CN212410424U - 基于双通道的增材制造缺陷检测装置 - Google Patents

基于双通道的增材制造缺陷检测装置 Download PDF

Info

Publication number
CN212410424U
CN212410424U CN202021635474.0U CN202021635474U CN212410424U CN 212410424 U CN212410424 U CN 212410424U CN 202021635474 U CN202021635474 U CN 202021635474U CN 212410424 U CN212410424 U CN 212410424U
Authority
CN
China
Prior art keywords
light source
module
infrared
image
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021635474.0U
Other languages
English (en)
Inventor
孔令豹
陈垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202021635474.0U priority Critical patent/CN212410424U/zh
Application granted granted Critical
Publication of CN212410424U publication Critical patent/CN212410424U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本实用新型属于增材制造技术领域,具体为一种基于双通道的增材制造缺陷检测装置。本装置包括多光谱光源模块、光源控制模块、图像采集模块和图像处理模块;光源控制模块与多光谱光源模块连接,用于在增材制造缺陷检测中控制多光谱光源发射至增材制件的光线波段,并通过图像采集模块接收通过增材制件反射的多光谱光线信号;图像分析处理模块对图像采集模块采集到的增材制件的可见光与红外成像信息进行图像处理和分析,快速识别与评价增材制件的缺陷类别。本实用新型能够实现对增材制件的多通道缺陷检测,其结构简单易于实现,检测实时性较好、精度较高,并且能够避免增材制件在单通道图像检测下的细节丢失的问题,有助于提高增材制件的成品质量。

Description

基于双通道的增材制造缺陷检测装置
技术领域
本实用新型属于增材制造技术领域,具体涉及一种基于双通道的增材制造缺陷检测装置。
背景技术
增材制造技术是一种基于分层离散、逐层堆积的原理,通过“自下而上”实现材料成形的新型制造方法,具有材料利用率高、成形效果好等优势,解决了复杂结构零件快速制造的工艺难题,已被广泛用于制造领域。但是,增材制件的质量是制约激光增材制造工艺发展的瓶颈问题之一。由于增材制造过程中对工艺参数的控制不当,制备材料的不稳定性以及环境的不利影响,使增材制造产品在内部内部产生孔隙、裂纹等缺陷,严重影响产品的性能。
目前大多数缺陷检测方法采用单通道拍摄缺陷图像,包括传统的超声检测技术,磁共振检测技术,X射线检测技术和CT检测技术。但是,这些检测方法通常存在诸如图像信息不足、抗干扰性能差、辐射损伤大、信号获取时间长、设备昂贵、检测成本高和检测精度较低等问题,无法检测出0 .1mm以下的气孔和未熔合缺陷等,无法确保缺陷的细节能够被捕获,检测质量存在隐患。
发明内容
为了克服现有技术的上述缺点与不足,本实用新型的目的在于提供一种基于双通道的增材制造缺陷检测装置,以解决现有技术中对增材制件的缺陷检测通道单一、图像细节丢失和精度较低等技术问题。
本实用新型提供的基于双通道的增材制造缺陷检测装置,其结构如附图1所示;包括缺陷光源控制模块(200)、多光谱光源模块(300)、图像采集模块(400)和图像处理模块(500);其中,所述多光谱光源模块(300)包括可见光光源模块(310)和红外光光源模块(320);所述可见光光源模块(310)包括可见光线光光源和水冷装置,该水冷装置用于保持可见光光源模块稳定工作;所述红外光光源模块(320)包括红外光线光光源和水冷装置,该水冷装置用于保持红外光线光光源稳定工作;所述缺陷光源控制模块(200)包括红外光光源频闪控制器和可见光光源频闪控制器,用于控制可见光线光光源和红外光线光光源交替频闪发光;所述图像采集模块(400)包括红外镜头和工业CCD;多光谱光源模块(300)发出的多光谱光波照射到增材制件表面后,工件表面光谱信息反射到达图像采集模块(400)中的红外镜头,然后被工业CCD采集;所述图像处理模块(500)连接图像采集模块(400);所述图像分析处理模块(500)用于对图像采集模块(400)采集到的增材制件的可见光与红外成像信息进行图像处理和分析,快速识别与评价增材制件的缺陷类别。
所述图像分析处理模块(500)中包括图像分析和图像处理;图像分析属于图像预处理;所述图像分析采用GLCM特征提取和梯度增强分类算法[1-2],可完成针对增材制件的缺陷分析与目标识别;图像处理采用去模糊增强方法和去光照不均增强方法[3-5],具体采用约束最小二乘滤波和 Top-hat 变换,以平滑度量的最佳复原为基础减小了噪声敏感性,使缺陷图像得到适当的灰度校正,有效地改善缺陷图像的质量。
与现有技术相比,本实用新型具有以下优点和有益效果:
(1)本实用新型通过设计出的基于双通道的增材制造缺陷检测装置,利用可见光图像和红外图像包含特定的缺陷信息,通过采集双通道的缺陷图像充分利用各自通道的信息优势。获得更丰富的图像信息和保证缺陷识别的精度,获得更好的识别效果;
(2)本实用新型通过设计出的基于双通道的增材制造缺陷检测装置,采用双通道公用一个图像采集模块的设计,能够始终保证可见光通道与红外通通道采集到的是同视角的增材制件缺陷图像,后续图像处理工作简单高效,无需配准。同时能够节约装置空间,大大减小了装置的体积,装置的集成性好,监测过程更加便捷高效;
(3)本实用新型通过设计出的基于双通道的增材制造缺陷检测装置,采用可见光光源与红外光源交替频闪,可以实现瞬间双通道的图像采集,采集过程简单高效。
附图说明
图1为本实用新型的基于双通道的增材制造缺陷检测装置结构图示。
图2为本实用新型中的图像采集模块结构图示。
具体实施方式
下面结合实施例及附图,对本实用新型作进一步地详细说明,但本实用新型 的实施方式不限于此。
实施例
如图1所示,一种基于双通道的增材制造缺陷检测装置,包括缺陷光源控制模块(200)、多光谱光源模块(300)、图像采集模块(400)和图像处理模块(500)。所述可见光光源模块(310)包括可见光线光光源和水冷装置;所述红外光光源模块(320)包括红外光线光光源和水冷装置;所述图像采集模块(400)包括红外镜头、工业CCD。所述图像处理模块(500)连接图像采集模块(400)。
进一步地,所述红外镜头为8X放大系数、靶面尺寸1/2,工作距离65mm的金相镜头;所述工业CCD为分辨率为1280*1024、像素尺寸为4.8um*4.8um的红外相机。
进一步地,所述可见光线光光源为150W的线状LED灯排发射可见光波段;所述红外光线光光源为150W的红外波段为850nm的线状灯排发射红海外光波段;所述水冷装置可以保证光源稳定工作。
进一步地,所述光源控制模块(200)控制可见光光源模块和红外光光源模块交替频闪发光;多光谱光波照射到增材制件表面后,工件表面光谱信息反射到达红外镜头被工业CCD采集。所述红外镜头与工业CCD的靶面尺寸适配,为保证工业CCD的进光量,红外镜头的放大系数与最低精度要求吻合。
所述可见光光源模块(310)和红外光光源模块(320)均采用大功率线灯时,其在工作状态时灯具表面温度达90℃,为保护红外镜头和工业CCD,为该可见光光源模块(310)和红外光光源模块(320)配备水冷装置进行处理,通过水循环降温后灯具表面温度可降到40℃。
所述图像分析处理模块(500)将增材制件的可见光与红外成像信息进行图像处理和分析,快速识别与评价增材制件的缺陷类别。
所述分为图像预处理,图像分析采用GLCM特征提取和梯度增强分类算法,可完成针对增材制件的缺陷分析与目标识别。
所述图像处理采用去模糊增强方法和去光照不均增强方法,采用约束最小二乘滤波和Top-hat 算法,该算法核心是针对减小噪声敏感性以平滑度量的最佳复原为基础的,期望找到一副图像的二阶导数的最小准则函数:
Figure DEST_PATH_IMAGE002
(1)
其约束为:
Figure DEST_PATH_IMAGE006
(2)
其中,
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
(3);
公式(1)中,f(x,y)表示该图像,图像大小为M×N,
Figure DEST_PATH_IMAGE012
为拉普拉斯算子,表示平滑程度;公式(2)中,
Figure DEST_PATH_IMAGE014
为约束条件参数,H为MN×MN维的矩阵,
Figure DEST_PATH_IMAGE016
为退化图像的估计,
Figure DEST_PATH_IMAGE018
为加性噪声;公式(3)中,P为固定矩阵函数,
Figure DEST_PATH_IMAGE020
为拉格朗日乘子,
Figure DEST_PATH_IMAGE022
为计算后化简系数。
采用预处理算法后的图像使光照不均现象得到了适当的灰度校正,有效地改善了缺陷图像的质量,处理结果为在多通道图像检测装置拍摄到的增材制造工件的微观图像。
参考文献
[1]Dan Li,Qiang Wang,Fanqiang Kong. Adaptive kernel sparserepresentation based on multiple feature learning for hyperspectral imageclassification[J]. Neurocomputing,2020,400.
[2]Maryam Imani,Hassan Ghassemian. An overview on spectral andspatial information fusion for hyperspectral image classification: Currenttrends and challenges[J]. Information Fusion,2020,59.
[3]R. Udendhran,M. Balamurugan,A. Suresh,R. Varatharajan. Enhancingimage processing architecture using deep learning for embedded vision systems[J]. Microprocessors and Microsystems,2020,76.
[4] Yunhu Huang, Dewang Chen. Image fuzzy enhancement algorithm basedon contourlet transform domain [J]. Image fuzzy enhancement algorithm basedon contourlet transform domain,2019,1-16.
[5] Wahengbam Kanan Kumar, Kishorjit Nongmeikapam, Aheibam DinamaniSingh. Enhancing scene perception using a multispectral fusion of visible–near-infrared image pair. 2019, 13(13):2467-2479.。

Claims (4)

1.一种基于双通道的增材制造缺陷检测装置,其特征在于,包括缺陷光源控制模块(200)、多光谱光源模块(300)、图像采集模块(400)和图像处理模块(500);其中,所述多光谱光源模块(300)包括可见光光源模块(310)和红外光光源模块(320);所述可见光光源模块(310)包括可见光线光光源和水冷装置,该水冷装置用于保持可见光光源模块稳定工作;所述红外光光源模块(320)包括红外光线光光源和水冷装置,该水冷装置用于保持红外光线光光源稳定工作;所述缺陷光源控制模块(200)包括红外光光源频闪控制器和可见光光源频闪控制器,用于控制可见光线光光源和红外光线光光源交替频闪发光;所述图像采集模块(400)包括红外镜头和工业CCD;多光谱光源模块(300)发出的多光谱光波照射到增材制件表面后,工件表面光谱信息反射到达图像采集模块(400)中的红外镜头,然后被工业CCD采集;所述图像处理模块(500)连接图像采集模块(400);所述图像处理模块(500)用于对图像采集模块(400)采集到的增材制件的可见光与红外成像信息进行图像处理和分析,快速识别与评价增材制件的缺陷类别。
2.根据权利要求1所述的基于双通道的增材制造缺陷检测装置,其特征在于,所述红外镜头采用8X放大系数、靶面尺寸1/2、工作距离65mm的金相镜头;所述工业CCD采用分辨率为1280*1024、像素尺寸为4.8um*4.8um的红外相机。
3.根据权利要求2所述的基于双通道的增材制造缺陷检测装置,其特征在于,所述可见光线光光源采用150W的线状LED灯排发射可见光波段;所述红外光线光光源采用150W的红外波段为850nm的线状灯排发射红海外光波段。
4.根据权利要求3所述的基于双通道的增材制造缺陷检测装置,其特征在于,所述可见光光源模块(310)和红外光光源模块(320)均采用大功率线灯时,在可见光光源模块(310)和红外光光源模块(320)中配备水冷装置,通过水循环降温。
CN202021635474.0U 2020-08-09 2020-08-09 基于双通道的增材制造缺陷检测装置 Active CN212410424U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021635474.0U CN212410424U (zh) 2020-08-09 2020-08-09 基于双通道的增材制造缺陷检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021635474.0U CN212410424U (zh) 2020-08-09 2020-08-09 基于双通道的增材制造缺陷检测装置

Publications (1)

Publication Number Publication Date
CN212410424U true CN212410424U (zh) 2021-01-26

Family

ID=74371646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021635474.0U Active CN212410424U (zh) 2020-08-09 2020-08-09 基于双通道的增材制造缺陷检测装置

Country Status (1)

Country Link
CN (1) CN212410424U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999254A (zh) * 2020-08-09 2020-11-27 复旦大学 基于双通道的增材制造缺陷检测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999254A (zh) * 2020-08-09 2020-11-27 复旦大学 基于双通道的增材制造缺陷检测系统
CN111999254B (zh) * 2020-08-09 2024-05-28 复旦大学 基于双通道的增材制造缺陷检测系统

Similar Documents

Publication Publication Date Title
JP5698398B2 (ja) スライド全体蛍光スキャナ
CN110567973B (zh) 一种基于图像采集的活塞检测平台及方法
CN111009007A (zh) 一种指部多特征全面三维重建方法
CN109821763B (zh) 一种基于机器视觉的水果分拣系统及其图像识别方法
CN109444056B (zh) 一种双目成像式水下光谱反射率原位测量装置及测量方法
CN212410424U (zh) 基于双通道的增材制造缺陷检测装置
CN105628204B (zh) 一种自动调节的高光谱成像系统及成像方法
CN206223683U (zh) 一种板状带孔工件表面缺陷检测装置
CN111999254B (zh) 基于双通道的增材制造缺陷检测系统
CN107518879A (zh) 一种荧光成像装置及方法
CN107392946A (zh) 一种面向三维形状重建的显微多焦距图像序列处理方法
CN109085179A (zh) 一种木板表面缺陷检测装置及检测方法
CN113192015A (zh) 基于深度信息的表面缺陷检测方法和系统
CN111307812A (zh) 基于机器视觉的焊点外观检测方法
CN110570412B (zh) 一种零件误差视觉判断系统
CN107833223B (zh) 一种基于光谱信息的水果高光谱图像分割方法
CN104976959A (zh) 一种基于机器视觉的弹簧尺寸在线测量系统及其方法
CN108303427B (zh) 基于图像处理的家居破损程度检测系统
CN114170598A (zh) 菌落高度扫描成像装置、可辨别非典型菌落的菌落自动计数设备及方法
CN112098415B (zh) 一种杨梅品质无损检测方法
CN109990742A (zh) 基于图像处理技术的板栗检测方法
CN107248151A (zh) 一种基于机器视觉的液晶片智能检测方法及系统
CN206114545U (zh) 一种单摄像机宽视场视觉螺纹检测装置
CN115051647A (zh) 一种免拆卸光伏电池隐裂检测系统
CN113504250B (zh) 基于棱镜式rgb色彩提取的花生黄曲霉素检测装置及方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant