CN212759515U - 超声换能器、信息采集元件及电子设备 - Google Patents

超声换能器、信息采集元件及电子设备 Download PDF

Info

Publication number
CN212759515U
CN212759515U CN202020679010.3U CN202020679010U CN212759515U CN 212759515 U CN212759515 U CN 212759515U CN 202020679010 U CN202020679010 U CN 202020679010U CN 212759515 U CN212759515 U CN 212759515U
Authority
CN
China
Prior art keywords
layer
ultrasonic transducer
electrode layer
upper electrode
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020679010.3U
Other languages
English (en)
Inventor
纪登鑫
王红超
沈健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Priority to CN202020679010.3U priority Critical patent/CN212759515U/zh
Application granted granted Critical
Publication of CN212759515U publication Critical patent/CN212759515U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

本申请实施例提供了一种超声换能器、信息采集元件及电子设备,超声换能器包括:振膜层、固定支撑层、可变支撑层以及衬底;所述固定支撑层与所述振膜层固定连接,用于支撑所述振膜层;所述可变支撑层设置于所述衬底与所述振膜层之间,所述可变支撑层与所述振膜层接触时,以提供第一频率;所述可变支撑层与所述振膜层分开时,以提供第二频率。超声换能器能实现有多个不同的工作频率,提高了发射信号的能量以及接收信号的灵敏度。

Description

超声换能器、信息采集元件及电子设备
技术领域
本申请涉及电子信息技术领域,特别涉及一种超声换能器、信息采集元件及电子设备。
背景技术
超声换能器是将声能和电能互相转换的器件,超声换能器中的压电材料,在发生形变时两端可以产生电压差;在两端有电压差时,压电材料可以发生形变。利用压电材料的这种特性,可以实现机械振动和交流电的互相转换。
但是,传统的超声换能器体积较大,不能在一些便携式的移动终端上使用,随着微制造技术的发展,基于微机电系统(英文:Micro Electro Mechanical System,MEMS)技术的微加工超声换能器(英文:Micromachined Ultrasonic Transducer,MUT)在满足一定性能要求的基础上,减小了体积,但是,微加工超声换能器因为体积变小,与传统超声换能器相比,灵敏度较低。
不仅如此,发明人发现,对于超声换能器,在有些应用场合下,单一的工作频率是不能满足需求的,例如,对于有防伪要求的指纹系统,需要获取更多的生体特征,对于超声波,频率越高,波长越短,穿透能力越弱,但是分辨率越高,又需要有较高的工作频率,为了能够在识别指纹的同时提高穿透深度,单一的工作频率无法满足需求。
实用新型内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种超声换能器、信息采集元件及电子设备,用以克服现有技术中超声换能器灵敏度较低以及只能提供单一频率的缺陷。
第一方面,本申请实施例提供了一种超声换能器,包括:振膜层、固定支撑层、可变支撑层以及衬底;所述固定支撑层与所述振膜层固定连接,用于支撑所述振膜层;所述可变支撑层设置于所述衬底与所述振膜层之间,所述可变支撑层与所述振膜层接触时,以提供第一频率;所述可变支撑层与所述振膜层分开时,以提供第二频率。
可选地,所述振膜层依次包括第一上电极层、第一压电层、第一下电极层以及第一薄膜层;所述固定支撑层上表面与所述第一薄膜层固定连接;所述固定支撑层下表面与所述衬底固定连接。
可选地,所述可变支撑层包括:第二下电极层,其设置在所述衬底上;第二压电层,其设置在所述第二下电极层上;第二上电极层,其设置在所述第二压电层上,且与所述第一薄膜层之间形成间隙,以使所述第二上电极层与所述第一薄膜层接触或分开;当所述第二上电极层与所述薄膜层通电时,所述第二上电极层与所述第一薄膜层接触,提供所述第一频率,所述第二上电极与所述第一薄膜层分开,提供所述第二频率。
可选地,所述第一薄膜层、衬底与所述固定支撑层围合形成第一空腔,所述可变支撑层位于所述第一空腔内。
可选地,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第二空腔。
可选地,所述第一上电极层在所述衬底上的投影位于所述第二空腔内。
可选地,所述可变支撑层包括:第三支撑层,其设置在所述衬底上,第三下电极层,其设置在所述第三支撑层上;第三上电极层,其设置在所述第一薄膜层下,且与所述第三下电极层之间形成间隙;当所述第三上电极层与所述第三下电极层通电时,所述第三上电极层与所述第三下电极层接触,以提供所述第一频率,所述第三上电极与所述第三下电极层分开,以提供所述第二频率。
可选地,所述第一薄膜层、衬底与所述固定支撑层围合形成第一空腔。
可选地,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第二空腔。
可选地,所述第一上电极层在所述衬底上的投影位于所述第二空腔内。
可选地,所述可变支撑层与所述固定支撑层间隔设置,且位于所述第一空腔的中心。
可选地,所述超声换能器包括多个间隔设置在所述第一空腔内的可变支撑层。
可选地,所述振膜层包括第四上电极层和设置在所述第四上电极层下方的第四薄膜层;所述超声换能器还包括第四绝缘层和第四下电极层;所述第四下电极层设置在所述衬底上;所述第四绝缘层设置在所述第四下电极层上;所述固定支撑层上表面与所述第四薄膜层固定连接,所述固定支撑层下表面与与所述第四绝缘层或第四下电极层或衬底层之间。
可选地,所述可变支撑层包括:第五下电极层,其设置在所述第四绝缘层上;第五压电层,其设置在所述第五下电极层上;第五上电极层,共设置在所述第五压电层上,且与所述第四薄膜层之间形成间隙,以使所述第五上电极层与所述第四膜层接触或分开;当所述第五上电极层与所述第四薄膜层通电时,所述第五上电极层与所述第四薄膜层接触,提供所述第一频率,所述第五上电极与所述第四薄膜层分开,提供所述第二频率。
可选地,所述第四薄膜层、第四绝缘层与所述固定支撑层围合形成第三空腔,所述可变支撑层位于所述第三空腔内。
可选地,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第四空腔。
可选地,所述第四上电极层在所述第四绝缘层上的投影位于所述第四空腔内。
可选地,所述可变支撑层包括:第六支撑层,其设置在所述第四绝缘层上;第六下电极层,其设置在所述第六支撑层上;第六上电极层,其设置在所述第四薄膜层上,且与所述第六下电极之间形成间隙;当所述第六上电极层与所述第六下电极层通电时,所述第六上电极层与所述第六下电极层接触,以提供所述第一频率,所述第六上电极与所述第六下电极层分开,以提供所述第二频率。
可选地,所述第四薄膜层、第四绝缘层与所述固定支撑层围合形成第三空腔。
可选地,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成第四空腔。
可选地,所述第四上电极层在所述第四绝缘层上的投影位于所述第四空腔内。
可选地,所述可变支撑层与所述固定支撑层间隔设置,且位于所述第三空腔的中心。
可选地,所述超声换能器包括多个间隔设置在所述第三空腔内的可变支撑层。
可选地,所述可变支撑层为磁致伸缩层材料。
可选地,所述超声换能器还包括线圈,其设置在所述振膜层上;所述可变支撑层与所述振膜层之间形成间隙;当所述线圈通电时,所述可变支撑层与所述振膜层接触,以提供所述第一频率,或者所述可变支撑层与所述振膜层分开,以提供所述第二频率。
可选地,所述可变支撑层为可支撑材料。
可选地,所述超声换能器还包括线圈以及刚体磁性薄膜,所述线圈设置在所述振膜层上;所述刚体磁性薄膜设置在振膜层内;所述可变支撑层与所述振膜层之间形成间隙;当所述线圈通电时,所述刚体磁性薄膜使所述振膜层振动,所述可变支撑层与所述振膜层接触,以提供所述第一频率,或者所述可变支撑层与所述振膜层分开,以提供所述第二频率。
可选地,所述第一上电极层的面积为所述第一空腔横截面积的0.5倍、0.6倍或者0.7倍。
可选地,所述第四上电极层的面积为所述第三空腔横截面积的0.5倍、0.6倍或者0.7倍。
第二方面,本申请实施例提供一种信息采集元件,包括如第一方面或第一方面的任意一个实施例中所描述的超声换能器。
可选地,在本申请的一个实施例中,信息采集元件为麦克风、超声雷达、超声成像装置、超声指纹采集装置或接近传感器。
第三方面,本申请实施例提供一种电子设备,包括如第一方面或第一方面的任意一个实施例中所描述的超声换能器。
可选地,在本申请的一个实施例中,电子设备包括超声换能器阵列,超声换能器阵列是由至少两个如第一方面或第一方面的任意一个实施例中所描述的超声换能器组成的阵列。
本申请实施例提供的超声换能器、信息采集元件及电子设备,通过改变可变支撑层的高度,实现可变支撑层与振膜层接触和分开,超声换能器能实现有多个不同的工作频率,提高了发射信号的能量以及接收信号的灵敏度。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请第一实施例提供的一种超声换能器的纵截面示意图;
图2为本申请第二实施例提供的一种超声换能器的纵截面示意图;
图3为本申请第三实施例提供的一种超声换能器的纵截面示意图;
图4为本申请第四实施例提供的一种超声换能器的纵截面示意图;
图5为本申请第五实施例提供的一种超声换能器的纵截面示意图;
图6为本申请第六实施例提供的一种超声换能器的纵截面示意图;
图7为本申请另一实施例提供的一种超声换能器的纵截面示意图;
图8为本申请另一实施例提供的一种超声换能器的纵截面示意图;
图9为本申请另一实施例提供的一种超声换能器的纵截面示意图;
图10为本申请另一实施例提供的一种超声换能器的纵截面示意图;
图11为本申请实施例提供的一种超声换能器的俯视图;
图12为本申请实施例提供的分形设计的超声换能器的纵截面示意图;
图13为本申请实施例提供的分形设计的超声换能器的俯视图;
图14为本申请实施例提供的一种超声指纹采集的示意图;
图15为本申请实施例提供的一种接近传感器的纵截面示意图;
图16为本申请实施例提供的一种电子设备的结构图。
具体实施方式
本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
本申请提供一种超声换能器,包括:振膜层、固定支撑层、可变支撑层以及衬底;所述固定支撑层设置在所述衬底上,且与所述振膜层固定连接,用于支撑所述振膜层。所述可变支撑层设置于所述衬底与所述振膜层之间,所述可变支撑层与所述振膜层接触时,以提供第一频率,所述可变支撑层与所述振膜层分开时,以提供第二频率。本申请方案结构简单,在不影响空间分辨率的基础上,实现超声换能器在多工作频率下发射和接收信号,并提高了发射信号的能量以及接收信号的灵敏度。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
图1为本申请第一实施例提供的一种超声换能器的纵截面示意图。本申请实施例的可变支撑层应用于压电式MEMS超声波换能器,以1个可变支撑层为例进行说明,如图1所示,该超声换能器100包括:振膜层10,固定支撑层11,衬底13和可变支撑层12。
其中,振膜层10依次包括第一上电极层101,第一压电层102,第一下电极层103以及第一薄膜层104。固定支撑层11的上表面与第一薄膜层104固定连接,固定支撑层11的下表面与衬底13固定连接。所述第一薄膜层104、衬底13与所述固定支撑层11围合形成第一空腔111。固定支撑层12的高度为第一空腔111的高度。
所述可变支撑层12位于所述第一空腔111内,且设置在所述固定支撑层11的内侧面,所述可变支撑层12围合形成一个第二空腔112。可变支撑层12的高度小于固定支撑层11的高度。可变支撑层12包括第二上电极层121,第二压电层122以及第二下电极123。第二下电极层123设置在衬底13上,第二压电层122设置在第二下电极层123上,第二上电极层 121设置在第二压电层122上,且第二上电极层121与第一薄膜层104之间形成间隙,以使在通电情况下第二上电极层121与第一薄膜层104接触或分开。当所述第二上电极层121与所述薄膜层104通电时,所述第二上电极层121与所述第一薄膜层104接触,以提供所述第一频率,所述第二上电极121与所述第一薄膜层104分开,以提供一个不同所述第一工作频率的所述第二频率。
在本实施例中,所述第一上电极层101在所述衬底上13的投影位于所述第二空腔112 内,可以提高发射信号的能量和接收信号的灵敏度。第一压电层102和第二压电层122由压电材料制成,第一薄膜层104的材料可是硅、氧化硅或者氮化硅等材料,或者也可以是它们的叠层。在另一种实施例的情况下,第一薄膜层104的材料也可以是电极材料,此时可以省去第二上电极层121,第一薄膜层104可以充当第二上电极层121使用。超声换能器100的各叠层结构可以是平面薄膜,也可以是预弯曲薄膜。超声换能器100的工作频率与空腔横截面积成反比,第一薄膜层104与可变支撑层12分开时,空腔横截面积为第一空腔111横截面积,此时为超声换能器100提供低频;第一薄膜层104与可变支撑层12接触时,空腔横截面积为第二空腔112横截面积,此时为超声换能器100提供高频。第一上电极层101的横截面积为此时第一空腔111横截面积的0.5倍、0.6倍或者0.7倍,这样设置能够进一步提高发射信号的能力和接收信号的灵敏度。当然,也可以牺牲部分性能而不这么设置。
本申请实施例的可变支撑层应用于压电式MEMS超声波换能器,为超声换能器提供了两个不同的工作频率,例如将所述超声换能器100应用于光学指纹识别装置时,可根据光学指纹识别装置在指纹识别与防伪时分别对工作频率的不同需求,提供不同的工作频率。当进行指纹识别时,为所述超声换能器100需要提供高频工作频率,当进行指纹防伪时,由于需要使超声波能穿过手指,获得其他活体信号,此时,需要所述超声换能器100提供低频信号。即本申请实施例提供的所述超声换能器100能满足光学指纹对于高频和低频的需求。
本申请提供的所述超声换能器100,方案结构简单,在不影响空间分辨率的基础上,实现超声换能器既能在低频下发射或接收信号,又能在高频下发射和接收信号,提高了发射信号的能量以及接收信号的灵敏度。
图2为本申请第二实施例提供的一种超声换能器的纵截面示意图。本申请实施例的可变支撑层应用于压电式MEMS超声波换能器,与上述第一实施例不同之处在于,提供了另一种不同的可变支撑层结构。相同之处本申请实施例不再详细描述。可变支撑层22包括第三上电极层221,第三下电极222、第三绝缘层(附图未示出)以及第三支撑层223。第三绝缘层位于第三上电极层221的下表面或者第三绝缘层位于第三下电极层222的上表面。第三支撑层223由可支撑材料制成,例如可以是非金属材料,也可以是金属材料。第三支撑层223设置在所述衬底13上,第三下电极层222设置在第三支撑层223的上方,第三上电极层221设置在第一薄膜层104的下方且与第三下电极层222之间形成间隙;当所述第三上电极层221与所述第三下电极层222通电时,所述第三上电极层221与第三下电极层222接触,以提供第一工作频率,所述第三上电极221与所述第三下电极层222分开时,以提供第二工作频率。本申请实施例中,可变支撑层22与振膜层10接触或分开指的是第三上电极层221和第三下电极层222接触或分开。具体的,第三上电极层221和第三下电极层222分开时,为超声换能器100提供低频;第三上电极层221和第三下电极层222接触时,为超声换能器 100提供高频。在另一种实施例的情况下,第一薄膜层104的材料也可以是电极材料,此时可以省去第三上电极层221,第一薄膜层104可以充当第三上电极层221使用。本申请方案结构简单,在不影响空间分辨率的基础上,实现超声换能器100在低频和高频下发射和接收信号,提高了发射信号的能量以及接收信号的灵敏度。
图3为本申请第三实施例提供的一种超声换能器的纵截面示意图。本申请实施例的可变支撑层应用于压电式MEMS超声波换能器,与上述第一实施例不同之处在于,提供了另一种不同的可变支撑层的设置位置,相同之处本申请实施例不再详细描述。可变支撑层12与固定支撑层11间隔设置,且位于所述第一空腔111的中心。所述第一上电极层101在所述衬底13上的投影位于所述第一空腔111内且位于可变支撑层12与固定支撑层11间隔之间。
在另一种实施例中,图3中的可变支撑层12的结构可以换作图2中的可支撑层22的结构。
图4为本申请第四实施例提供的一种超声换能器的纵截面示意图。本申请实施例的可变支撑层应用于压电式MEMS超声波换能器,与上述第一实施例不同之处在于,本申请实施例提供了多个间隔设置在第一空腔111内的可变支撑层12。超声换能器100可以实现多个不同的频率,至少一个所述可变支撑层12的第二上电极层121和所述第一薄膜层104接触或分开。例如,当可变支撑层12设置为N(N>2)个的时候,超声换能器100可以有N+1个不同的频率。根据对多个频率的不同需求,可以设置不同数目的可变支撑层12。如图4所示,以设置3个可变支撑层12为例,超声换能器100可以实现4种不同的频率。本申请方案结构简单,在不影响空间分辨率的基础上,为超声换能器100提供多种不同频率,提高了发射信号的能量以及接收信号的灵敏度。
在另一种实施例中,图4中的可变支撑层12的结构可以换作图2中的可支撑层22的结构。
图5为本申请第五实施例提供的一种超声换能器的纵截面示意图;本申请实施例的可变支撑层应用于电容式MEMS超声波换能器,以1个可变支撑层为例进行说明,如图5所示,该超声换能器100包括:振膜层、可变支撑层52、固定支撑层51、第四绝缘层54、第四下电极层55以及衬底53。其中振膜层包括第四上电极层501和设置在所述第四上电极层501 下方的第四薄膜层504。固定支撑层51的上表面与第四薄膜层504固定连接,固定支撑层 51的下表面与第四绝缘层54固定连接。可变支撑层52的高度小于固定支撑层51的高度,固定支撑层51的高度为第三空腔211的高度。可变支撑层51包括第五上电极层521,第五压电层522以及第五下电极523。第五上电极层521和第五下电极层523分别固定于第五支撑层522的上方和下方。第五下电极层523设置在第四绝缘层54上,第五压电层522设置在第五下电极层523上,第五上电极层521设置在第五压电层522上,且第五上电极层521 与第四薄膜层504之间形成间隙,以使在通电情况下第五上电极层521与第四薄膜层504接触或分开。当所述第五上电极层521与所述第四薄膜层504通电时,所述第五上电极层521 与所述第四薄膜层504接触,提供所述第一频率,所述第五上电极521与所述第四薄膜层 504分开,提供所述第二频率。所述第四薄膜层504、第四绝缘层54与所述固定支撑层51 围合形成第三空腔211,所述可变支撑层52位于所述第三空腔211内。所述可变支撑层52 设置在所述固定支撑层51的内侧面,且所述可变支撑层52围合形成一个第四空腔212。所述第五上电极层521在所述第四绝缘层54的投影位于所述第四空腔212内,可以提高发射信号的能量和接收信号的灵敏度。第五压电层522由压电材料制成,第四薄膜层504的材料可是硅、氧化硅或者氮化硅等材料,或者也可以是它们的叠层。在另一种实施例的情况下,第四薄膜层504的材料也可以是电极材料,此时可以省去第五上电极层521,第四薄膜层504 可以充当第五上电极层521使用。超声换能器100的各叠层结构可以是平面薄膜,也可以是预弯曲薄膜。超声换能器100的工作频率与空腔面积成反比,第四薄膜层504与可变支撑层 52分开时,空腔面积为第三空腔211面积,此时为超声换能器100提供低频;第四薄膜层 504与可变支撑层52接触时,空腔面积为第四空腔212面积,此时为超声换能器100提供高频。第四上电极层501的面积为此时第三空腔211横截面积的0.5倍、0.6倍或者0.7倍,这样设置能够进一步提高发射信号的能力和接收信号的灵敏度。当然,也可以牺牲部分性能而不这么设置。
在另一种实施例中,图5中的可变支撑层52和第四上电极层501的设置位置类似于图 3可变支撑层12和第一上电极层101的位置放置,可变支撑层52与固定支撑层51间隔设置,且位于所述第三空腔211的中心。所述第一上电极层501在所述第四绝缘层54上的投影位于所述第三空腔211内且位于可变支撑层52与固定支撑层51间隔之间。
可以理解的是,所述可变支撑层52也不限于一个,也可以设置多个,例如,所述多个可变支撑层52间隔设置在第三空腔内的。在其他实施例中,所述第四绝缘层54也可以设置在所述第四下电极层55上且位于所述第三空腔内。换而言之,所述固定支撑层51的下表面与第三下电极层55固定连接。进一步地,所述第四绝缘层54与所述第四下电极层55也可以均位于所述第三空腔内,从而使得所得所述固定支撑层51的下表面与衬底53固定连接。
本申请实施例的可变支撑层应用于电容式MEMS超声波换能器,为超声换能器提供了两个不同的工作频率,例如将所述超声换能器100应用于光学指纹识别装置时,可根据光学指纹识别装置在指纹识别与防伪时分别对工作频率的不同需求,提供不同的工作频率。当进行指纹识别时,为所述超声换能器100需要提供高频工作频率,当进行指纹防伪时,由于需要使超声波能穿过手指,获得其他活体信号,此时,需要所述超声换能器100提供低频信号。即本申请实施例提供的所述超声换能器100能满足光学指纹对于高频和低频的需求。
本申请提供的所述超声换能器100,方案结构简单,在不影响空间分辨率的基础上,实现超声换能器既能在低频下发射或接收信号,又能在高频下发射和接收信号,提高了发射信号的能量以及接收信号的灵敏度。
图6为本申请第六实施例提供的一种超声换能器的纵截面示意图。本申请实施例的可变支撑层应用于电容式MEMS超声波换能器,与上述第五实施例不同之处在于,提供了另一种不同的可变支撑层结构。相同之处本申请实施例不再详细描述。可变支撑层62包括第六上电极层621,第六下电极622、第六绝缘层(附图未示出)以及第六支撑层623。第六绝缘层位于第六上电极层621的下表面或者第六绝缘层位于第六下电极层622的上表面。第六支撑层623由可支撑材料制成,例如可以是非金属材料,也可以是金属材料。第六支撑层623设置在所述衬底63上,第六下电极层622设置在第六支撑层623的上方,第六上电极层621设置在第四薄膜层504的下方且与第六下电极层622之间形成间隙;当所述第六上电极层621与所述第六下电极层622通电时,所述第六上电极层621与第六下电极层622接触,以提供第一工作频率,所述第六上电极621与所述第六下电极层622分开时,以提供第二工作频率。本申请实施例中可变支撑层52与振膜层接触或分开指的是第六上电极层621和第六下电极层622接触或分开。具体的,第六上电极层621和第六下电极层622分开时,为超声换能器100提供低频;第六上电极层621和第六下电极层622接触时,为超声换能器100 提供高频。在另一种实施例的情况下,第四薄膜层504的材料也可以是电极材料,此时可以省去第六上电极层621,第四薄膜层504可以充当第六上电极层621使用。本申请方案结构简单,在不影响空间分辨率的基础上,实现超声换能器100在低频和高频下发射和接收信号,提高了发射信号的能量以及接收信号的灵敏度。
在另一种实施例中,图6中的可变支撑层62和第四上电极层501的设置位置类似于图 3可变支撑层12和第一上电极层101的位置放置,可变支撑层52与固定支撑层51间隔设置,且位于所述第三空腔211的中心。所述第四上电极层501在所述第四绝缘层54上的投影位于所述第三空腔211内且位于可变支撑层62与固定支撑层51间隔之间。
在另一种实施例中,图5中的可变支撑层62的数目类似于图4可以设置多个,即多个可变支撑层62间隔设置在第三空腔211内的。
在另一种实施例中,如图7所示,固定支撑层51的下表面与第三下电极层55固定连接。
在另一种实施例中,如图8所示,固定支撑层51的下表面与衬底53固定连接。
在本申请的一个实施例中,可变支撑层的工作原理包含压电效应和静电效应,本申请不仅限于这两种,也可以通过其它方式改变可变支撑层高度或者使可变支撑层与振膜层吸合,例如电磁效应或磁致伸缩。
以磁致伸缩原理为例,请参考图9,本申请实施例以电容式MEMS超声波换能器为例进行说明,当然也可以应用于压电式MEMS超声波换能器。由于空腔内部空间有限,可以将线圈92放置在第四薄膜层504上方,其中可变支撑层91为磁致伸缩材料,例如,可以是Ni、NiFeCo合金、稀土超磁致伸缩材料等。可变支撑层91设置在第四绝缘层54上并且与第四绝缘层54固定连接。可变支撑层91与第四薄膜层504之间形成间隙,以使所述可变支撑层 91与所述第四薄膜层504接触或分开。当线圈92通电时,会产生磁场,由于磁致伸缩原理,可变支撑层91的高度发生变化,引起可变支撑层91与第四薄膜层504接触或分开。具体的,所述可变支撑层91与第四薄膜层504接触时,以提供第一工作频率,所述可变支撑层 91与第四薄膜层504分开时,以提供第二工作频率。
以电磁原理为例,请参考图10,本申请实施例以电容式MEMS超声波换能器为例进行说明,当然也可以应用于压电式MEMS超声波换能器。刚体磁性薄膜93为刚体磁性材料,例如,可以是AlNiCo合金,TiCo合金,BaFeO等。将线圈91放置在第四薄膜层504上方。可变支撑层92为可支撑材料。当线圈91通电时,会产生磁场,由于电磁原理,刚体磁性薄膜93使第四薄膜层504发生形变,使得第四薄膜层504和可变支撑层92接触或分开。具体的,所述第四薄膜层504和可变支撑层92接触时,以提供第一工作频率,所述第四薄膜层 504和可变支撑层92分开时,以提供第二工作频率。刚体磁性薄膜93可以位于第四薄膜层 504的上方或下方,也可以在第四薄膜层504里面,如果空腔空间足够,线圈91也可能放在空腔内。
为清楚的描述,还可参见图11,图11为本申请实施例提供的一种超声换能器的俯视图。第三上电极501位于超声换能器的中间部分,线圈91位于第四薄膜层504上方,并环绕第三上电极501。应当理解,线圈91还可置于空腔内。
当高低工作频率相差较大时,如果使用在边缘设置可变支撑层的方式,即可变支撑层紧贴位于薄膜层边缘的固定支撑层时,可理解可变支撑层也位于边缘,会导致振膜的占空比降低,从而降低超声换能器的发射/接收灵敏度,同时也会影响超声换能器的指向性。为了解决这个问题,可以使用分形的方式进行可变支撑层的设计,请参考图12和图13。在分形设计中,在高频模式下,可变支撑层126与振膜层12(1)-12(4)接触,振膜层12(1)-12(4) 均可以同一频率工作,使得占空比不会降低,这样就大幅减少了发射信号和接收灵敏度的损失。
本申请所称的占空比为有效振膜面积和等效周期的比值。对于图12来说,当可变支撑层126与振膜层接触时,将此时的空腔面积平分成了4份,每一份的空腔面积与1/4振膜层面积的比值等效为占空比。
本申请包括发射信号和接收信号两个过程。发射信号过程为,在第一上电极层和第一下电极层直接加交流电压,第一压电层和/或薄膜层发生形变,产生超声波信号;接收信号过程为,在接收超声波信号时,超声波信号引起第一压电层和/或薄膜层发生形变,第一压电层和/或薄膜层会使第一上电极层和和第一下电极层之间产生电压变化。
基于上述实施例一所描述的超声换能器,本申请实施例提供一种信息采集元件,该信息采集元件包括如实施例一中所描述的超声换能器。
可选地,在本申请的一个实施例中,信息采集元件为麦克风、超声雷达、超声成像装置、超声指纹采集装置或接近传感器。
此处,列举两个具体示例对信息采集元件进行说明,当然,此处只是示例性说明,并不代表本申请局限于此:
在第一个示例中,信息采集元件为超声指纹采集装置,如图14所示,图14为本申请实施例提供的一种指纹采集示意图,超声指纹采集装置可以安装在一个电子设备上,例如,该电子设备可以是带有指纹采集功能的智能终端,指纹检测区域在该电子设备的面板的特定区域,以智能手机的指纹解锁功能为例,在需要对智能手机进行解锁的时候,使用者只需要将手指按压在指纹检测区域,便可以完成指纹识别。其中指纹检测区域可以安置在显示屏特定区域,也可以放置在专门的指纹检测区域(比如Home键)。
图15为本申请实施例提供的一种超声指纹采集的纵截面示意图。超声指纹采集装置包括,超声传播媒介1001和超声换能器阵列1002,超声换能器阵列1002是由至少两个超声换能器组成的。超声传播媒介1001能够将超声换能器阵列1002产生的超声信号经由电子设备的面板传递到手指。超声波在面板、空气或玻璃、皮肤界面发生反射,由于空气和皮肤的声阻抗有很大差别,导致反射的超声信号的强度不同,故可以对指纹成像。
本申请实施例提供的信息采集元件,通过改变可变支撑层的高度,实现可变支撑层与振膜层接触和分开,超声换能器能实现有多个不同的工作频率,提高了发射信号的能量以及接收信号的灵敏度。
基于上述实施例一所描述的超声换能器,本申请实施例提供一种电子设备160,如图16 所示,图16为本申请实施例提供的一种电子设备的结构图,该电子设备160包括如实施例一所描述的超声换能器。
可选地,在本申请的一个实施例中,电子设备160包括超声换能器阵列,超声换能器阵列是由至少两个如实施例一所描述的超声换能器100组成的阵列。
可选地,如图16所示,该电子设备160包括处理器161、存储器162和总线163,处理器161、存储器162和超声换能器100通过总线163相互通信。
处理器161可能是中央处理器161CPU,或者是特定集成电路162ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路162。电子设备160包括的一个或多个处理器161,可以是同一类型的处理器161,如一个或多个 CPU;也可以是不同类型的处理器1201,如一个或多个CPU以及一个或多个ASIC。
存储器162,用于存放程序。存储器162可能包含高速RAM存储器162,也可能还包括非易失性存储器162(non-volatile memory),例如至少一个磁盘存储器162。
本申请实施例提供的电子设备,通过改变可变支撑层的高度,实现可变支撑层与振膜层接触和分开,超声换能器能实现有多个不同的工作频率,提高了发射信号的能量以及接收信号的灵敏度。

Claims (33)

1.一种超声换能器,其特征在于,包括:
振膜层、固定支撑层、可变支撑层以及衬底;
所述固定支撑层设置在所述衬底上,且设置在所述振膜层下方,并与所述振膜层固定连接,用于支撑所述振膜层;
所述可变支撑层设置于所述衬底与所述振膜层之间,所述可变支撑层与所述振膜层接触时,以提供第一频率,所述可变支撑层与所述振膜层分开时,以提供一个不同于所述第一频率的第二频率。
2.根据权利要求1所述的超声换能器,其特征在于,所述振膜层依次包括第一上电极层、第一压电层、第一下电极层以及第一薄膜层;所述固定支撑层上表面与所述第一薄膜层固定连接;所述固定支撑层下表面与所述衬底固定连接。
3.根据权利要求2所述的超声换能器,其特征在于,所述可变支撑层包括:
第二下电极层,其设置在所述衬底上;
第二压电层,其设置在所述第二下电极层上;
第二上电极层,其设置在所述第二压电层上,且与所述第一薄膜层之间形成间隙,以使所述第二上电极层与所述第一薄膜层接触或分开;
当所述第二上电极层与所述薄膜层通电时,所述第二上电极层与所述第一薄膜层接触,提供所述第一频率,所述第二上电极与所述第一薄膜层分开,提供所述第二频率。
4.根据权利要求3所述的超声换能器,其特征在于,所述第一薄膜层、所述衬底与所述固定支撑层围合形成第一空腔,所述可变支撑层位于所述第一空腔内。
5.根据权利要求4所述的超声换能器,其特征在于,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第二空腔。
6.根据权利要求5所述的超声换能器,其特征在于,所述第一上电极层在所述衬底上的投影位于所述第二空腔内。
7.根据权利要求2所述的超声换能器,其特征在于,所述可变支撑层包括:
第三支撑层,其设置在所述衬底上,
第三下电极层,其设置在所述第三支撑层上;
第三上电极层,其设置在所述第一薄膜层下,且与所述第三下电极层之间形成间隙;
当所述第三上电极层与所述第三下电极层通电时,所述第三上电极层与所述第三下电极层接触,以提供所述第一频率,所述第三上电极与所述第三下电极层分开,以提供所述第二频率。
8.根据权利要求7所述的超声换能器,其特征在于,所述第一薄膜层、所述衬底与所述固定支撑层围合形成第一空腔。
9.根据权利要求8所述的超声换能器,其特征在于,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第二空腔。
10.根据权利要求9所述的超声换能器,其特征在于,所述第一上电极层在所述衬底上的投影位于所述第二空腔内。
11.根据权利要求4-6、8-10中任意一项所述的超声换能器,其特征在于,所述可变支撑层与所述固定支撑层间隔设置,且位于所述第一空腔的中心。
12.根据权利要求4-6、8-10中任意一项所述的超声换能器,其特征在于,所述超声换能器包括多个间隔设置在所述第一空腔内的可变支撑层。
13.根据权利要求1所述的超声换能器,其特征在于,所述振膜层包括第四上电极层和设置在所述第四上电极层下方的第四薄膜层;所述超声换能器还包括第四绝缘层和第四下电极层;所述第四下电极层设置在所述衬底上;所述第四绝缘层设置在所述第四下电极层上;所述固定支撑层上表面与所述第四薄膜层固定连接,所述固定支撑层下表面与所述第四绝缘层或第四下电极层或衬底层之间。
14.根据权利要求13所述的超声换能器,其特征在于,所述可变支撑层包括:
第五下电极层,其设置在所述第四绝缘层上;
第五压电层,其设置在所述第五下电极层上;
第五上电极层,共设置在所述第五压电层上,且与所述第四薄膜层之间形成间隙,以使所述第五上电极层与所述第四薄膜层接触或分开;
当所述第五上电极层与所述第四薄膜层通电时,所述第五上电极层与所述第四薄膜层接触,提供所述第一频率,所述第五上电极与所述第四薄膜层分开,提供所述第二频率。
15.根据权利要求14所述的超声换能器,其特征在于,所述第四薄膜层、第四绝缘层与所述固定支撑层围合形成第三空腔,所述可变支撑层位于所述第三空腔内。
16.根据权利要求15所述的超声换能器,其特征在于,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成一个第四空腔。
17.根据权利要求16所述的超声换能器,其特征在于,所述第四上电极层在所述第四绝缘层上的投影位于所述第四空腔内。
18.根据权利要求13所述的超声换能器,其特征在于,所述可变支撑层包括:
第六支撑层,其设置在所述第四绝缘层上;
第六下电极层,其设置在所述第六支撑层上;
第六上电极层,其设置在所述第四薄膜层上,且与所述第六下电极之间形成间隙;
当所述第六上电极层与所述第六下电极层通电时,所述第六上电极层与所述第六下电极层接触,以提供所述第一频率,所述第六上电极与所述第六下电极层分开,以提供所述第二频率。
19.根据权利要求18所述的超声换能器,其特征在于,所述第四薄膜层、第四绝缘层与所述固定支撑层围合形成第三空腔。
20.根据权利要求19所述的超声换能器,其特征在于,所述可变支撑层设置在所述固定支撑层的内侧面,且所述可变支撑层围合形成第四空腔。
21.根据权利要求20所述的超声换能器,其特征在于,所述第四上电极层在所述第四绝缘层上的投影位于所述第四空腔内。
22.根据权利要求15-17、19-21中任意一项所述的超声换能器,其特征在于,所述可变支撑层与所述固定支撑层间隔设置,且位于所述第三空腔的中心。
23.根据权利要求15-17、19-21中任意一项所述的超声换能器,其特征在于,所述超声换能器包括多个间隔设置在所述第三空腔内的可变支撑层。
24.根据权利要求1或2或13所述的超声换能器,其特征在于,所述可变支撑层为磁致伸缩层材料。
25.根据权利要求24所述的超声换能器,其特征在于,所述超声换能器还包括线圈,其设置在所述振膜层上;
所述可变支撑层与所述振膜层之间形成间隙;
当所述线圈通电时,所述可变支撑层与所述振膜层接触,以提供所述第一频率,或者所述可变支撑层与所述振膜层分开,以提供所述第二频率。
26.根据权利要求1或2或13所述的超声换能器,其特征在于,所述可变支撑层为可支撑材料。
27.根据权利要求26所述的超声换能器,其特征在于,所述超声换能器还包括线圈以及刚体磁性薄膜,所述线圈设置在所述振膜层上;所述刚体磁性薄膜设置在振膜层内;
所述可变支撑层与所述振膜层之间形成间隙;
当所述线圈通电时,所述刚体磁性薄膜使所述振膜层振动,所述可变支撑层与所述振膜层接触,以提供所述第一频率,或者所述可变支撑层与所述振膜层分开,以提供所述第二频率。
28.根据权利要求4-6、8-10中任意一项所述的超声换能器,其特征在于,所述第一上电极层的面积为所述第一空腔横截面积的0.5倍、0.6倍或者0.7倍。
29.根据权利要求15-17、19-21中任意一项所述的超声换能器,其特征在于,所述第四上电极层的面积为所述第三空腔横截面积的0.5倍、0.6倍或者0.7倍。
30.一种信息采集元件,其特征在于,包括如权利要求1-29任一项所述的超声换能器。
31.根据权利要求30所述的信息采集元件,其特征在于,所述信息采集元件为麦克风、超声雷达、超声成像装置、超声指纹采集装置或接近传感器。
32.一种电子设备,其特征在于,包括如权利要求1-29任一项所述的超声换能器。
33.根据权利要求32所述的电子设备,其特征在于,所述电子设备包括超声换能器阵列,所述超声换能器阵列是由至少两个如权利要求1-29任一项所述的超声换能器组成的阵列。
CN202020679010.3U 2020-04-28 2020-04-28 超声换能器、信息采集元件及电子设备 Active CN212759515U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020679010.3U CN212759515U (zh) 2020-04-28 2020-04-28 超声换能器、信息采集元件及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020679010.3U CN212759515U (zh) 2020-04-28 2020-04-28 超声换能器、信息采集元件及电子设备

Publications (1)

Publication Number Publication Date
CN212759515U true CN212759515U (zh) 2021-03-23

Family

ID=75066111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020679010.3U Active CN212759515U (zh) 2020-04-28 2020-04-28 超声换能器、信息采集元件及电子设备

Country Status (1)

Country Link
CN (1) CN212759515U (zh)

Similar Documents

Publication Publication Date Title
CN109643378B (zh) 超声换能器件及电子装置
US7460439B2 (en) Ultrasonic transducer for ranging measurement with high directionality using parametric transmitting array in air and a method for manufacturing same
JP4288388B2 (ja) 圧電トランスデューサ
CN109092649B (zh) 静电-压电混合驱动收发一体化cmut及其使用方法和制备方法
TW201740262A (zh) 電容性指紋感測裝置及用於使用感測裝置擷取指紋的方法
Khuri-Yakub et al. Silicon micromachined ultrasonic transducers
WO2021217439A1 (zh) 超声换能器、信息采集元件及电子设备
US5303210A (en) Integrated resonant cavity acoustic transducer
CN106198724B (zh) 一种多稳态超声检测传感器
CN102333485B (zh) 具有机械塌陷保持的预塌陷cmut
CN104117477B (zh) 电容变换器及其制造方法、探测器以及对象信息获取装置
WO2015112452A1 (en) Curved piezoelectric transducers
CN105657626B (zh) 电容型微加工超声换能器和包含其的被检体信息获取设备
Wang et al. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air
EP1337184A1 (en) Miniature ultrasound transducer
CN101854866A (zh) 超声波摄像装置
CN109174595B (zh) 一种具有t形空腔结构的空气耦合cmut及其制备方法
CN209531368U (zh) 超声换能器件及电子装置
CN109188407A (zh) 基于磁致伸缩金属衬底的磁声纳传感器及其制备方法
CN104622512B (zh) 椭圆膜单元结构电容式微超声传感器环形阵列及电路系统
CN106951887A (zh) 用于识别的微电容超声波换能器线性阵列装置
US11536699B2 (en) Ultrasonic phased array transducer device with two-dimensional hinge array structure
WO2015028945A2 (en) Variable frequency control of collapsed mode cmut transducer
CN212759515U (zh) 超声换能器、信息采集元件及电子设备
CN106162476B (zh) 抗低频噪音的麦克风单体

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant