CN212379645U - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
CN212379645U
CN212379645U CN202021285575.XU CN202021285575U CN212379645U CN 212379645 U CN212379645 U CN 212379645U CN 202021285575 U CN202021285575 U CN 202021285575U CN 212379645 U CN212379645 U CN 212379645U
Authority
CN
China
Prior art keywords
lens
optical axis
lens element
imaging system
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021285575.XU
Other languages
English (en)
Inventor
张永明
赖建勋
刘燿维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ability Opto Electronics Technology Co Ltd
Original Assignee
Ability Opto Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ability Opto Electronics Technology Co Ltd filed Critical Ability Opto Electronics Technology Co Ltd
Application granted granted Critical
Publication of CN212379645U publication Critical patent/CN212379645U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。第一透镜至第五透镜中至少一透镜具有正屈折力。第六透镜可具有负屈折力,其两表面皆为非球面,其中第六透镜的至少一表面具有反曲点。光学成像系统中具屈折力的透镜为第一透镜至第六透镜。当满足特定条件时,可具备更大的收光以及更佳的光路调节能力,以提升成像质量。

Description

光学成像系统
技术领域
本实用新型属于光学成像领域,具体涉及应用于电子产品上的小型化光学成像系统。
背景技术
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光组件不外乎是感光耦合组件(Charge Coupled Device;CCD)或互补性氧化金属半导体组件(Complementary Metal-Oxide Semiconductor Sensor;CMOSSensor)两种,且随着半导体制程技术的精进,使得感光组件的画素尺寸缩小,光学系统逐渐往高画素领域发展,因此对成像质量的要求也日益增加。
传统搭载于便携设备上的光学系统,多采用四片或五片式透镜结构为主,然而由于便携设备不断朝提升画素并且终端消费者对大光圈的需求例如微光与夜拍功能,习知的光学成像系统已无法满足更高阶的摄影要求。
因此,如何有效增加光学成像系统的进光量,并进一步提高成像的质量,便成为一个相当重要的议题。
实用新型内容
本实用新型涉及一种光学成像系统,能够利用六个透镜的屈光力、凸面与凹面的组合(本实用新型所述凸面或凹面原则上系指各透镜的物侧面或像侧面距离光轴不同高度的几何形状变化的描述),进而有效提高光学成像系统的进光量,同时提高成像质量,以应用于小型的电子产品上。
本实用新型实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:
与长度或高度有关的透镜参数
光学成像系统的最大成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第六透镜像侧面间的距离以InTL表示;光学成像系统的固定光栏(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以IN12表示;光学成像系统的第一透镜于光轴上的厚度以TP1表示(例示)。
与材料有关的透镜参数
光学成像系统第一透镜的色散系数以NA1表示(例示);第一透镜的折射率以Nd1表示(例示)。
与视角有关的透镜参数
视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。
与出入瞳有关的透镜参数
光学成像系统的入射瞳直径以HEP表示;单一透镜的任一表面的最大有效半径系指系统最大视角入射光通过入射瞳最边缘的光线于该透镜表面交会点(EffectiveHalfDiameter;EHD),该交会点与光轴的间的垂直高度。例如第一透镜物侧面的最大有效半径以EHD11表示,第一透镜像侧面的最大有效半径以EHD12表示。第二透镜物侧面的最大有效半径以EHD21表示,第二透镜像侧面的最大有效半径以EHD22表示。光学成像系统中其他透镜任一表面的最大有效半径表示方式以此类推。
与透镜面形深度有关的参数
第六透镜物侧面于光轴上的交点至第六透镜物侧面的最大有效半径的终点,两点间水平于光轴的距离以InRS61表示(最大有效半径深度);第六透镜像侧面于光轴上的交点至第六透镜像侧面的最大有效半径的终点,两点间水平于光轴的距离以InRS62表示(最大有效半径深度)。其他透镜物侧面或像侧面的最大有效半径的深度(沉陷量)表示方式比照前述。
与透镜面型有关的参数
临界点C系指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第五透镜物侧面的临界点C51与光轴的垂直距离为HVT51(例示),第五透镜像侧面的临界点C52与光轴的垂直距离为HVT52(例示),第六透镜物侧面的临界点C61与光轴的垂直距离为HVT61(例示),第六透镜像侧面的临界点C62与光轴的垂直距离为HVT62(例示)。其他透镜的物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。
第六透镜物侧面上最接近光轴的反曲点为IF611,该点沉陷量SGI611(例示),SGI611亦即第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF611与光轴间的垂直距离为HIF611(例示)。第六透镜像侧面上最接近光轴的反曲点为IF621,该点沉陷量SGI621(例示),SGI611亦即第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF621与光轴间的垂直距离为HIF621(例示)。
第六透镜物侧面上第二接近光轴的反曲点为IF612,该点沉陷量SGI612(例示),SGI612亦即第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF612与光轴间的垂直距离为HIF612(例示)。第六透镜像侧面上第二接近光轴的反曲点为IF622,该点沉陷量SGI622(例示),SGI622亦即第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF622与光轴间的垂直距离为HIF622(例示)。
第六透镜物侧面上第三接近光轴的反曲点为IF613,该点沉陷量SGI613(例示),SGI613亦即第六透镜物侧面于光轴上的交点至第六透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF613与光轴间的垂直距离为HIF613(例示)。第六透镜像侧面上第三接近光轴的反曲点为IF623,该点沉陷量SGI623(例示),SGI623亦即第六透镜像侧面于光轴上的交点至第六透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF623与光轴间的垂直距离为HIF623(例示)。
第六透镜物侧面上第四接近光轴的反曲点为IF614,该点沉陷量SGI614(例示),SGI614亦即第六透镜物侧面于光轴上的交点至第六透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF614与光轴间的垂直距离为HIF614(例示)。第六透镜像侧面上第四接近光轴的反曲点为IF624,该点沉陷量SGI624(例示),SGI624亦即第六透镜像侧面于光轴上的交点至第六透镜像侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF624与光轴间的垂直距离为HIF624(例示)。
其他透镜物侧面或像侧面上的反曲点及其与光轴的垂直距离或其沉陷量的表示方式比照前述。
与像差有关的变数
光学成像系统的光学畸变(Optical Distortion)以ODT表示;TV畸变(TVDistortion)以TDT表示,并且可以进一步限定描述在成像50%至100%视野间像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。
光学成像系统的调制转换函数特性图(Modulation Transfer Function;MTF),用来测试与评估系统成像的反差对比度及锐利度。调制转换函数特性图的垂直坐标轴表示对比转移率(数值从0到1),水平坐标轴则表示空间频率(cycles/mm;lp/mm;line pairs permm)。完美的成像系统理论上能100%呈现被摄物体的线条对比,然而实际的成像系统,其垂直轴的对比转移率数值小于1。此外,一般而言成像的边缘区域会比中心区域较难得到精细的还原度。可见光频谱在成像面上,光轴、0.3视场以及0.7视场三处于空间频率55cycles/mm的对比转移率(MTF数值)分别以MTFE0、MTFE3以及MTFE7表示,光轴、0.3视场以及0.7视场三处于空间频率110cycles/mm的对比转移率(MTF数值)分别以MTFQ0、MTFQ3以及MTFQ7表示,光轴、0.3视场以及0.7视场三处于空间频率220cycles/mm的对比转移率(MTF数值)分别以MTFH0、MTFH3以及MTFH7表示,光轴、0.3视场以及0.7视场三处于空间频率440cycles/mm的对比转移率(MTF数值)分别以MTF0、MTF3以及MTF7表示,前述此三个视场对于镜头的中心、内视场以及外视场具有代表性,因此可用以评价特定光学成像系统的性能是否优异。若光学成像系统的设计系对应画素大小(Pixel Size)为含1.12微米以下的感光组件,因此调制转换函数特性图的四分之一空间频率、半数空间频率(半频)以及完全空间频率(全频)分别至少为110cycles/mm、220cycles/mm以及440cycles/mm。
光学成像系统若同时须满足针对红外线频谱的成像,例如用于低光源的夜视需求,所使用的工作波长可为850nm或800nm,由于主要功能在辨识黑白明暗所形成的物体轮廓,无须高分辨率,因此可仅需选用小于110cycles/mm的空间频率评价特定光学成像系统在红外线频谱频谱的性能是否优异。前述工作波长850nm当聚焦在成像面上,影像于光轴、0.3视场以及0.7视场三处于空间频率55cycles/mm的对比转移率(MTF数值)分别以MTFI0、MTFI3以及MTFI7表示。然而,也因为红外线工作波长850nm或800nm与一般可见光波长差距很远,若光学成像系统需同时能对可见光与红外线(双模)对焦并分别达到一定性能,在设计上有相当难度。
本实用新型提供的光学成像系统,其第六透镜的物侧面或像侧面可设置有反曲点,可有效调整各视场入射于第六透镜的角度,并针对光学畸变与TV畸变进行补正。另外,第六透镜的表面可具备更佳的光路调节能力,以提升成像质量。
依据本实用新型提供的第一种光学成像系统,由物侧至像侧依序包含第一透镜,具有负屈折力;第二透镜,具有负屈折力;第三透镜,具有正屈折力;第四透镜,具有屈折力;第五透镜,具有屈折力;第六透镜,具有屈折力;以及成像面;所述光学成像系统具有屈折力的透镜为六枚且所有透镜材质为塑料,所述光学成像系统于所述成像面上具有一最大成像高度HOI,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有距离HOS,所述光学成像系统最大可视角度的一半为HAF,所述第一透镜至所述第六透镜于1/2HEP高度且平行于光轴的厚度分别为ETP1、ETP2、ETP3、ETP4、ETP5以及ETP6,前述ETP1至ETP6的总和为SETP,所述第一透镜至所述第六透镜于光轴的厚度分别为TP1、TP2、TP3、TP4、TP5以及TP6,TP1至TP6的总和为STP,满足下列条件:1.0≤f/HEP≤3.0;50deg≤HAF≤70deg;0.5≤HOS/f≤5;以及0.5≤SETP/STP<1。
优选地,所述光学成像系统满足下列关系式:0.5≤HOS/HOI≤3。
优选地,所述光学成像系统还包括光圈,所述光圈位于所述第三透镜像侧面前。
优选地,所述第一透镜的物侧面以及像侧面于光轴上均为凹面。
优选地,所述第六透镜的物侧面于光轴上为凸面。
优选地,所述第二透镜的物侧面于光轴上为凹面、像侧面于光轴上为凸面。
优选地,所述第五透镜的物侧面以及像侧面于光轴上均为凸面。
优选地,可见光在所述成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率分别以MTFE0、MTFE3以及MTFE7表示,满足下列条件:MTFE0≥0.2;MTFE3≥0.01;以及MTFE7≥0.01。
优选地,所述光学成像系统还包括光圈,并且所述光圈至所述成像面于光轴上的距离为InS,满足下列公式:0.1≤InS/HOS≤1.1。
依据本实用新型提供的第二种光学成像系统,由物侧至像侧依序包含第一透镜,具有负屈折力;第二透镜,具有负屈折力;第三透镜,具有正屈折力;第四透镜,具有屈折力;第五透镜,具有正屈折力;第六透镜,具有屈折力;以及成像面;所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第二透镜至所述第六透镜中至少一透镜具有正屈折力,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述第一透镜物侧面与光轴的交点至所述成像面与光轴的交点间于光轴上具有距离HOS,所述光学成像系统的最大可视角度的一半为HAF,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述成像面间平行于光轴的水平距离为ETL,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述第六透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,满足下列条件:1.0≤f/HEP≤3.0;50deg≤HAF≤70deg;0.5≤HOS/f≤5;以及0.2≤EIN/ETL<1。
优选地,可见光在所述成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率110cycles/mm的调制转换对比转移率分别以MTFQ0、MTFQ3以及MTFQ7表示,满足下列条件:MTFQ0≥0.2;MTFQ3≥0.01;以及MTFQ7≥0.01。
优选地,所述第四透镜与所述第五透镜之间于光轴上的距离为IN45,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN45>IN56。
优选地,所述第二透镜与所述第三透镜之间于光轴上的距离为IN23,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN23≥IN56。
优选地,所述第三透镜与所述第五透镜于光轴上的厚度分别为TP3以及TP5,满足下列条件:TP5>TP3。
优选地,所述第二透镜与所述第三透镜于光轴上的厚度分别为TP2以及TP3,满足下列条件:TP3>TP2。
优选地,所述第一透镜的物侧面具有至少一反曲点。
优选地,所述第五透镜像侧面上于1/2HEP高度的坐标点至所述第六透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED56,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:0<ED56/IN56≤50。
优选地,所述第一透镜至所述第六透镜于1/2HEP高度且平行于光轴的厚度分别为ETP1、ETP2、ETP3、ETP4、ETP5以及ETP6,ETP1至ETP6的总和为SETP,满足下列公式:0.3≤SETP/EIN<1。
依据本实用新型提供的第三种光学成像系统,由物侧至像侧依序包含第一透镜,具有负屈折力,所述第一透镜的物侧面以及像侧面于光轴上均为凹面;第二透镜,具有负屈折力;第三透镜,具有正屈折力;第四透镜,具有屈折力;第五透镜,具有正屈折力;第六透镜,具有屈折力;以及成像面;所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,且所有透镜的材质为塑料,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述光学成像系统的最大视角的一半为HAF,所述第一透镜物侧面至成像面于光轴上具有距离HOS,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述成像面间平行于光轴的水平距离为ETL,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述第六透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,满足下列条件:1.0≤f/HEP≤3;50deg≤HAF≤70deg;0.5≤HOS/f≤5;0.5≤HOS/HOI≤3以及0.2≤EIN/ETL<1。
优选地,可见光在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率分别以MTFE0、MTFE3以及MTFE7表示,满足下列条件:MTFE0≥0.2;MTFE3≥0.01;以及MTFE7≥0.01。
优选地,所述第三透镜与所述第五透镜于光轴上的厚度分别为TP3以及TP5,满足下列条件:TP5>TP3。
优选地,所述第六透镜的物侧面于光轴上为凸面。
优选地,所述第四透镜与所述第五透镜之间于光轴上的距离为IN45,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN45>IN56。
优选地,所述光学成像系统还包括光圈、影像感测组件以及驱动模块,所述影像感测组件设置于所述成像面,并且所述光圈至所述成像面于光轴上具有距离InS,所述驱动模块与所有透镜相耦合并使透镜产生位移,满足下列公式:0.2≤InS/HOS≤1.1。
单一透镜在1/2入射瞳直径(HEP)高度的厚度,特别影响该1/2入射瞳直径(HEP)范围内各光线视场共享区域的修正像差以及各视场光线间光程差的能力,厚度越大则修正像差的能力提升,然而同时亦会增加生产制造上的困难度,因此必须控制单一透镜在1/2入射瞳直径(HEP)高度的厚度,特别是控制该透镜在1/2入射瞳直径(HEP)高度的厚度(ETP)与该表面所属的透镜于光轴上的厚度(TP)间的比例关系(ETP/TP)。例如第一透镜在1/2入射瞳直径(HEP)高度的厚度以ETP1表示。第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示。光学成像系统中其他透镜在1/2入射瞳直径(HEP)高度的厚度,其表示方式以此类推。前述ETP1至ETP6的总和为SETP,可满足下列公式:0.5≤SETP/EIN<1,优选为0.3≤SETP/EIN<1。
为同时权衡提升修正像差的能力以及降低生产制造上的困难度,特别需控制透镜在1/2入射瞳直径(HEP)高度的厚度(ETP)与该透镜于光轴上的厚度(TP)间的比例关系(ETP/TP)。例如第一透镜在1/2入射瞳直径(HEP)高度的厚度以ETP1表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ETP1/TP1。第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ETP2/TP2。光学成像系统中其他透镜在1/2入射瞳直径(HEP)高度的厚度与该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。在本实用新型中可满足下列公式:0.2≤ETP/TP≤3。
相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离以ED表示,前述水平距离(ED)系平行于光学成像系统的光轴,并且特别影响该1/2入射瞳直径(HEP)位置各光线视场共享区域的修正像差以及各视场光线间光程差的能力,水平距离越大则修正像差的能力的可能性将提升,然而同时亦会增加生产制造上的困难度以及限制光学成像系统长度“微缩”的程度,因此必须控制特定相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED)。
为同时权衡提升修正像差的能力以及降低光学成像系统长度”微缩”的困难度,特别需控制相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED)与该相邻两透镜于光轴上的水平距离(IN)间的比例关系(ED/IN)。例如第一透镜与第二透镜在1/2入射瞳直径(HEP)高度的水平距离以ED12表示,第一透镜与第二透镜于光轴上的水平距离为IN12,两者间的比值为ED12/IN12。第二透镜与第三透镜在1/2入射瞳直径(HEP)高度的水平距离以ED23表示,第二透镜与第三透镜于光轴上的水平距离为IN23,两者间的比值为ED23/IN23。光学成像系统中其它相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离与该相邻两透镜于光轴上的水平距离两者间的比例关系,其表示方式以此类推。
第六透镜像侧面上于1/2HEP高度的坐标点至成像面间平行于光轴的水平距离为EBL,第六透镜像侧面上与光轴的交点至成像面平行于光轴的水平距离为BL,本实用新型的实施例为同时权衡提升修正像差的能力以及预留其他光学组件的容纳空间,可满足下列公式:0.2≤EBL/BL<1.1。光学成像系统还可包括滤光组件,所述滤光组件位于第六透镜与成像面之间,第六透镜像侧面上于1/2HEP高度的坐标点至滤光组件间平行于光轴的距离为EIR,第六透镜像侧面上与光轴的交点至滤光组件间平行于光轴的距离为PIR,本实用新型的实施例可满足下列公式:0.1≤EIR/PIR≤1.1。
当│f1│>│f6│时,光学成像系统的系统总高度(HOS;Height of Optic System)可以适当缩短以达到微型化的目的。
当│f2│+│f3│+│f4│+│f5│>│f1│+│f6│满足上述条件时,第二透镜至第五透镜中至少一透镜具有弱的正屈折力或弱的负屈折力。所称弱屈折力,是指特定透镜的焦距的绝对值大于10mm。当本实用新型第二透镜至第五透镜中至少一透镜具有弱的正屈折力,其可有效分担第一透镜的正屈折力而避免不必要的像差过早出现,反之若第二透镜至第五透镜中至少一透镜具有弱的负屈折力,则可以微调补正系统的像差。
此外,第六透镜可具有负屈折力,其像侧面可为凹面。借此,有利于缩短其后焦距以维持小型化。另外,第六透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步修正离轴视场的像差。
附图说明
图1为本实用新型第一实施例的光学成像系统示意图;
图2由左至右依序为本实用新型第一实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图3为本实用新型第一实施例光学成像系统的可见光频谱调制转换特征图;
图4为本实用新型第二实施例的光学成像系统示意图;
图5由左至右依序为本实用新型第二实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图6为本实用新型第二实施例光学成像系统的可见光频谱调制转换特征图;
图7为本实用新型第三实施例的光学成像系统示意图;
图8由左至右依序为本实用新型第三实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图9为本实用新型第三实施例光学成像系统的可见光频谱调制转换特征图;
图10为本实用新型第四实施例的光学成像系统示意图;
图11由左至右依序为本实用新型第四实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图12为本实用新型第四实施例光学成像系统的可见光频谱调制转换特征图;
图13为本实用新型第五实施例的光学成像系统示意图;
图14由左至右依序为本实用新型第五实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图15为本实用新型第五实施例光学成像系统的可见光频谱调制转换特征图;
图16为本实用新型第六实施例的光学成像系统示意图;
图17由左至右依序为本实用新型第六实施例的光学成像系统的球差、像散以及光学畸变曲线图;
图18为本实用新型第六实施例光学成像系统的可见光频谱调制转换特征图。
符号说明
10,20,30,40,50,60:光学成像系统
100,200,300,400,500,600:光圈
110,210,310,410,510,610:第一透镜
112,212,312,412,512,612:物侧面
114,214,314,414,514,614:像侧面
120,220,320,420,520,620:第二透镜
122,222,322,422,522,622:物侧面
124,224,324,424,524,624:像侧面
130,230,330,430,530,630:第三透镜
132,232,332,432,532,632:物侧面
134,234,334,434,534,634:像侧面
140,240,340,440,540,640:第四透镜
142,242,342,442,542,642:物侧面
144,244,344,444,544,644:像侧面
150,250,350,450,550,650:第五透镜
152,252,352,452,552,652:物侧面
154,254,354,454,554,654:像侧面
160,260,360,460,560,660:第六透镜
162,262,362,462,562,662:物侧面
164,264,364,464,564,664:像侧面
180,280,380,480,580,680:红外线滤光片
190,290,390,490,590,690:成像面
192,292,392,492,592,692:影像感测组件
f:光学成像系统的焦距
f1,f2,f3,f4,f5,f6:第一透镜至第六透镜的焦距
f/HEP,Fno,F#:光学成像系统的光圈値
HAF:光学成像系统的最大视角的一半
NA1:第一透镜的色散系数
NA2,NA3,NA4,NA5,NA6:第二透镜至第六透镜的色散系数
R1,R2:第一透镜物侧面以及像侧面的曲率半径
R3,R4:第二透镜物侧面以及像侧面的曲率半径
R5,R6:第三透镜物侧面以及像侧面的曲率半径
R7,R8:第四透镜物侧面以及像侧面的曲率半径
R9,R10:第五透镜物侧面以及像侧面的曲率半径
R11,R12:第六透镜物侧面以及像侧面的曲率半径
TP1:第一透镜于光轴上的厚度
TP2,TP3,TP4,TP5,TP6:第二至第六透镜于光轴上的厚度
ΣTP:所有具屈折力的透镜的厚度总和
IN12:第一透镜与第二透镜于光轴上的间隔距离
IN23:第二透镜与第三透镜于光轴上的间隔距离
IN34:第三透镜与第四透镜于光轴上的间隔距离
IN45:第四透镜与第五透镜于光轴上的间隔距离
IN56:第五透镜与第六透镜于光轴上的间隔距离
InRS61:第六透镜物侧面于光轴上的交点至第六透镜物侧面的最大有效半径位置于光轴的水平位移距离
IF611:第六透镜物侧面上最接近光轴的反曲点;SGI611:该点沉陷量
HIF611:第六透镜物侧面上最接近光轴的反曲点与光轴间的垂直距离
IF621:第六透镜像侧面上最接近光轴的反曲点;SGI621:该点沉陷量
HIF621:第六透镜像侧面上最接近光轴的反曲点与光轴间的垂直距离
IF612:第六透镜物侧面上第二接近光轴的反曲点;SGI612:该点沉陷量
HIF612:第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离
IF622:第六透镜像侧面上第二接近光轴的反曲点;SGI622:该点沉陷量
HIF622:第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离
C61:第六透镜物侧面的临界点
C62:第六透镜像侧面的临界点
SGC61:第六透镜物侧面的临界点与光轴的水平位移距离
SGC62:第六透镜像侧面的临界点与光轴的水平位移距离
HVT61:第六透镜物侧面的临界点与光轴的垂直距离
HVT62:第六透镜像侧面的临界点与光轴的垂直距离
HOS:系统总高度(第一透镜物侧面至成像面于光轴上的距离)
Dg:影像感测组件的对角线长度
InS:光圈至成像面的距离
InTL:第一透镜物侧面至该第六透镜像侧面的距离
InB:第六透镜像侧面至该成像面的距离
HOI:影像感测组件有效感测区域对角线长的一半(最大像高)
TDT:光学成像系统于结像时的TV畸变(TV Distortion)
ODT:光学成像系统于结像时的光学畸变(Optical Distortion)
具体实施方式
一种光学成像系统,由物侧至像侧依序包含具屈折力的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及成像面。光学成像系统还可包含影像感测组件,其设置于成像面。
光学成像系统可使用三个工作波长进行设计,分别为486.1nm、587.5nm、656.2nm,其中587.5nm为主要参考波长为主要提取技术特征的参考波长。光学成像系统亦可使用五个工作波长进行设计,分别为470nm、510nm、555nm、610nm、650nm,其中555nm为主要参考波长为主要提取技术特征的参考波长。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值NPR,所有正屈折力的透镜的PPR总和为ΣPPR,所有负屈折力的透镜的NPR总和为ΣNPR,当满足下列条件时有助于控制光学成像系统的总屈折力以及总长度:0.5≤ΣPPR/│ΣNPR│≤15,优选地,可满足下列条件:1≤ΣPPR/│ΣNPR│≤3.0。
光学成像系统还可包含影像感测组件,其设置于成像面。影像感测组件有效感测区域对角线长的一半(即为光学成像系统的成像高度或称最大像高)为HOI,第一透镜物侧面至成像面于光轴上的距离为HOS,其满足下列条件:0.5≤HOS/HOI≤3;以及0.5≤HOS/f≤5。优选地,可满足下列条件:1≤HOS/HOI≤3;以及1≤HOS/f≤5。借此,可维持光学成像系统的小型化,以搭载于轻薄可携式的电子产品上。
另外,本实用新型的光学成像系统中,依需求可设置至少一光圈,以减少杂散光,有助于提升影像质量。
本实用新型的光学成像系统中,光圈配置可为前置光圈或中置光圈,其中前置光圈意即光圈设置于被摄物与第一透镜间,中置光圈则表示光圈设置于第一透镜与成像面间。若光圈为前置光圈,可使光学成像系统的出瞳与成像面产生较长的距离而容置更多光学组件,并可增加影像感测组件接收影像的效率;若为中置光圈,系有助于扩大系统的视场角,使光学成像系统具有广角镜头的优势。前述光圈至成像面间的距离为InS,其满足下列条件:0.1≤InS/HOS≤1.1。借此,可同时兼顾维持光学成像系统的小型化以及具备广角的特性。
本实用新型的光学成像系统中,第一透镜物侧面至第六透镜像侧面间的距离为InTL,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:0.1≤ΣTP/InTL≤0.9。借此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。
第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,其满足下列条件:0.001≤│R1/R2│≤25。借此,第一透镜具备适当正屈折力强度,避免球差增加过速。优选地,可满足下列条件:0.01≤│R1/R2│<12。
第六透镜物侧面的曲率半径为R11,第六透镜像侧面的曲率半径为R12,其满足下列条件:-7<(R11-R12)/(R11+R12)<50。借此,有利于修正光学成像系统所产生的像散。
第一透镜与第二透镜于光轴上的间隔距离为IN12,其满足下列条件:IN12/f≤60。借此,有助于改善透镜的色差以提升其性能。
第五透镜与第六透镜于光轴上的间隔距离为IN56,其满足下列条件:IN56/f≤3.0,有助于改善透镜的色差以提升其性能。
第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≤(TP1+IN12)/TP2≤10。借此,有助于控制光学成像系统制造的敏感度并提升其性能。
第五透镜与第六透镜于光轴上的厚度分别为TP5以及TP6,前述两透镜于光轴上的间隔距离为IN56,其满足下列条件:0.1≤(TP6+IN56)/TP5≤15。借此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
第二透镜、第三透镜与第四透镜于光轴上的厚度分别为TP2、TP3以及TP4,第三透镜与第四透镜于光轴上的间隔距离为IN34,第四透镜与第五透镜于光轴上的间隔距离为IN45,第一透镜物侧面至第六透镜像侧面间的距离为InTL,其满足下列条件:0.1≤TP4/(IN34+TP4+IN45)<1。借此,有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
本实用新型的光学成像系统中,第六透镜物侧面的临界点C61与光轴的垂直距离为HVT61,第六透镜像侧面的临界点C62与光轴的垂直距离为HVT62,第六透镜物侧面于光轴上的交点至临界点C61位置于光轴的水平位移距离为SGC61,第六透镜像侧面于光轴上的交点至临界点C62位置于光轴的水平位移距离为SGC62,可满足下列条件:0mm≤HVT61≤3mm;0mm<HVT62≤6mm;0≤HVT61/HVT62;0mm≤│SGC61│≤0.5mm;0mm<│SGC62│≤2mm;以及0<│SGC62│/(│SGC62│+TP6)≤0.9。借此,可有效修正离轴视场的像差。
本实用新型的光学成像系统其满足下列条件:0.2≤HVT62/HOI≤0.9。优选地,可满足下列条件:0.3≤HVT62/HOI≤0.8。借此,有助于光学成像系统的外围视场的像差修正。
本实用新型的光学成像系统其满足下列条件:0≤HVT62/HOS≤0.5。优选地,可满足下列条件:0.2≤HVT62/HOS≤0.45。借此,有助于光学成像系统的外围视场的像差修正。
本实用新型的光学成像系统中,第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI611表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:0<SGI611/(SGI611+TP6)≤0.9;0<SGI621/(SGI621+TP6)≤0.9。优选地,可满足下列条件:0.1≤SGI611/(SGI611+TP6)≤0.6;0.1≤SGI621/(SGI621+TP6)≤0.6。
第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI612表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI622表示,其满足下列条件:0<SGI612/(SGI612+TP6)≤0.9;0<SGI622/(SGI622+TP6)≤0.9。优选地,可满足下列条件:0.1≤SGI612/(SGI612+TP6)≤0.6;0.1≤SGI622/(SGI622+TP6)≤0.6。
第六透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF611表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF621表示,其满足下列条件:0.001mm≤│HIF611│≤5mm;0.001mm≤│HIF621│≤5mm。优选地,可满足下列条件:0.1mm≤│HIF611│≤3.5mm;1.5mm≤│HIF621│≤3.5mm。
第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF612表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF622表示,其满足下列条件:0.001mm≤│HIF612│≤5mm;0.001mm≤│HIF622│≤5mm。优选地,可满足下列条件:0.1mm≤│HIF622│≤3.5mm;0.1mm≤│HIF612│≤3.5mm。
第六透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF613表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF623表示,其满足下列条件:0.001mm≤│HIF613│≤5mm;0.001mm≤│HIF623│≤5mm。优选地,可满足下列条件:0.1mm≤│HIF623│≤3.5mm;0.1mm≤│HIF613│≤3.5mm。
第六透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF614表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF624表示,其满足下列条件:0.001mm≤│HIF614│≤5mm;0.001mm≤│HIF624│≤5mm。优选地,可满足下列条件:0.1mm≤│HIF624│≤3.5mm;0.1mm≤│HIF614│≤3.5mm。
本实用新型的光学成像系统的一种实施方式,可通过具有高色散系数与低色散系数的透镜交错排列,而助于光学成像系统色差的修正。
上述非球面的方程式为:
z=ch2/[1+[1-(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1)
其中,z为沿光轴方向在高度为h的位置以表面顶点作参考的位置值,k为锥面系数,c为曲率半径的倒数,且A4、A6、A8、A10、A12、A14、A16、A18以及A20为高阶非球面系数。
本实用新型提供的光学成像系统中,透镜的材质可为塑料或玻璃。当透镜材质为塑料,可以有效降低生产成本与重量。另当透镜的材质为玻璃,则可以控制热效应并且增加光学成像系统屈折力配置的设计空间。此外,光学成像系统中第一透镜至第六透镜的物侧面及像侧面可为非球面,其可获得较多的控制变量,除用以消减像差外,相较于传统玻璃透镜的使用甚至可缩减透镜使用的数目,因此能有效降低本实用新型光学成像系统的总高度。
再者,本实用新型提供的光学成像系统中,若透镜表面系为凸面,原则上表示透镜表面于近光轴处为凸面;若透镜表面系为凹面,原则上表示透镜表面于近光轴处为凹面。
本实用新型的光学成像系统可视需求应用于移动对焦的光学系统中,并兼具优良像差修正与良好成像质量的特色,从而扩大应用层面。
本实用新型的光学成像系统还可视需求包括驱动模块,所述驱动模块可与透镜相耦合并使透镜产生位移。所述驱动模块可以是音圈马达(VCM)用于带动镜头进行对焦,或者为光学防手振组件(OIS)用于降低拍摄过程因镜头振动所导致失焦的发生频率。
本实用新型的光学成像系统还可视需求令第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜中至少一透镜为波长小于500nm的光线滤除组件,其可通过该特定具滤除功能的透镜的至少一表面上镀膜或该透镜本身即由具可滤除短波长的材质所制作而实现。
本实用新型的光学成像系统的成像面还可视需求选择为平面或曲面。当成像面为曲面(例如具有一曲率半径的球面),有助于降低聚焦光线于成像面所需的入射角,除有助于达成微缩光学成像系统的长度(TTL)外,对于提升相对照度也有所帮助。
根据上述实施方式,以下提出具体实施例并结合附图予以详细说明。
第一实施例
请参照图1至图3,其中图1为本实用新型第一实施例的一种光学成像系统的示意图,图2由左至右依序为第一实施例的光学成像系统的球差、像散及光学畸变曲线图。第3图为第一实施例的可见光频谱调制转换特征图。由图1可知,光学成像系统10由物侧至像侧依序包含第一透镜110、光圈100、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、红外线滤光片180、成像面190以及影像感测组件192。
第一透镜110具有负屈折力,且为塑料材质,其物侧面112为凹面,其像侧面114为凹面,并皆为非球面,且其物侧面112具有二反曲点。第一透镜于光轴上的厚度为TP1,第一透镜在1/2入射瞳直径(HEP)高度的厚度以ETP1表示。
第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI121表示,其满足下列条件:SGI111=-0.0031mm;│SGI111│/(│SGI111│+TP1)=0.0016。
第一透镜物侧面于光轴上的交点至第一透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI112表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI122表示,其满足下列条件:SGI112=1.3178mm;│SGI112│/(│SGI112│+TP1)=0.4052。
第一透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF121表示,其满足下列条件:HIF111=0.5557mm;HIF111/HOI=0.1111。
第一透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF112表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF122表示,其满足下列条件:HIF112=5.3732mm;HIF112/HOI=1.0746。
第二透镜120具有正屈折力,且为塑料材质,其物侧面122为凸面,其像侧面124为凸面,并皆为非球面,且其物侧面122具有一反曲点。第二透镜于光轴上的厚度为TP2,第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示。
第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI221表示,其满足下列条件:SGI211=0.1069mm;│SGI211│/(│SGI211│+TP2)=0.0412;SGI221=0mm;│SGI221│/(│SGI221│+TP2)=0。
第二透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF221表示,其满足下列条件:HIF211=1.1264mm;HIF211/HOI=0.2253;HIF221=0mm;HIF221/HOI=0。
第三透镜130具有负屈折力,且为塑料材质,其物侧面132为凹面,其像侧面134为凸面,并皆为非球面,且其物侧面132以及像侧面134均具有一反曲点。第三透镜于光轴上的厚度为TP3,第三透镜在1/2入射瞳直径(HEP)高度的厚度以ETP3表示。
第三透镜物侧面于光轴上的交点至第三透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI321表示,其满足下列条件:SGI311=-0.3041mm;│SGI311│/(│SGI311│+TP3)=0.4445;SGI321=-0.1172mm;│SGI321│/(│SGI321│+TP3)=0.2357。
第三透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF321表示,其满足下列条件:HIF311=1.5907mm;HIF311/HOI=0.3181;HIF321=1.3380mm;HIF321/HOI=0.2676。
第四透镜140具有正屈折力,且为塑料材质,其物侧面142为凸面,其像侧面144为凹面,并皆为非球面,且其物侧面142具有二反曲点以及像侧面144具有一反曲点。第四透镜于光轴上的厚度为TP4,第四透镜在1/2入射瞳直径(HEP)高度的厚度以ETP4表示。
第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421表示,其满足下列条件:SGI411=0.0070mm;│SGI411│/(│SGI411│+TP4)=0.0056;SGI421=0.0006mm;│SGI421│/(│SGI421│+TP4)=0.0005。
第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI422表示,其满足下列条件:SGI412=-0.2078mm;│SGI412│/(│SGI412│+TP4)=0.1439。
第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF421表示,其满足下列条件:HIF411=0.4706mm;HIF411/HOI=0.0941;HIF421=0.1721mm;HIF421/HOI=0.0344。
第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF422表示,其满足下列条件:HIF412=2.0421mm;HIF412/HOI=0.4084。
第五透镜150具有正屈折力,且为塑料材质,其物侧面152为凸面,其像侧面154为凸面,并皆为非球面,且其物侧面152具有二反曲点以及像侧面154具有一反曲点。第五透镜于光轴上的厚度为TP5,第五透镜在1/2入射瞳直径(HEP)高度的厚度以ETP5表示。
第五透镜物侧面于光轴上的交点至第五透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI511表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI521表示,其满足下列条件:SGI511=0.00364mm;│SGI511│/(│SGI511│+TP5)=0.00338;SGI521=-0.63365mm;│SGI521│/(│SGI521│+TP5)=0.37154。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI512表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI522表示,其满足下列条件:SGI512=-0.32032mm;│SGI512│/(│SGI512│+TP5)=0.23009。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离以SGI513表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离以SGI523表示,其满足下列条件:SGI513=0mm;│SGI513│/(│SGI513│+TP5)=0;SGI523=0mm;│SGI523│/(│SGI523│+TP5)=0。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离以SGI514表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离以SGI524表示,其满足下列条件:SGI514=0mm;│SGI514│/(│SGI514│+TP5)=0;SGI524=0mm;│SGI524│/(│SGI524│+TP5)=0。
第五透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF511表示,第五透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF521表示,其满足下列条件:HIF511=0.28212mm;HIF511/HOI=0.05642;HIF521=2.13850mm;HIF521/HOI=0.42770。
第五透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF512表示,第五透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF522表示,其满足下列条件:HIF512=2.51384mm;HIF512/HOI=0.50277。
第五透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF513表示,第五透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF523表示,其满足下列条件:HIF513=0mm;HIF513/HOI=0;HIF523=0mm;HIF523/HOI=0。
第五透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF514表示,第五透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF524表示,其满足下列条件:HIF514=0mm;HIF514/HOI=0;HIF524=0mm;HIF524/HOI=0。
第六透镜160具有负屈折力,且为塑料材质,其物侧面162为凹面,其像侧面164为凹面,且其物侧面162具有二反曲点以及像侧面164具有一反曲点。借此,可有效调整各视场入射于第六透镜的角度而改善像差。第六透镜于光轴上的厚度为TP6,第六透镜在1/2入射瞳直径(HEP)高度的厚度以ETP6表示。
第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI611表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:SGI611=-0.38558mm;│SGI611│/(│SGI611│+TP6)=0.27212;SGI621=0.12386mm;│SGI621│/(│SGI621│+TP6)=0.10722。
第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI612表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:SGI612=-0.47400mm;│SGI612│/(│SGI612│+TP6)=0.31488;SGI622=0mm;│SGI622│/(│SGI622│+TP6)=0。
第六透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF611表示,第六透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF621表示,其满足下列条件:HIF611=2.24283mm;HIF611/HOI=0.44857;HIF621=1.07376mm;HIF621/HOI=0.21475。
第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF612表示,第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF622表示,其满足下列条件:HIF612=2.48895mm;HIF612/HOI=0.49779。
第六透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF613表示,第六透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF623表示,其满足下列条件:HIF613=0mm;HIF613/HOI=0;HIF623=0mm;HIF623/HOI=0。
第六透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF614表示,第六透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF624表示,其满足下列条件:HIF614=0mm;HIF614/HOI=0;HIF624=0mm;HIF624/HOI=0。
本实施例第一透镜物侧面上于1/2HEP高度的坐标点至成像面间平行于光轴的距离为ETL,第一透镜物侧面上于1/2HEP高度的坐标点至第六透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件:ETL=19.304mm;EIN=15.733mm;EIN/ETL=0.815。
本实施例满足下列条件,ETP1=2.371mm;ETP2=2.134mm;ETP3=0.497mm;ETP4=1.111mm;ETP5=1.783mm;ETP6=1.404mm。所述ETP1至ETP6的总和SETP=9.300mm。TP1=2.064mm;TP2=2.500mm;TP3=0.380mm;TP4=1.186mm;TP5=2.184mm;TP6=1.105mm;所述TP1至TP6的总和STP=9.419mm。SETP/STP=0.987。SETP/EIN=0.5911。
本实施例为特别控制各透镜在1/2入射瞳直径(HEP)高度的厚度(ETP)与该表面所属的透镜于光轴上的厚度(TP)间的比例关系(ETP/TP),以在制造性以及修正像差能力间取得平衡,其满足下列条件,ETP1/TP1=1.149;ETP2/TP2=0.854;ETP3/TP3=1.308;ETP4/TP4=0.936;ETP5/TP5=0.817;ETP6/TP6=1.271。
本实施例为控制各相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离,以在光学成像系统的长度HOS“微缩”程度、制造性以及修正像差能力三者间取得平衡,特别是控制相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED)与该相邻两透镜于光轴上的水平距离(IN)间的比例关系(ED/IN),其满足下列条件,第一透镜与第二透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED12=5.285mm;第二透镜与第三透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED23=0.283mm;第三透镜与第四透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED34=0.330mm;第四透镜与第五透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED45=0.348mm;第五透镜与第六透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED56=0.187mm。所述ED12至ED56的总和以SED表示并且SED=6.433mm。
第一透镜与第二透镜于光轴上的水平距离为IN12=5.470mm,ED12/IN12=0.966。第二透镜与第三透镜于光轴上的水平距离为IN23=0.178mm,ED23/IN23=1.590。第三透镜与第四透镜于光轴上的水平距离为IN34=0.259mm,ED34/IN34=1.273。第四透镜与第五透镜于光轴上的水平距离为IN45=0.209mm,ED45/IN45=1.664。第五透镜与第六透镜于光轴上的水平距离为IN56=0.034mm,ED56/IN56=5.557。所述IN12至IN56的总和以SIN表示并且SIN=6.150mm。SED/SIN=1.046。
本实施还满足以下条件:ED12/ED23=18.685;ED23/ED34=0.857;ED34/ED45=0.947;ED45/ED56=1.859;IN12/IN23=30.746;IN23/IN34=0.686;IN34/IN45=1.239;IN45/IN56=6.207。
第六透镜像侧面上于1/2HEP高度的坐标点至成像面间平行于光轴的水平距离为EBL=3.570mm,第六透镜像侧面上与光轴的交点至成像面之间平行于光轴的水平距离为BL=4.032mm,本实用新型的实施例可满足下列公式:EBL/BL=0.8854。本实施例第六透镜像侧面上于1/2HEP高度的坐标点至红外线滤光片之间平行于光轴的距离为EIR=1.950mm,第六透镜像侧面上与光轴的交点至红外线滤光片之间平行于光轴的距离为PIR=2.121mm,并满足下列公式:EIR/PIR=0.920。
红外线滤光片180为玻璃材质,其设置于第六透镜160及成像面190间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,光学成像系统的焦距为f,光学成像系统的入射瞳直径为HEP,光学成像系统中最大视角的一半为HAF,其数值如下:f=4.075mm;f/HEP=1.4;以及HAF=50.001度与tan(HAF)=1.1918。
本实施例的光学成像系统中,第一透镜110的焦距为f1,第六透镜160的焦距为f6,其满足下列条件:f1=-7.828mm;│f/f1│=0.52060;f6=-4.886;以及│f1│>│f6│。
本实施例的光学成像系统中,第二透镜120至第五透镜150的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│+│f5│=95.50815mm;│f1│+│f6│=12.71352mm以及│f2│+│f3│+│f4│+│f5│>│f1│+│f6│。
光学成像系统的焦距f与每一片具有正屈折力的透镜焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜焦距fn的比值NPR,本实施例的光学成像系统中,所有正屈折力的透镜的PPR总和为ΣPPR=f/f2+f/f4+f/f5=1.63290,所有负屈折力的透镜的NPR总和为ΣNPR=│f/f1│+│f/f3│+│f/f6│=1.51305,ΣPPR/│ΣNPR│=1.07921。同时亦满足下列条件:│f/f2│=0.69101;│f/f3│=0.15834;│f/f4│=0.06883;│f/f5│=0.87305;│f/f6│=0.83412。
本实施例的光学成像系统中,第一透镜物侧面112至第六透镜像侧面164间的距离为InTL,第一透镜物侧面112至成像面190间的距离为HOS,光圈100至成像面190间的距离为InS,影像感测组件192有效感测区域对角线长的一半为HOI,第六透镜像侧面164至成像面190间的距离为BFL,其满足下列条件:InTL+BFL=HOS;HOS=19.54120mm;HOI=5.0mm;HOS/HOI=3.90824;HOS/f=4.7952;InS=11.685mm;以及InS/HOS=0.59794。
本实施例的光学成像系统中,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:ΣTP=8.13899mm;以及ΣTP/InTL=0.52477。借此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。
本实施例的光学成像系统中,第一透镜物侧面112的曲率半径为R1,第一透镜像侧面114的曲率半径为R2,其满足下列条件:│R1/R2│=8.99987。借此,第一透镜具备适当正屈折力强度,避免球差增加过速。
本实施例的光学成像系统中,第六透镜物侧面162的曲率半径为R11,第六透镜像侧面164的曲率半径为R12,其满足下列条件:(R11-R12)/(R11+R12)=1.27780。借此,有利于修正光学成像系统所产生的像散。
本实施例的光学成像系统中,所有具正屈折力的透镜焦距总和为ΣPP,其满足下列条件:ΣPP=f2+f4+f5=69.770mm;以及f5/(f2+f4+f5)=0.067。借此,有助于适当分配单一透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜焦距总和为ΣNP,其满足下列条件:ΣNP=f1+f3+f6=-38.451mm;以及f6/(f1+f3+f6)=0.127。借此,有助于适当分配第六透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的间隔距离为IN12,其满足下列条件:IN12=6.418mm;IN12/f=1.57491。借此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第五透镜150与第六透镜160于光轴上的间隔距离为IN56,其满足下列条件:IN56=0.025mm;IN56/f=0.00613。借此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的厚度分别为TP1以及TP2,其满足下列条件:TP1=1.934mm;TP2=2.486mm;以及(TP1+IN12)/TP2=3.36005。借此,有助于控制光学成像系统制造的敏感度并提升其性能。
本实施例的光学成像系统中,第五透镜150与第六透镜160于光轴上的厚度分别为TP5以及TP6,第五透镜150与第六透镜160于光轴上的间隔距离为IN56,其满足下列条件:TP5=1.072mm;TP6=1.031mm;以及(TP6+IN56)/TP5=0.98555。借此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
本实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上的间隔距离为IN34,第四透镜140与第五透镜150于光轴上的间隔距离为IN45,其满足下列条件:IN34=0.401mm;IN45=0.025mm;以及TP4/(IN34+TP4+IN45)=0.74376。借此,有助于层层微幅修正入射光线行进过程所产生的像差并降低系统总高度。
本实施例的光学成像系统中,第五透镜物侧面152于光轴上的交点至第五透镜物侧面152的最大有效半径位置于光轴的水平位移距离为InRS51,第五透镜像侧面154于光轴上的交点至第五透镜像侧面154的最大有效半径位置于光轴的水平位移距离为InRS52,第五透镜150于光轴上的厚度为TP5,其满足下列条件:InRS51=-0.34789mm;InRS52=-0.88185mm;│InRS51│/TP5=0.32458以及│InRS52│/TP5=0.82276。借此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第五透镜物侧面152的临界点与光轴的垂直距离为HVT51,第五透镜像侧面154的临界点与光轴的垂直距离为HVT52,其满足下列条件:HVT51=0.515349mm;HVT52=0mm。
本实施例的光学成像系统中,第六透镜物侧面162于光轴上的交点至第六透镜物侧面162的最大有效半径位置于光轴的水平位移距离为InRS61,第六透镜像侧面164于光轴上的交点至第六透镜像侧面164的最大有效半径位置于光轴的水平位移距离为InRS62,第六透镜160于光轴上的厚度为TP6,其满足下列条件:InRS61=-0.58390mm;InRS62=0.41976mm;│InRS61│/TP6=0.56616以及│InRS62│/TP6=0.40700。借此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第六透镜物侧面162的临界点与光轴的垂直距离为HVT61,第六透镜像侧面164的临界点与光轴的垂直距离为HVT62,其满足下列条件:HVT61=0mm;HVT62=0mm。
本实施例的光学成像系统中,其满足下列条件:HVT51/HOI=0.1031。借此,有助于光学成像系统外围视场的像差修正。
本实施例的光学成像系统中,其满足下列条件:HVT51/HOS=0.02634。借此,有助于光学成像系统外围视场的像差修正。
本实施例的光学成像系统中,第三透镜以及第六透镜具有负屈折力,第三透镜的色散系数为NA3,第六透镜的色散系数为NA6,其满足下列条件:NA6/NA3≤1。借此,有助于光学成像系统色差的修正。
本实施例的光学成像系统中,光学成像系统于结像时的TV畸变为TDT,结像时的光学畸变为ODT,其满足下列条件:TDT=2.124%;ODT=5.076%。
本实施例的光学成像系统中,可见光在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率(MTF数值)分别以MTFE0、MTFE3以及MTFE7表示,其满足下列条件:MTFE0约为0.84;MTFE3约为0.84;以及MTFE7约为0.75。可见光在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率110cycles/mm的调制转换对比转移率(MTF数值)分别以MTFQ0、MTFQ3以及MTFQ7表示,其满足下列条件:MTFQ0约为0.66;MTFQ3约为0.65;以及MTFQ7约为0.51。在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率220cycles/mm的调制转换对比转移率(MTF数值)分别以MTFH0、MTFH3以及MTFH7表示,其满足下列条件:MTFH0约为0.17;MTFH3约为0.07;以及MTFH7约为0.14。
本实施例的光学成像系统中,红外线工作波长850nm当聚焦在成像面上,影像在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率(55cycles/mm)的调制转换对比转移率(MTF数值)分别以MTFI0、MTFI3以及MTFI7表示,其满足下列条件:MTFI0约为0.81;MTFI3约为0.8;以及MTFI7约为0.15。
参照下列表一以及表二。
Figure BDA0002568209330000271
Figure BDA0002568209330000281
表二、第一实施例之非球面系数
Figure BDA0002568209330000282
Figure BDA0002568209330000291
表一为第一实施例详细的结构数据,其中曲率半径、厚度、距离及焦距的单位为mm,且表面0-16依序表示由物侧至像侧的表面。表二为第一实施例中的非球面数据,其中,k表非球面曲线方程式中的锥面系数,A1-A20则表示各表面第1-20阶非球面系数。此外,以下各实施例表格仍对应各实施例的示意图与像差曲线图,表格中数据的定义皆与第一实施例的表一及表二的定义相同,在此不加赘述。
第二实施例
请参照图4至图6,其中图4为本实用新型第二实施例的光学成像系统示意图,图5由左至右依序为第二实施例的光学成像系统的球差、像散及光学畸变曲线图。图6为本实用新型第二实施例的可见光频谱调制转换特征图。由图4可知,光学成像系统20由物侧至像侧依序包含第一透镜210、第二透镜220、光圈200、第三透镜230、第四透镜240、第五透镜250、第六透镜260、红外线滤光片280、成像面290以及影像感测组件292。
第一透镜210具有负屈折力,且为塑料材质,其物侧面212为凹面,其像侧面214为凹面,并皆为非球面,且其物侧面212具有一反曲点。
第二透镜220具有负屈折力,且为塑料材质,其物侧面222为凹面,其像侧面224为凸面,并皆为非球面,且其像侧面224具有一反曲点。
第三透镜230具有正屈折力,且为塑料材质,其物侧面232为凸面,其像侧面234为凸面,并皆为非球面,且其物侧面232具有一反曲点。
第四透镜240具有负屈折力,且为塑料材质,其物侧面242为凸面,其像侧面244为凹面,并皆为非球面,且其物侧面242具有一反曲点。
第五透镜250具有正屈折力,且为塑料材质,其物侧面252为凸面,其像侧面254为凸面,并皆为非球面,且其像侧面254具有一反曲点。
第六透镜260具有负屈折力,且为塑料材质,其物侧面262为凸面,其像侧面264为凹面,并皆为非球面,且其物侧面262以及像侧面264均具有一反曲点。借此,有利于缩短其后焦距以维持小型化。另外,可有效地压制离轴视场光线入射的角度,进一步修正离轴视场的像差。
红外线滤光片280为玻璃材质,其设置于第六透镜260及成像面290间且不影响光学成像系统的焦距。
请配合参照下列表三以及表四。
Figure BDA0002568209330000301
表四、第二实施例之非球面系数
Figure BDA0002568209330000302
Figure BDA0002568209330000311
第二实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表三及表四可得到下列条件式数値:
Figure BDA0002568209330000312
Figure BDA0002568209330000321
依据表三及表四可得到下列数値:
Figure BDA0002568209330000322
Figure BDA0002568209330000331
第三实施例
请参照图7至图9,其中图7为本实用新型第三实施例的光学成像系统示意图,图8由左至右依序为第三实施例光学成像系统的球差、像散及光学畸变曲线图。图9为第三实施例的可见光频谱调制转换特征图。由图7可知,光学成像系统30由物侧至像侧依序包含第一透镜310、第二透镜320、光圈300、第三透镜330、第四透镜340、第五透镜350、第六透镜360、红外线滤光片380、成像面390以及影像感测组件392。
第一透镜310具有负屈折力,且为塑料材质,其物侧面312为凹面,其像侧面314为凹面,并皆为球面,且其物侧面312具有二反曲点以及像侧面314具有一反曲点。
第二透镜320具有正屈折力,且为塑料材质,其物侧面322为凹面,其像侧面324为凸面,并皆为非球面,且其像侧面324具有一反曲点。
第三透镜330具有正屈折力,且为塑料材质,其物侧面332为凸面,其像侧面334为凸面,并皆为非球面,且其物侧面332具有一反曲点。
第四透镜340具有负屈折力,且为塑料材质,其物侧面342为凸面,其像侧面344为凹面,并皆为非球面,且其物侧面342以及像侧面344均具有一反曲点。
第五透镜350具有正屈折力,且为塑料材质,其物侧面352为凸面,其像侧面354为凸面,并皆为非球面,且其物侧面352以及像侧面354均具有一反曲点。
第六透镜360具有负屈折力,且为塑料材质,其物侧面362为凸面,其像侧面364为凹面,并皆为非球面,且其物侧面362以及像侧面364均具有一反曲点。借此,有利于缩短其后焦距以维持小型化。另外,可有效地压制离轴视场光线入射的角度,进一步修正离轴视场的像差。
红外线滤光片380为塑料材质,其设置于第六透镜360及成像面390间且不影响光学成像系统的焦距。
请配合参照下列表五以及表六。
Figure BDA0002568209330000332
Figure BDA0002568209330000341
表六、第三实施例的非球面系数
Figure BDA0002568209330000342
Figure BDA0002568209330000351
第三实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表五及表六可得到下列条件式数値:
Figure BDA0002568209330000352
Figure BDA0002568209330000361
依据表五及表六可得到下列条件式数値:
Figure BDA0002568209330000362
第四实施例
请参照图10至图12,其中图10为本实用新型第四实施例的光学成像系统示意图,图11由左至右依序为第四实施例的光学成像系统球差、像散及光学畸变曲线图。图12为第四实施例的可见光频谱调制转换特征图。由图10可知,光学成像系统40由物侧至像侧依序包含第一透镜410、第二透镜420、光圈400、第三透镜430、第四透镜440、第五透镜450、第六透镜460、红外线滤光片480、成像面490以及影像感测组件492。
第一透镜410具有负屈折力,且为塑料材质,其物侧面412为凹面,其像侧面414为凹面,并皆为非球面,且其物侧面412具有一反曲点。
第二透镜420具有负屈折力,且为塑料材质,其物侧面422为凹面,其像侧面424为凸面,并皆为非球面。
第三透镜430具有正屈折力,且为塑料材质,其物侧面432为凸面,其像侧面434为凸面,并皆为非球面,且其物侧面432具有一反曲点。
第四透镜440具有正屈折力,且为塑料材质,其物侧面442为凸面,其像侧面444为凹面,并皆为非球面,且其物侧面442以及像侧面444均具有一反曲点。
第五透镜450具有正屈折力,且为塑料材质,其物侧面452为凸面,其像侧面454为凸面,并皆为非球面,且其像侧面454具有一反曲点。
第六透镜460具有负屈折力,且为塑料材质,其物侧面462为凸面,其像侧面464为凹面,并皆为非球面,且其物侧面462以及像侧面464均具有一反曲点。借此,有利于缩短其后焦距以维持小型化。另外,可有效地压制离轴视场光线入射的角度,进一步修正离轴视场的像差。
红外线滤光片480为玻璃材质,其设置于第六透镜460及成像面490间且不影响光学成像系统的焦距。
请配合参照下列表七以及表八。
Figure BDA0002568209330000371
Figure BDA0002568209330000381
表八、第四实施例的非球面系数
Figure BDA0002568209330000382
Figure BDA0002568209330000391
第四实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表七及表八可得到下列条件式数値:
Figure BDA0002568209330000392
Figure BDA0002568209330000401
依据表七及表八可得到下列条件式数値:
Figure BDA0002568209330000402
第五实施例
请参照图13至图15,其中图13为本实用新型第五实施例的光学成像系统示意图,图14由左至右依序为第五实施例光学成像系统的球差、像散及光学畸变曲线图。图15为第五实施例的可见光频谱调制转换特征图。由图13可知,光学成像系统50由物侧至像侧依序包含第一透镜510、第二透镜520、光圈500、第三透镜530、第四透镜540、第五透镜550、第六透镜560、红外线滤光片580、成像面590以及影像感测组件592。
第一透镜510具有负屈折力,且为塑料材质,其物侧面512为凹面,其像侧面514为凹面,并皆为非球面,且其物侧面512具有一反曲点。
第二透镜520具有负屈折力,且为塑料材质,其物侧面522为凹面,其像侧面524为凹面,并皆为非球面,且其像侧面524具有二反曲点。
第三透镜530具有正屈折力,且为塑料材质,其物侧面532为凸面,其像侧面534为凸面,并皆为非球面。
第四透镜540具有负屈折力,且为塑料材质,其物侧面542为凸面,其像侧面544为凹面,并皆为非球面,且其物侧面542以及像侧面544均具有一反曲点。
第五透镜550具有正屈折力,且为塑料材质,其物侧面552为凸面,其像侧面554为凸面,并皆为非球面,且其及像侧面514具有一反曲点。
第六透镜560具有负屈折力,且为塑料材质,其物侧面562为凸面,其像侧面564为凹面,并皆为非球面,且其物侧面562以及像侧面564均具有一反曲点。借此,有利于缩短其后焦距以维持小型化。另外,可有效地压制离轴视场光线入射的角度,并修正离轴视场的像差。
红外线滤光片580为玻璃材质,其设置于第六透镜560及成像面590间且不影响光学成像系统的焦距。
请配合参照下列表九以及表十。
Figure BDA0002568209330000411
Figure BDA0002568209330000421
表十、第五实施例的非球面系数
Figure BDA0002568209330000422
第五实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。依据表九及表十可得到下列条件式数値:
Figure BDA0002568209330000431
Figure BDA0002568209330000441
依据表九及表十可得到下列条件式数値:
Figure BDA0002568209330000442
第六实施例
请参照图16至图18,其中图16为本实用新型第六实施例的光学成像系统示意图,图17由左至右依序为第六实施例光学成像系统的球差、像散及光学畸变曲线图。图18为本第五实施例的可见光频谱调制转换特征图。由图16可知,光学成像系统60由物侧至像侧依序包含第一透镜610、第二透镜620、光圈600、第三透镜630、第四透镜640、第五透镜650、第六透镜660、红外线滤光片680、成像面690以及影像感测组件692。
第一透镜610具有负屈折力,且为塑料材质,其物侧面612为凹面,其像侧面614为凹面,并皆为非球面,且其物侧面612以及像侧面614均具有一反曲点。
第二透镜620具有负屈折力,且为塑料材质,其物侧面622为凹面,其像侧面624为凸面,并皆为非球面,且其物侧面642具有二反曲点以及像侧面614具有一反曲点。
第三透镜630具有正屈折力,且为塑料材质,其物侧面632为凸面,其像侧面634为凸面,并皆为非球面。
第四透镜640具有负屈折力,且为塑料材质,其物侧面642为凸面,其像侧面644为凹面,并皆为非球面,且其物侧面642以及像侧面644均具有一反曲点。
第五透镜650具有正屈折力,且为塑料材质,其物侧面652为凹面,其像侧面654为凸面,并皆为非球面,且其物侧面652具有二反曲点以及像侧面654具有一反曲点。
第六透镜660具有负屈折力,且为塑料材质,其物侧面662为凸面,其像侧面664为凹面,并皆为非球面,且其物侧面662具有二反曲点以及像侧面664具有一反曲点。借此,有利于缩短其后焦距以维持小型化,亦可有效地压制离轴视场光线入射的角度,进一步修正离轴视场的像差。
红外线滤光片680为玻璃材质,其设置于第六透镜660及成像面690间且不影响光学成像系统的焦距。
请配合参照下列表十一以及表十二。
Figure BDA0002568209330000451
表十二、第六实施例的非球面系数
Figure BDA0002568209330000452
Figure BDA0002568209330000461
第六实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十一及表十二可得到下列条件式数値:
Figure BDA0002568209330000462
Figure BDA0002568209330000471
依据表十一及表十二可得到下列条件式数値:
Figure BDA0002568209330000472
Figure BDA0002568209330000481
尽管本实用新型的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本实用新型的限制。在本领域技术人员阅读了上述内容后,对于本实用新型的多种修改和替代都将是显而易见的。因此,本实用新型的保护范围应由所附的权利要求来限定。

Claims (24)

1.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有负屈折力;
第二透镜,具有负屈折力;
第三透镜,具有正屈折力;
第四透镜,具有屈折力;
第五透镜,具有屈折力;
第六透镜,具有屈折力;以及
成像面;
所述光学成像系统具有屈折力的透镜为六枚且所有透镜材质为塑料,所述光学成像系统于所述成像面上具有一最大成像高度HOI,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有距离HOS,所述光学成像系统最大可视角度的一半为HAF,所述第一透镜至所述第六透镜于1/2HEP高度且平行于光轴的厚度分别为ETP1、ETP2、ETP3、ETP4、ETP5以及ETP6,前述ETP1至ETP6的总和为SETP,所述第一透镜至所述第六透镜于光轴的厚度分别为TP1、TP2、TP3、TP4、TP5以及TP6,TP1至TP6的总和为STP,满足下列条件:1.0≤f/HEP≤3.0;50deg≤HAF≤70deg;0.5≤HOS/f≤5;以及0.5≤SETP/STP<1。
2.如权利要求1所述光学成像系统,其特征在于,所述光学成像系统满足下列关系式:0.5≤HOS/HOI≤3。
3.如权利要求1所述光学成像系统,其特征在于,所述光学成像系统还包括光圈,所述光圈位于所述第三透镜像侧面前。
4.如权利要求1所述光学成像系统,其特征在于,所述第一透镜的物侧面以及像侧面于光轴上均为凹面。
5.如权利要求1所述光学成像系统,其特征在于,所述第六透镜的物侧面于光轴上为凸面。
6.如权利要求1所述光学成像系统,其特征在于,所述第二透镜的物侧面于光轴上为凹面、像侧面于光轴上为凸面。
7.如权利要求1所述光学成像系统,其特征在于,所述第五透镜的物侧面以及像侧面于光轴上均为凸面。
8.如权利要求1所述光学成像系统,其特征在于,可见光在所述成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率分别以MTFE0、MTFE3以及MTFE7表示,满足下列条件:MTFE0≥0.2;MTFE3≥0.01;以及MTFE7≥0.01。
9.如权利要求1所述光学成像系统,其特征在于,所述光学成像系统还包括光圈,并且所述光圈至所述成像面于光轴上的距离为InS,满足下列公式:0.1≤InS/HOS≤1.1。
10.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有负屈折力;
第二透镜,具有负屈折力;
第三透镜,具有正屈折力;
第四透镜,具有屈折力;
第五透镜,具有正屈折力;
第六透镜,具有屈折力;以及
成像面;
所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第二透镜至所述第六透镜中至少一透镜具有正屈折力,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述第一透镜物侧面与光轴的交点至所述成像面与光轴的交点间于光轴上具有距离HOS,所述光学成像系统的最大可视角度的一半为HAF,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述成像面间平行于光轴的水平距离为ETL,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述第六透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,满足下列条件:1.0≤f/HEP≤3.0;50deg≤HAF≤70deg;0.5≤HOS/f≤5;以及0.2≤EIN/ETL<1。
11.如权利要求10所述光学成像系统,其特征在于,可见光在所述成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率110cycles/mm的调制转换对比转移率分别以MTFQ0、MTFQ3以及MTFQ7表示,满足下列条件:MTFQ0≥0.2;MTFQ3≥0.01;以及MTFQ7≥0.01。
12.如权利要求10所述光学成像系统,其特征在于,所述第四透镜与所述第五透镜之间于光轴上的距离为IN45,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN45>IN56。
13.如权利要求10所述光学成像系统,其特征在于,所述第二透镜与所述第三透镜之间于光轴上的距离为IN23,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN23≥IN56。
14.如权利要求10所述光学成像系统,其特征在于,所述第三透镜与所述第五透镜于光轴上的厚度分别为TP3以及TP5,满足下列条件:TP5>TP3。
15.如权利要求10所述光学成像系统,其特征在于,所述第二透镜与所述第三透镜于光轴上的厚度分别为TP2以及TP3,满足下列条件:TP3>TP2。
16.如权利要求10所述光学成像系统,其特征在于,所述第一透镜的物侧面具有至少一反曲点。
17.如权利要求10所述光学成像系统,其特征在于,所述第五透镜像侧面上于1/2HEP高度的坐标点至所述第六透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED56,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:0<ED56/IN56≤50。
18.如权利要求10所述光学成像系统,其特征在于,所述第一透镜至所述第六透镜于1/2HEP高度且平行于光轴的厚度分别为ETP1、ETP2、ETP3、ETP4、ETP5以及ETP6,ETP1至ETP6的总和为SETP,满足下列公式:0.3≤SETP/EIN<1。
19.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有负屈折力,所述第一透镜的物侧面以及像侧面于光轴上均为凹面;
第二透镜,具有负屈折力;
第三透镜,具有正屈折力;
第四透镜,具有屈折力;
第五透镜,具有正屈折力;
第六透镜,具有屈折力;以及
成像面;
所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,且所有透镜的材质为塑料,所述光学成像系统的焦距为f,所述光学成像系统的入射瞳直径为HEP,所述光学成像系统的最大视角的一半为HAF,所述第一透镜物侧面至成像面于光轴上具有距离HOS,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述成像面间平行于光轴的水平距离为ETL,所述第一透镜物侧面上于1/2HEP高度的坐标点至所述第六透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,满足下列条件:1.0≤f/HEP≤3;50deg≤HAF≤70deg;0.5≤HOS/f≤5;0.5≤HOS/HOI≤3以及0.2≤EIN/ETL<1。
20.如权利要求19所述光学成像系统,其特征在于,可见光在成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率分别以MTFE0、MTFE3以及MTFE7表示,满足下列条件:MTFE0≥0.2;MTFE3≥0.01;以及MTFE7≥0.01。
21.如权利要求19所述光学成像系统,其特征在于,所述第三透镜与所述第五透镜于光轴上的厚度分别为TP3以及TP5,满足下列条件:TP5>TP3。
22.如权利要求19所述光学成像系统,其特征在于,所述第六透镜的物侧面于光轴上为凸面。
23.如权利要求19所述光学成像系统,其特征在于,所述第四透镜与所述第五透镜之间于光轴上的距离为IN45,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,满足下列条件:IN45>IN56。
24.如权利要求19所述光学成像系统,其特征在于,所述光学成像系统还包括光圈、影像感测组件以及驱动模块,所述影像感测组件设置于所述成像面,并且所述光圈至所述成像面于光轴上具有距离InS,所述驱动模块与所有透镜相耦合并使透镜产生位移,满足下列公式:0.2≤InS/HOS≤1.1。
CN202021285575.XU 2020-05-20 2020-07-03 光学成像系统 Active CN212379645U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109206234U TWM599397U (zh) 2020-05-20 2020-05-20 光學成像系統
TW109206234 2020-05-20

Publications (1)

Publication Number Publication Date
CN212379645U true CN212379645U (zh) 2021-01-19

Family

ID=73004041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021285575.XU Active CN212379645U (zh) 2020-05-20 2020-07-03 光学成像系统

Country Status (2)

Country Link
CN (1) CN212379645U (zh)
TW (1) TWM599397U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442273A (zh) * 2021-12-31 2022-05-06 江西晶超光学有限公司 一种光学成像系统、摄像头模组以及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784273B (zh) * 2020-05-20 2022-11-21 先進光電科技股份有限公司 光學成像系統
CN112114417B (zh) * 2020-09-24 2023-04-14 玉晶光电(厦门)有限公司 光学透镜组
CN113311569B (zh) * 2021-06-03 2023-09-01 玉晶光电(厦门)有限公司 光学成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442273A (zh) * 2021-12-31 2022-05-06 江西晶超光学有限公司 一种光学成像系统、摄像头模组以及电子设备

Also Published As

Publication number Publication date
TWM599397U (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
CN108957688B (zh) 光学成像系统
CN107203030B (zh) 光学成像系统
CN108279473B (zh) 光学成像系统
CN107402432B (zh) 光学成像系统
CN107589523B (zh) 光学成像系统
CN108279478B (zh) 光学成像系统
CN108279480B (zh) 光学成像系统
CN108279479B (zh) 光学成像系统
CN108279481B (zh) 光学成像系统
CN107132642B (zh) 光学成像系统
CN107765398B (zh) 光学成像系统
CN106814439B (zh) 光学成像系统
CN107589520B (zh) 光学成像系统
CN107153252B (zh) 光学成像系统
CN107153256B (zh) 光学成像系统
CN108279482B (zh) 光学成像系统
CN212379645U (zh) 光学成像系统
CN107153255B (zh) 光学成像系统
CN108873250B (zh) 光学成像系统
CN110308538B (zh) 光学成像系统
CN110275274B (zh) 光学成像系统
CN107643581B (zh) 光学成像系统
CN110515177B (zh) 光学成像系统
CN107589519B (zh) 光学成像系统
CN110275275B (zh) 光学成像系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant