105 is filled with 316L metal corrugated plate regular packing, and the absorption liquid adopts sodium thiosulfate solution. Introducing the waste gas D obtained through the water washing treatment into the reduction tower 105 from the tower bottom along a pipeline and a fourth regulating valve 110, contacting with the sprayed absorption liquid on the surface of the filler, and removing oxidizing components such as fluorine dioxide and the like in the waste gas D by the absorption liquid to obtain waste gas E;
the caustic tower 106 is filled with 316L metal corrugated plate structured packing, and the absorption liquid adopts potassium hydroxide solution. The waste gas E obtained after reduction treatment is introduced into the alkaline washing tower 106 from the tower bottom along a pipeline and a fifth regulating valve 111, and is contacted with the sprayed absorption liquid on the surface of the filler to remove acidic components such as carbon dioxide, hydrogen fluoride and the like in the waste gas E, and finally, the acidic components are directly discharged to the atmospheric environment, and the pollution factor fluoride in the discharged gas meets the emission limit value (6 mg/m) in GB31573-2015 inorganic chemical industry pollutant emission Standard3) And (4) requiring.
In summary, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (8)

1. An exhaust gas treatment system in a nitrogen trifluoride preparation process, characterized in that: comprises a cracking tower (101), a cooler (102), a buffer tower (103), a water washing tower (104), a reduction tower (105), an alkaline washing tower (106) and a regulating valve (107); the cracking tower (101) is connected with a cooler (102) through a pipeline; the cooler (102) is connected with the buffer tower (103) through a pipeline; the buffer tower (103) is connected with the water washing tower (104) through a pipeline; the water washing tower (104) is connected with a reduction tower (105) through a pipeline in a flange mode; the reduction tower (105) is connected with an alkaline washing tower (106) through a pipeline by a flange;
raw waste gas containing multi-nitrogen fluoride, hydrogen fluoride, carbon dioxide and fluorodioxygen components generated in the preparation process of nitrogen trifluoride is firstly introduced into the cracking tower (101) for cracking treatment, and the multi-nitrogen fluoride components can be decomposed into fluorine gas and nitrogen gas by heating;
the cooler (102) utilizes the difference of the boiling points of all components in the waste gas to remove the hydrogen fluoride gas in the waste gas from the cracking tower (101) by condensation through controlling the cooling temperature;
the buffer tower (103) is used for buffering the waste gas from the cooler (102) and stabilizing the pressure fluctuation inside the system;
the water washing tower (104) is used for absorbing and removing water-soluble components such as hydrogen fluoride and fluorine gas in the waste gas from the buffer tower (103);
the reduction tower (105) is used for removing oxidizing components in the waste gas from the water washing tower (104) through oxidation-reduction reaction absorption;
the alkaline washing tower (106) is used for removing acid components in the waste gas from the reduction tower (105) through neutralization reaction, and finally obtaining the gas which meets the industrial gas emission standard and is directly discharged into the atmosphere.
2. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the cracking tower (101) adopts a random packing tower, the random packing is made of stainless steel or nickel, the packing is Bohr ring or intalox saddle ring packing, and the heating mode is heating by covering an electric heating tile; the temperature control range of the cracking tower is 150-300 ℃.
3. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the cooler (102) adopts a U-shaped tubular heat exchanger; the outlet temperature of the cooler (102) is controlled within the range of-60 ℃ to-50 ℃.
4. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the volume of the buffer tower (103) is the same as that of the cracking tower (101).
5. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the washing tower (104) adopts a packing absorption tower, the absorption liquid is tap water or lime water, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing material is stainless steel.
6. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the reduction tower (105) adopts a packing absorption tower, the volume of the reduction tower (105) is the same as that of the water washing tower (104), the absorption liquid is sodium sulfite or sodium thiosulfate solution, the absorption mode is spray absorption, the packing adopts regular corrugated metal plate packing, and the packing material is stainless steel.
7. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: the alkaline washing tower (106) adopts a packing absorption tower, the volume of the alkaline washing tower (106) is the same as that of the water washing tower (104), the absorption liquid is potassium hydroxide or sodium hydroxide solution, the absorption mode is spray absorption, the packing adopts regular metal corrugated plate packing, and the packing is made of stainless steel.
8. The system for treating exhaust gas from a nitrogen trifluoride production process according to claim 1, wherein: waste gas inlets of the water scrubber (104), the reduction tower (105) and the alkaline scrubber (106) are all tower bottoms, and waste gas introduced from the tower bottoms is contacted with sprayed absorption liquid on the surface of the packing.
CN202021023994.6U 2020-06-05 2020-06-05 Waste gas treatment system in nitrogen trifluoride preparation process Active CN213132610U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021023994.6U CN213132610U (en) 2020-06-05 2020-06-05 Waste gas treatment system in nitrogen trifluoride preparation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021023994.6U CN213132610U (en) 2020-06-05 2020-06-05 Waste gas treatment system in nitrogen trifluoride preparation process

Publications (1)

Publication Number Publication Date
CN213132610U true CN213132610U (en) 2021-05-07

Family

ID=75724494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021023994.6U Active CN213132610U (en) 2020-06-05 2020-06-05 Waste gas treatment system in nitrogen trifluoride preparation process

Country Status (1)

Country Link
CN (1) CN213132610U (en)

Similar Documents

Publication Publication Date Title
CN112742158B (en) Hydrogen fluoride waste gas treatment system and method in nitrogen trifluoride electrolysis preparation process
CN103292332B (en) A kind of fluorine-containing organic liquid waste, waste gas negative pressure burning processing system and method
US20050249643A1 (en) Apparatus and process for the abatement of semiconductor manufacturing effluents containing fluorine gas
CN104548902B (en) Acetylene gas purifier and technique thereof
KR101699217B1 (en) Perfluoride decomposition treatment method and treatment device
CN213132610U (en) Waste gas treatment system in nitrogen trifluoride preparation process
CN204502750U (en) A kind of acetylene gas purifier
CN106853328A (en) A kind of hydrogen peroxide Efficient utilization method and device for low-temperature flue gas desulphurization denitration
CN212222462U (en) System for treating waste catalyst and residual liquid in refrigerant production
CN107008133B (en) Comprehensive treatment device for waste gas and waste water in benzyl alcohol production
CN214486355U (en) Fluorine-containing tail gas treatment device
CN112546803A (en) Treatment system and method for cathode tail gas of nitrogen trifluoride electrolytic cell
CN108458344B (en) Pretreatment equipment and treatment method of antimony pentachloride waste catalyst
CN211169845U (en) Pickling waste liquid treatment system and recovery plant
CN210645852U (en) High-temperature pyrolysis gas disposal device
CN113233422A (en) Method and system for separating SiF4 and HF mixed gas
CN218047240U (en) Automatic processing equipment of nitrogen trifluoride batch distillation tower tail gas
CN203336601U (en) Negative-pressure burning processing system for fluorine containing organic waste liquid and exhaust gas
CN107008107B (en) Comprehensive treatment method and treatment device for waste gas in benzyl alcohol production
CN218864213U (en) Graphite quench tower for high-chlorine-content hazardous waste incineration
CN216418888U (en) Chemical industry is tertiary spray set for tail gas treatment
CN215027407U (en) Processing system of nitrogen trifluoride electrolysis trough cathode tail gas
CN111111384B (en) Hydrochloric acid regeneration exhaust system
CN105498272A (en) Hydrogen fluoride recycling and treatment device for electrolytic fluorine production cathode tail gas
CN214114962U (en) Device for reducing dilute acid wastewater generated by waste acid regenerating device

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 057550 No. five Weir Road, chemical industry gathering area, Feixiang District, Handan, Hebei, 1

Patentee after: China shipbuilding (Handan) Perry Special Gas Co.,Ltd.

Address before: No.1 Weiwu Road, chemical industry gathering area, Feixiang County, Handan City, Hebei Province

Patentee before: PERIC SPECIAL GASES Co.,Ltd.

CP03 Change of name, title or address