CN212330878U - Angle-adjustable pipeline assembling robot - Google Patents

Angle-adjustable pipeline assembling robot Download PDF

Info

Publication number
CN212330878U
CN212330878U CN202021339522.1U CN202021339522U CN212330878U CN 212330878 U CN212330878 U CN 212330878U CN 202021339522 U CN202021339522 U CN 202021339522U CN 212330878 U CN212330878 U CN 212330878U
Authority
CN
China
Prior art keywords
pipeline
vision module
displacement platform
axis displacement
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021339522.1U
Other languages
Chinese (zh)
Inventor
孙龙飞
黄正凯
邓亚宏
徐小平
贺潇
邓从蓉
梅劲松
陈珉
徐浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Third Engineering Bureau second construction and installation Co., Ltd
Second Construction Engineering Co Ltd of China Construction Third Engineering Division
Original Assignee
Second Construction Engineering Co Ltd of China Construction Third Engineering Division
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Construction Engineering Co Ltd of China Construction Third Engineering Division filed Critical Second Construction Engineering Co Ltd of China Construction Third Engineering Division
Priority to CN202021339522.1U priority Critical patent/CN212330878U/en
Application granted granted Critical
Publication of CN212330878U publication Critical patent/CN212330878U/en
Priority to PCT/CN2021/105119 priority patent/WO2022007872A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

The utility model relates to an angularly adjustable pipeline group is to robot, the robot includes: six displacement platform, 2D vision module, line laser vision module, bearing trolley, electromagnetic lock, concave groove, light source, industrial computer, display screen, its characterized in that: the six-axis displacement platform is placed on the bearing trolley, a concave groove is formed in the six-axis displacement platform, an electromagnet is arranged at the bottom of the concave groove, a short support is arranged on the lower portion of the six-axis displacement platform, a linear laser vision module is arranged on the short support, a long support is arranged on the upper portion of the bearing trolley, a 2D vision module is arranged on the long support, light sources are respectively arranged on the left side and the right side of the 2D vision module, an industrial personal computer and a display screen are arranged on the carrying trolley, and the industrial personal computer is respectively connected with the six-axis displacement platform, the 2D vision module, the linear laser vision module, the display screen and the light sources. The utility model discloses can accomplish the requirement of the different angles of different pipeline counterpoints, easy operation, efficient, the practicality is strong, can popularize and apply the nature strong.

Description

Angle-adjustable pipeline assembling robot
Technical Field
The utility model relates to a be used for building engineering angularly adjustable pipeline aligning device, concretely relates to angularly adjustable pipeline group is to robot, is applied to engineering pipeline assembly field.
Background
In the field of engineering pipeline assembly and in the practical application process of pipeline alignment and welding, due to the fact that machining errors exist in the pipeline, the pipeline is close to the position where an expected angle cannot be obtained, manual measurement needs to be carried out, and the required angle is obtained. Because the pipeline has high mass, the precision alignment is carried out in a manual carrying mode, the working intensity of field personnel is high, and the operation difficulty is high; the workman judges whether the pipeline counterpoint angle is qualified through observing the projected cross laser line, and whole process is through the human eye observation, can not accomplish the accurate control to the angle, and the product uniformity is poor. The traditional manual scheme can not meet the field requirement, and the angle-adjustable pipeline assembly robot is specially designed aiming at the condition, so that the consistency of products is improved, the production efficiency is improved, the labor cost is reduced, and the working strength is reduced.
Disclosure of Invention
The utility model discloses an overcome the engineering pipeline angle counterpoint that above-mentioned exists and need artifical measurement and adjustment, the problem that the big operation degree of difficulty of working strength is high provides an angularly adjustable pipeline group to the robot, the utility model discloses an angularly adjustable pipeline group is to the counterpoint that the robot is applicable to the different angle demands of different pipelines, plays swiftly, convenient, practices thrift the cost, ensures construction progress and safe effect.
The technical scheme of the utility model is that:
angularly adjustable pipeline group is to robot includes: six displacement platform, 2D vision module, line laser vision module, bearing trolley, electromagnetic lock, concave groove, light source, industrial computer, display screen, its characterized in that: the six-axis displacement platform is placed on the bearing trolley, a concave groove is formed in the six-axis displacement platform, an electromagnet is arranged at the bottom of the concave groove, a short support is arranged on the lower portion of the six-axis displacement platform, a linear laser vision module is arranged on the short support, a long support is arranged on the upper portion of the bearing trolley, a 2D vision module is arranged on the long support, light sources are respectively arranged on the left side and the right side of the 2D vision module, an industrial personal computer and a display screen are arranged on the carrying trolley, and the industrial personal computer is respectively connected with the six-axis displacement platform, the 2D vision module, the linear laser vision module, the display screen and the light sources.
The direction wheels of the bearing trolley are all-directional wheels, so that translation in multiple directions can be realized, and the flexibility of the alignment trolley is greatly improved; the concave groove can improve the convenience and safety of placing the pipeline, and the electromagnetic lock can adsorb the column pipeline, so that the electromagnetic lock is stable in operation and high in alignment precision; all the devices are integrated on the carrying trolley, so that the rapid transition can be realized according to different construction sites, and the utilization rate of the system can be effectively improved.
The method for adjusting the angle of the pipeline set by using the angle-adjustable pipeline set robot takes the ground where equipment is installed as an X-Y coordinate and the height value as a Z coordinate, and is characterized by comprising the following steps of:
manually pushing the angle-adjustable pipeline assembly robot to enable alignment interfaces of a pipeline A to be butted and a pipeline B to be butted to be close to each other, and requiring that: the distance between the X axis and the Y axis is less than or equal to 30 mm;
manually placing the pipeline A to be butted to a workbench by using a crane and fixing the pipeline A;
placing the pipeline B to be butted to an aligning bearing trolley by a manual crane, opening an electromagnetic lock through a physical key, and fixing the pipeline B to be butted;
setting the tube aligning angle and related pipeline parameters through a software interface of the industrial personal computer, starting automatic alignment, and carrying out automatic alignment on the pipeline A to be butted and the pipeline B to be butted by the industrial personal computer according to the following steps under the condition of no manual intervention:
(1) under the guidance of the 2D vision module, the industrial personal computer extracts the edges of two pipelines to be butted through a multidirectional Sobel operator and a Hough line transformation algorithm to calculate the average value of the angles formed by the two edges of the pipelines respectively so as to determine the angle, the 2D vision module detects the included angle between the pipeline A and the pipeline B in real time and controls the rotation of the six-axis displacement table around the Z axis so as to control the alignment angle of the two pipelines, so that the optimal angle required to be aligned is reached;
(2) under the guidance of the 2D vision module, the industrial personal computer respectively extracts two edge angular points of the pipeline A and the pipeline B through a relative position calculation algorithm of an X axis and a Y axis of the pipe orifice, so that the coordinates of the middle points of the two pipelines can be calculated, and the six-axis displacement table is controlled to move left and right along the X axis, so that the X coordinates of the centers of the pipeline A and the pipeline B are the same;
(3) the method comprises the steps that a line laser vision module is utilized, an industrial personal computer extracts two appropriate points on line lasers of two pipelines respectively through a line laser algorithm, the two points are calculated respectively to obtain the slope degrees of a pipeline A and a pipeline B, the slope degrees of the two pipelines are monitored in real time through the line lasers, a six-axis displacement table is controlled to do pitching motion around an X axis, and the slope degrees of the two pipelines are consistent;
(4) the method comprises the following steps that a line laser vision module is utilized, an industrial personal computer extracts coordinates of line lasers at the tail ends of two pipelines through a line laser algorithm, height information of a pipeline A and a pipeline B is obtained through calculation, the height is monitored in real time through the line laser vision module, a six-axis displacement table is controlled to move up and down along a Z axis, and the pipeline A and the pipeline B are located at the same height;
(5) under the guide of the 2D vision module, the industrial personal computer extracts two angular points of the central pipeline edge of the pipeline A and the pipeline B through an angular point extraction algorithm to obtain angular point coordinates, calculates the middle point coordinates of the two pipelines, controls the back and forth movement of the six-axis displacement table, when the extracted two edge angular points of the pipeline A and the pipeline B and the middle point of the pipeline A and the pipeline B obtained through calculation are obtained, any one point of the three points is close to each other, the alignment is stopped, an operator is reminded through interface colors, the alignment is completed, manual spot welding is carried out, and the pipelines are hoisted by a crane.
The utility model discloses an have following advantage:
1) the alignment requirements of different angles can be completed according to requirements, and the problem that the alignment angle of the pipeline is difficult to measure is solved;
2) the pipeline spatial position is measured in a visual mode, the six-axis displacement table realizes pipeline movement, and a full-automatic alignment process can be realized through closed-loop control of a visual module and the six-axis displacement table in the robot.
3) Through the utility model discloses the control software of industrial computer, easy operation, the user only need fill in the counterpoint angle, pipeline parameter (must not), can begin automatic pipeline counterpoint.
The utility model provides an engineering pipeline assembly field pipeline counterpoint, welded practical application's in-process, because pipeline machining's error, pipeline quality is big, causes the artificial pipeline difficulty of counterpointing, and the precision is low, and the product uniformity is poor, and angularly adjustable pipeline group is to robot operation simple, the practicality is strong.
Drawings
Fig. 1 is a schematic structural diagram of the present invention.
Fig. 2 is a view of the pipeline fixing groove-mounted electromagnet of the present invention.
Fig. 3 is a flow chart of the operation of the present invention.
Fig. 4 is a pipeline edge extraction diagram using the present invention.
Fig. 5 is a pipeline corner extraction diagram using the present invention.
Fig. 6 is a flow chart for utilizing the utility model discloses carry out angularly adjustable pipeline group to the algorithm.
Detailed Description
The figures further describe the invention.
As shown in fig. 1, the utility model discloses angularly adjustable pipeline group is to robot, include: six displacement platform 1, 2D vision module 2, line laser vision module 3, bearing trolley 4, six electromagnetic lock 5, three concave groove 6, two light sources 7, industrial computer 8, display screen 9, its characterized in that: six displacement platforms 1 are placed on bearing trolley 4, three concave grooves 6 are installed on the six displacement platforms 1, two electromagnetic locks 5 are installed and placed in the bottom of each concave groove 6, a short support is installed on the lower portion of each six displacement platform 1, a linear laser vision module 3 is installed on each short support, a long support is installed on the upper portion of each bearing trolley 4, a 2D vision module 2 is installed on each long support, a light source 7 is installed on each of the left side and the right side of each 2D vision module 2, an industrial personal computer 8 and a display screen 9 are installed on each bearing trolley 4, and the industrial personal computer 8 is connected with the six displacement platforms 1, the 2D vision modules 2, the linear laser vision modules 3, the display screens 9 and the light sources 7 respectively. The bearing trolley 4 is assembled into a trolley model by using steel pipes and welded, and 4 omnidirectional wheels are arranged on the bearing trolley. Six displacement platform 1, 2D vision module 2, line laser vision module 3 and industrial computer 8's structure are current, all obtain from market purchase, the utility model discloses the algorithm and the software of calculating usefulness are current.
The utility model discloses an operation flow as follows:
the method for adjusting the angle of the pipeline group by using the angle-adjustable pipeline group to the robot is described on the basis of the coordinate system for all the following invention items: the ground where the equipment is installed is an X-Y coordinate, and the height value is a Z coordinate; the method is characterized by comprising the following steps: as shown in figure 3 of the drawings,
step one, manually pushing the angle-adjustable pipeline assembly to the robot, as shown in fig. 1, to make the alignment interfaces of the pipeline a to be butted and the pipeline B to be butted as close as possible, and requiring: the distance between the X axis and the Y axis is less than or equal to 30 mm;
manually placing the pipeline A to be butted to a workbench by using a crane and fixing the pipeline A;
placing the pipeline B10 to be butted to the aligning bearing trolley 4 by manually using a crane, opening the electromagnetic lock 5 through a physical key, and fixing the pipeline B10 to be butted;
setting the pipe aligning angle and related pipeline parameters through a software interface of the industrial personal computer, starting automatic alignment, and carrying out automatic alignment on the butt joint pipeline A and the pipeline B to be butt joint by the industrial personal computer according to the following steps under the condition of no manual intervention, wherein the process is shown in fig. 6:
(1) under the guidance of the 2D vision module, the industrial personal computer extracts the edges of the two pipelines mainly through a multidirectional Sobel operator and a Hough line transformation algorithm to calculate the average value of the angles formed by the two edges of the pipelines respectively so as to determine the angle, the 2D vision module detects the included angle between the pipeline A and the pipeline B in real time and controls the rotation of the six-axis displacement table around the Z axis so as to control the alignment angle of the two pipelines, and therefore the optimal angle required for alignment is achieved; edge extraction is shown in fig. 4; the angle between the upper edge of the pipeline A and the left edge of the pipeline B and the angle between the lower edge of the pipeline A and the right edge of the pipeline B are calculated, and then the average value is taken as a final angle value.
(2) Under the guidance of the 2D vision module, the industrial personal computer respectively extracts two edge corner points (a1, a2, B1 and B2) of the pipeline A and the pipeline B through a relative position calculation algorithm of the X axis and the Y axis of the pipe orifice, controls the six-axis displacement table to move left and right along the X axis, enables the X coordinates of the centers of the pipeline A and the pipeline B to be the same, and extracts the corner points as shown in figure 5; extracting two edge corner points a1(x1, y1) and a2(x2, y2) of the pipeline a by a 2D vision module, calculating midpoint coordinates (x3, y3) of the pipeline a, extracting two edge corner points B1(x1 ', y 1'), B2(x2 ', y 2') of the pipeline B by a 2D vision module, and calculating midpoint coordinates (x4, y4) of the pipeline B, namely x3 ═ x 4;
(3) respectively extracting two proper points on the line lasers of the two pipelines by using a line laser vision module and an industrial personal computer through a line laser algorithm, respectively calculating to obtain the slope degrees of the pipeline A and the pipeline B, monitoring the slope degrees of the two pipelines in real time through the line lasers, and controlling a six-axis displacement table to perform pitching motion around an X axis to achieve the consistent slope degrees of the two pipelines;
(4) extracting coordinates of linear lasers at the tail ends of the two pipelines by a linear laser algorithm by using a linear laser vision module, calculating to obtain height information of the pipeline A and the pipeline B, monitoring the height in real time by using the linear laser vision module, and controlling a six-axis displacement table to move up and down along a Z axis so as to enable the pipeline A and the pipeline B to be at the same height;
(5) under the guidance of the 2D vision module, the industrial personal computer extracts the pipeline A through an angular point extraction algorithm, extracts two angular points of the edge of the central pipeline of the pipeline B to obtain angular point coordinates, calculates to obtain middle point coordinates of the two pipelines, controls the front and back movement of the six-axis displacement table, when the extracted two edge angular points of the pipeline A and the pipeline B and the calculated middle point of the pipeline A and the pipeline B are obtained, any one of the three points is close to each other, the alignment is stopped, an operator is reminded through color interface colors, the alignment and manual spot welding are completed, and the pipeline is hoisted by adopting a crane;
utilize the utility model discloses angularly adjustable pipeline counterpoint robot carries out angularly adjustable pipeline group to algorithm flow chart as shown in figure 6. Due to the processing error of the workpieces of each batch of pipelines, perfect joint alignment cannot be realized, and therefore, the alignment is stopped once a little bit of the workpieces are close to each other.

Claims (2)

1. Angularly adjustable pipeline group is to robot includes: six displacement platform, 2D vision module, line laser vision module, bearing trolley, electromagnetic lock, concave groove, light source, industrial computer, display screen, its characterized in that: the six-axis displacement platform is placed on the bearing trolley, a concave groove is formed in the six-axis displacement platform, an electromagnet is arranged at the bottom of the concave groove, a short support is arranged on the lower portion of the six-axis displacement platform, a linear laser vision module is arranged on the short support, a long support is arranged on the upper portion of the bearing trolley, a 2D vision module is arranged on the long support, light sources are respectively arranged on the left side and the right side of the 2D vision module, an industrial personal computer and a display screen are arranged on the carrying trolley, and the industrial personal computer is respectively connected with the six-axis displacement platform, the 2D vision module, the linear laser vision module, the display screen and the light sources.
2. The angularly adjustable pipe pairing robot of claim 1, wherein: the direction wheel of the bearing trolley is an omnidirectional wheel.
CN202021339522.1U 2020-07-09 2020-07-09 Angle-adjustable pipeline assembling robot Active CN212330878U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202021339522.1U CN212330878U (en) 2020-07-09 2020-07-09 Angle-adjustable pipeline assembling robot
PCT/CN2021/105119 WO2022007872A1 (en) 2020-07-09 2021-07-08 Angle-adjustable pipeline assembly robot and pipeline group angle-adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021339522.1U CN212330878U (en) 2020-07-09 2020-07-09 Angle-adjustable pipeline assembling robot

Publications (1)

Publication Number Publication Date
CN212330878U true CN212330878U (en) 2021-01-12

Family

ID=74081417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021339522.1U Active CN212330878U (en) 2020-07-09 2020-07-09 Angle-adjustable pipeline assembling robot

Country Status (1)

Country Link
CN (1) CN212330878U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007872A1 (en) * 2020-07-09 2022-01-13 中建三局第二建设工程有限责任公司 Angle-adjustable pipeline assembly robot and pipeline group angle-adjusting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007872A1 (en) * 2020-07-09 2022-01-13 中建三局第二建设工程有限责任公司 Angle-adjustable pipeline assembly robot and pipeline group angle-adjusting method

Similar Documents

Publication Publication Date Title
CN109914756B (en) Indoor wall 3D putty printing and leveling processing method based on indoor construction intelligent robot
CN1939638B (en) Display method for laser irradiations state and display system of laser irradiation state
CN101695814B (en) Method and device for precisely positioning large part of airplane in place
CN114515924B (en) Automatic welding system and method for tower foot workpiece based on weld joint identification
CN207205619U (en) Ripple seam tracking system based on 3 D laser scanning
CN110524582A (en) A kind of flexibility welding robot workstation
CN106891111B (en) A kind of robot closed loop processing system for the welding of fin panel casing pin
CN112537719B (en) GIS pipeline automatic butt joint device based on visual positioning and working method thereof
CN104889529B (en) A kind of welding method of large scale solid curve weld seam Intelligent welding equipment
CN212330878U (en) Angle-adjustable pipeline assembling robot
CN105108274B (en) A kind of hydraulic support welding system and its welding method
CN113246142B (en) Measuring path planning method based on laser guidance
CN106737688A (en) A kind of collecting box pipe seat robot automatic setup system and method based on multisensor
CN110270997A (en) A kind of Intelligent welding method and work station
CN115302053B (en) Intelligent submerged arc welding method for stainless steel composite plate
CN105935830A (en) Intelligent welding system and welding method thereof
Guo et al. A novel field box girder welding robot and realization of all-position welding process based on visual servoing
CN111889951A (en) Angle-adjustable pipeline assembly robot and pipeline assembly angle adjusting method
CN112782686A (en) Automatic alignment system and method for loading based on multidimensional identification and positioning technology
CN204546508U (en) Utonomous working robot system
CN204234993U (en) With weldering ultrasonic impact intelligent robot TT&C system
WO2022007872A1 (en) Angle-adjustable pipeline assembly robot and pipeline group angle-adjusting method
CN112573355B (en) Multipurpose GIS pipeline automatic butt joint device
CN117047237B (en) Intelligent flexible welding system and method for special-shaped parts
CN108620840B (en) Aircraft cabin door intelligent installation method based on AGV intelligent parallel robot

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220411

Address after: 430074 No. 306 Lu Lu, Hongshan District, Hubei, Wuhan

Patentee after: THE SECOND CONSTRUCTION Co.,Ltd. OF CHINA CONSTRUCTION THIRD ENGINEERING BUREAU

Patentee after: China Construction Third Engineering Bureau second construction and installation Co., Ltd

Address before: 430074 No. 306 Lu Lu, Hongshan District, Hubei, Wuhan

Patentee before: THE SECOND CONSTRUCTION Co.,Ltd. OF CHINA CONSTRUCTION THIRD ENGINEERING BUREAU