CN212230580U - A two-phase immersion battery liquid cooling device using phase change materials for energy storage - Google Patents
A two-phase immersion battery liquid cooling device using phase change materials for energy storage Download PDFInfo
- Publication number
- CN212230580U CN212230580U CN202021654173.2U CN202021654173U CN212230580U CN 212230580 U CN212230580 U CN 212230580U CN 202021654173 U CN202021654173 U CN 202021654173U CN 212230580 U CN212230580 U CN 212230580U
- Authority
- CN
- China
- Prior art keywords
- battery
- phase
- change material
- phase change
- box body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 239000012782 phase change material Substances 0.000 title claims abstract description 79
- 238000001816 cooling Methods 0.000 title claims abstract description 64
- 239000007788 liquid Substances 0.000 title claims abstract description 52
- 238000004146 energy storage Methods 0.000 title claims abstract description 15
- 238000007654 immersion Methods 0.000 title 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 17
- 238000009833 condensation Methods 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000003682 fluorination reaction Methods 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- NOPJRYAFUXTDLX-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane Chemical compound COC(F)(F)C(F)(F)C(F)(F)F NOPJRYAFUXTDLX-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Secondary Cells (AREA)
Abstract
本实用新型属于动力电池的技术领域,提出了一种利用相变材料储能的两相浸没式电池液冷装置。通过在翅片内部填充相变材料,使得电动汽车在短途行驶时,仅仅依靠翅片内部的相变材料就可以吸收动力电池所放出的热量,无需打开冷却系统,节省了电动汽车短程行驶时的冷却能耗。当电动汽车处于长途行驶时,可以先利用翅片内部的相变材料来吸收动力电池产热,当该相变材料全部融化时再打开冷却系统对电池以及相变材料进行降温,整个过程实现了冷却能耗最小化,大大提高了电动汽车在长途行驶过程中的续航里程。
The utility model belongs to the technical field of power batteries, and provides a two-phase submerged battery liquid cooling device which utilizes phase-change materials for energy storage. By filling the interior of the fins with phase change material, the heat released by the power battery can be absorbed only by the phase change material inside the fins when the electric vehicle is running for a short distance, without opening the cooling system, saving the electric vehicle during short-distance running. Cooling energy consumption. When the electric vehicle is running for a long time, the phase change material inside the fins can be used to absorb the heat generated by the power battery. When the phase change material is completely melted, the cooling system is turned on to cool the battery and the phase change material. The whole process is realized. The cooling energy consumption is minimized, which greatly improves the cruising range of electric vehicles during long-distance driving.
Description
技术领域technical field
本实用新型属于动力电池的技术领域,具体涉及一种利用相变材料储能的两相浸没式电池液冷装置The utility model belongs to the technical field of power batteries, in particular to a two-phase submerged battery liquid cooling device utilizing phase-change materials for energy storage
背景技术Background technique
我国是目前汽车使用数量最多的国家,汽车所带来的污染问题给我国带来了十分严峻的考验,因此加大力度研发新能源汽车成为了汽车行业可持续发展所亟待解决的问题。动力电池是汽车的心脏,方方面面影响着电动汽车的性能,为了让动力电池工作稳定,需要对电池的温度进行合理的控制,因此,电池热管理系统对于动力电池而言是至关重要的。my country is the country with the largest number of automobiles at present. The pollution problem caused by automobiles has brought a very severe test to our country. Therefore, increasing efforts to develop new energy vehicles has become an urgent problem to be solved in the sustainable development of the automobile industry. The power battery is the heart of the car, which affects the performance of the electric vehicle in all aspects. In order to make the power battery work stably, it is necessary to reasonably control the temperature of the battery. Therefore, the battery thermal management system is very important for the power battery.
在目前的动力电池热管理中,主要有四种散热方式,分别为风冷式、液冷式、相变材料冷却以及制冷剂直冷。利用相变材料冷却由于结构简单、能耗低等优点,收到了众多学者的关注。但是由于相变材料导热系数低以及电池箱体能容纳相变材料的质量有限,因此单一的依靠相变材料冷却无法在大倍率放电或者长时间放电条件下及时的将热量吸收。In the current thermal management of power batteries, there are mainly four heat dissipation methods, namely air-cooled, liquid-cooled, phase-change material cooling, and refrigerant direct cooling. The use of phase change materials for cooling has attracted the attention of many scholars due to its simple structure and low energy consumption. However, due to the low thermal conductivity of the phase change material and the limited quality of the battery box that can accommodate the phase change material, the cooling of the phase change material alone cannot absorb heat in time under high-rate discharge or long-term discharge conditions.
鉴于上述单一利用相变材料对电池进行冷却存在着种种的弊端,本实用新型提出了一种利用相变材料储能的两相浸没式电池液冷装置,利用在翅片内部填充相变材料,使得电动汽车在短途行驶时,仅仅依靠翅片内部的相变材料就可以吸收动力电池所放出的热量,无需打开冷却系统,节省了电动汽车短程行驶时的冷却能耗。当电动汽车处于长途行驶时,可以先利用翅片内部的相变材料来吸收动力电池产热,当该相变材料全部融化时再打开冷却系统对电池以及相变材料降温,整个过程实现了冷却能耗最小化,大大提高了电动汽车在长途行驶过程中的续航里程。In view of the above-mentioned disadvantages of using phase change material alone to cool the battery, the utility model proposes a two-phase immersed battery liquid cooling device using phase change material for energy storage. When the electric vehicle is running for a short distance, the heat released by the power battery can be absorbed only by the phase change material inside the fin, without opening the cooling system, which saves the cooling energy consumption of the electric vehicle when driving for a short distance. When the electric vehicle is driving for a long time, the phase change material inside the fins can be used to absorb the heat generated by the power battery. When the phase change material is completely melted, the cooling system is turned on to cool the battery and the phase change material. The whole process realizes cooling. The energy consumption is minimized, which greatly improves the cruising range of electric vehicles during long-distance driving.
实用新型内容Utility model content
本实用新型解决的技术问题在于提供了一种利用相变材料储能的两相浸没式电池液冷装置,利用在翅片内部填充相变材料,使得电动汽车在短途行驶时,仅仅依靠翅片内部的相变材料就可以吸收动力电池所放出的热量,无需打开冷却系统,节省了电动汽车短程行驶时的冷却能耗。The technical problem solved by the utility model is to provide a two-phase immersed battery liquid cooling device that utilizes phase-change materials for energy storage. The phase-change materials are filled inside the fins, so that the electric vehicle only relies on the fins during short-distance driving. The internal phase change material can absorb the heat released by the power battery without opening the cooling system, which saves the cooling energy consumption of the electric vehicle during short-distance driving.
本实用新型的技术方案:The technical scheme of the present utility model:
一种利用相变材料储能的两相浸没式电池液冷装置,包括电池1、箱体2、箱体上盖板3、冷却盘管4、翅片5、氟化液6和相变材料7;A two-phase immersed battery liquid cooling device utilizing phase-change materials for energy storage, comprising a
其中箱体上盖板3盖装在电池1上方,电池1位于箱体2底部;冷却盘管4 设置于箱体上盖板3内部,且与外部冷却系统相连;翅片5为中空结构,该中空结构中填充相变材料7,翅片5安装在箱体上盖板3内表面,箱体2、箱体上盖板3以及翅片5通过螺丝进行连接,利用压紧垫片的形式进行密封;电池1 全部或部分浸没于氟化液6中;当电池1开始工作时,温度逐渐升高,电池1 所产生的热量被填充的氟化液6带走,当氟化液6没有达到沸点时氟化液6利用显热吸收电池模组所产生的热量;当电池模组表面温度升高到氟化液6沸点以上时,氟化液6开始沸腾,沸腾产生的氟化液6蒸汽在翅片5表面凝结,凝结所放出的热量被翅片内部的相变材料7吸收;随着电池1工作的继续进行,电池1的产热不断增加,翅片5内部的相变材料不断吸收热量而逐渐融化,当该相变材料全部融化时,开启冷却系统,利用冷却盘管4内部的冷却工质带走氟化液6蒸汽冷凝所放出的热量以及对相变材料进行降温。The
所述的电池1为方形电池、圆柱形电池或软包电池。The
所述的相变材料7的熔点在20℃~60℃之间。The melting point of the
所述的氟化液6在1大气压下的沸点在20℃~50℃之间。The boiling point of the
所述的翅片5为中空结构。The
所述的箱体上盖板3下方有规则的凸台结构,用于增加箱体上盖板3与翅片5和相变材料7的接触面积。There is a regular boss structure below the
所述的箱体上盖板3与翅片5之间构成的空间是密闭的,该密闭空间用于填充相变材料7。The space formed between the
本实用新型的有益成果:Beneficial achievements of the present utility model:
1)电动汽车在短途行驶时,仅仅依靠翅片内部的相变材料就可以吸收动力电池所放出的热量,无需打开冷却系统,节省了电动汽车短程行驶时的冷却能耗。1) When the electric vehicle is driving for a short distance, the heat released by the power battery can be absorbed only by the phase change material inside the fin, without opening the cooling system, which saves the cooling energy consumption of the electric vehicle when driving for a short distance.
2)当电动汽车处于长途行驶时,可以先利用翅片内部的相变材料来吸收动力电池产热,当该相变材料全部融化时再打开冷却系统对电池以及相变材料降温,整个过程实现了冷却能耗最小化,大大提高了电动汽车在长途行驶过程中的续航里程。2) When the electric vehicle is running for a long time, the phase change material inside the fins can be used to absorb the heat generated by the power battery. When the phase change material is completely melted, the cooling system is turned on to cool the battery and the phase change material. The whole process is realized. In order to minimize cooling energy consumption, the cruising range of electric vehicles during long-distance driving is greatly improved.
附图说明Description of drawings
图1为一种利用相变材料储能的两相浸没式电池液冷装置主视图。FIG. 1 is a front view of a two-phase submerged battery liquid cooling device utilizing phase change materials for energy storage.
图2为一种利用相变材料储能的两相浸没式电池液冷装置的爆炸示意图。FIG. 2 is an exploded schematic diagram of a two-phase submerged battery liquid cooling device utilizing phase change materials for energy storage.
图3(a)为箱体上盖板与翅片装配体的结构示意图。Figure 3(a) is a schematic structural diagram of an assembly of an upper cover plate and a fin of a box body.
图3(b)为箱体上盖板的结构示意图。Figure 3(b) is a schematic structural diagram of the upper cover plate of the box body.
图3(c)为翅片的结构示意图。Figure 3(c) is a schematic diagram of the structure of the fin.
图3(d)为箱体上盖板与翅片装配体沿图3(a)所示A-A面剖开后的结构示意图。Fig. 3(d) is a schematic structural diagram of the upper cover plate and the fin assembly of the box body cut along the A-A plane shown in Fig. 3(a).
图中:1电池;2箱体;3箱体上盖板;4冷却盘管;5翅片;6氟化液;7相变材料。In the picture: 1 battery; 2 box body; 3 box body upper cover; 4 cooling coil; 5 fins; 6 fluorinated liquid; 7 phase change material.
具体实施方式Detailed ways
以下结合附图和技术方案,进一步说明本实用新型的具体实施方式。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings and technical solutions.
为了便于理解本实用新型,下面将参照相关附图对本实用新型进行更全面的描述。但是应当理解,这些描述只是为了进一步说明本实用新型的特征和优点,而不是对本实用新型权利要求的限制。In order to facilitate the understanding of the present utility model, the present utility model will be more fully described below with reference to the related drawings. However, it should be understood that these descriptions are only intended to further illustrate the features and advantages of the present invention, rather than limiting the claims of the present invention.
本实用新型公开了一种利用相变材料储能的两相浸没式电池液冷装置,包括:电池1、箱体2、箱体上盖板3、冷却盘管4、翅片5、氟化液6、相变材料7;其中电池1位于箱体2底部;冷却盘管4设置于箱体上盖板3内部,且与外部冷却系统相连;翅片5为中空结构,该中空结构用于填充相变材料7,箱体2、箱体上盖板3以及翅片5通过螺丝进行连接,利用压紧垫片的形式进行密封;电池1全部或部分浸没于氟化液6中;当电池开始工作时,温度逐渐升高,电池所产生的热量被填充的氟化液带走,当氟化液没有达到沸点时氟化液利用显热吸收电池模组所产生的热量;当电池模组表面温度升高到氟化液沸点以上时,氟化液开始沸腾,沸腾产生的氟化液蒸汽在翅片5表面凝结,凝结所放出的热量被翅片内部的相变材料7吸收。随着电池工作的继续进行,电池的产热不断增加,翅片内部的相变材料不断吸收热量而逐渐融化,当该相变材料全部融化时,开启冷却系统,利用冷却盘管4内部的冷却工质带走氟化液蒸汽冷凝所放出的热量以及对相变材料进行降温。The utility model discloses a two-phase submerged battery liquid cooling device utilizing phase change materials for energy storage, comprising: a
如图1所示为一种利用相变材料储能的两相浸没式电池液冷装置主视图,在本示例中以1组6个的电池模组为例,对该相变材料辅助散热的两相浸没式电池液冷装置进行说明。所述的电池1可以为圆柱形电池、方形电池或软包电池,在本示例中采用的是方形电池。箱体2、箱体上盖板3以及翅片5通过螺丝进行连接,利用压紧垫片的形式进行密封。其中箱体2设有充液管(附图未示出),用于对箱体2与箱体上盖板3构成的密闭空间抽真空以及灌注氟化液。Figure 1 shows a front view of a two-phase immersed battery liquid cooling device using phase change materials for energy storage. In this example, a group of six battery modules is taken as an example. Two-phase submerged battery liquid cooling device will be described. The
所述的氟化液6在1大气压下沸点为20℃~50℃的氟化液,在本示例中使用的是3M公式生产的HFE-7000氟化液,其沸点为34℃,具有良好的介电特性以及优良的阻燃性。电池应全部或部分浸没在氟化液中,在本示例中,电池绝大部分浸没在氟化液中。The
如图2所示一种利用相变材料储能的两相浸没式电池液冷装置的爆炸示意图,可以看出,该相变材料辅助散热的两相浸没式电池液冷装置主要由三部分组合而成,分别为箱体上盖板、翅片以及箱体。其中翅片与箱体构成的空间以及箱体上盖板与翅片构成的空间均是密闭的。As shown in Figure 2, an exploded schematic diagram of a two-phase immersed battery liquid cooling device using phase change materials for energy storage. It can be seen that the two-phase immersed battery liquid cooling device using phase change materials to assist heat dissipation is mainly composed of three parts. They are the upper cover plate of the box body, the fins and the box body. The space formed by the fins and the box body and the space formed by the upper cover plate of the box body and the fins are all sealed.
如图3(a)所示为箱体上盖板与翅片装配体的结构示意图,该装配体由两部分组成,分别为如图3(b)所示的箱体上盖板以及如图3(c)所示的翅片。从图 3(b)中可以看出箱体上盖板3下方有规则的凸台结构。此外,其内部设置有冷却盘管,用于吸收氟化液蒸汽冷凝所放出的热量以及对相变材料进行降温,在本示例中,该冷却盘管内部流通的冷却工质为R134a。Figure 3(a) is a schematic diagram of the structure of the box upper cover plate and the fin assembly. The assembly consists of two parts, the box upper cover plate shown in Figure 3(b) and the box body shown in Figure 3(b) respectively. The fin shown in 3(c). It can be seen from Figure 3(b) that there are regular boss structures under the
如图3(d)所示为箱体上盖板与翅片装配体沿图3(a)所示A-A面剖开后的结构示意图,可以看出,翅片与箱体上盖板之间构成的空间是密闭的,用于存放相变材料7。所述的相变材料7的熔点在20℃~60℃之间,在本示例中,所选用的相变材料为十八烷,其熔点为28.2℃。从剖视图可以看出该箱体上盖板下方规则的凸台结构与翅片相接触,因此增加了箱体上盖板3与翅片5和相变材料7之间的接触面积。As shown in Figure 3(d), it is a schematic structural diagram of the box upper cover plate and the fin assembly after cutting along the A-A plane shown in Figure 3(a). It can be seen that the gap between the fin and the box upper cover plate is The formed space is airtight and is used for storing the
当电动汽车在短途行驶时,电池的温度随着工作的进行而不断升高,电池所产生的热量被填充的氟化液带走。在散热的初始阶段,氟化液利用自身的显热来吸收电池所产生的热量。随着电池工作的继续进行,电池所产生的热量不断增加,当电池表面温度升高到氟化液沸点时,氟化液开始沸腾,沸腾产生的氟化液蒸汽在翅片5表面凝结,凝结所放出的热量被翅片内部的相变材料7吸收。在短途行驶过程中,部分相变材料因吸收了氟化液蒸汽冷凝时所放出的热量而融化,在车辆停止运行时,融化的相变材料7逐渐凝固至初始状态,整个过程无需打开主动冷却系统。When the electric vehicle is running for a short distance, the temperature of the battery keeps rising as the work progresses, and the heat generated by the battery is taken away by the filled fluorine liquid. In the initial stage of heat dissipation, the fluorinated liquid uses its own sensible heat to absorb the heat generated by the battery. As the battery continues to work, the heat generated by the battery continues to increase. When the surface temperature of the battery rises to the boiling point of the fluoride solution, the fluoride solution begins to boil, and the fluoride solution vapor produced by the boiling condenses on the surface of the
当电动汽车长途行驶时,电池的温度随着工作的进行而不断升高,电池所产生的热量被填充的氟化液带走。在散热的初始阶段,氟化液利用自身的显热来吸收电池所产生的热量。随着电池工作的继续进行,电池所产生的热量不断增加,当电池表面温度升高到氟化液沸点时,氟化液开始沸腾,沸腾产生的氟化液蒸汽在翅片5表面凝结,凝结所放出的热量被翅片内部的相变材料7吸收。长途行驶状态下,随着电池工作的继续进行,电池的产热不断增加,翅片内部的相变材料不断吸收热量而逐渐融化。当该相变材料全部融化时,开启冷却系统,利用冷却盘管4内部流通的冷却工质带走氟化液蒸汽冷凝所放出的热量以及对相变材料进行降温,使得电动汽车在长途行驶状态下仍能对电池进行有效的热管理。When the electric vehicle travels for a long time, the temperature of the battery keeps rising as the work progresses, and the heat generated by the battery is taken away by the filled fluorine liquid. In the initial stage of heat dissipation, the fluorinated liquid uses its own sensible heat to absorb the heat generated by the battery. As the battery continues to work, the heat generated by the battery continues to increase. When the surface temperature of the battery rises to the boiling point of the fluoride solution, the fluoride solution begins to boil, and the fluoride solution vapor produced by the boiling condenses on the surface of the
综上所述,本实用新型公开了一种利用相变材料储能的两相浸没式电池液冷装置。利用在翅片内部填充相变材料,使得电动汽车在短途行驶时,仅仅依靠翅片内部的相变材料就可以吸收动力电池所放出的热量,无需打开冷却系统,节省了电动汽车短程行驶时的冷却能耗。To sum up, the utility model discloses a two-phase immersed battery liquid cooling device utilizing phase-change materials for energy storage. By filling the phase change material inside the fin, the electric vehicle can absorb the heat released by the power battery only by relying on the phase change material inside the fin during short-distance driving, without opening the cooling system, saving the electric vehicle during short-distance driving. Cooling energy consumption.
以上所述的具体示例,对本公开的技术方案以及有益效果进行了详尽的阐述,所应理解的是,以上所述仅为本公开的具体示例而已,并不限制本实用新型。图中各元件的尺寸和形状不反应真实大小和比例,而仅表示本示例的内容。凡是在本公开的原则和精神上,所做的任何修改、改进以及等同替换等,均在本公开的保护范围之内。The above-mentioned specific examples illustrate the technical solutions and beneficial effects of the present disclosure in detail. It should be understood that the above-mentioned specific examples are only specific examples of the present disclosure and do not limit the present invention. The size and shape of the various elements in the figures do not reflect actual size and proportions, but merely represent the contents of this example. Any modifications, improvements and equivalent replacements made within the principles and spirit of the present disclosure are within the protection scope of the present disclosure.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021654173.2U CN212230580U (en) | 2020-08-11 | 2020-08-11 | A two-phase immersion battery liquid cooling device using phase change materials for energy storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021654173.2U CN212230580U (en) | 2020-08-11 | 2020-08-11 | A two-phase immersion battery liquid cooling device using phase change materials for energy storage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212230580U true CN212230580U (en) | 2020-12-25 |
Family
ID=73911033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202021654173.2U Withdrawn - After Issue CN212230580U (en) | 2020-08-11 | 2020-08-11 | A two-phase immersion battery liquid cooling device using phase change materials for energy storage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212230580U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111864304A (en) * | 2020-08-11 | 2020-10-30 | 大连理工大学 | A two-phase immersion battery liquid cooling device using phase change materials for energy storage |
CN114243165A (en) * | 2021-12-14 | 2022-03-25 | 重庆大学 | Lithium ion battery thermal management system |
DE102021124388A1 (en) | 2021-09-21 | 2023-03-23 | Volkswagen Aktiengesellschaft | battery cell |
CN117270595A (en) * | 2023-11-23 | 2023-12-22 | 珠海科创储能科技有限公司 | Temperature control device for energy storage system |
-
2020
- 2020-08-11 CN CN202021654173.2U patent/CN212230580U/en not_active Withdrawn - After Issue
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111864304A (en) * | 2020-08-11 | 2020-10-30 | 大连理工大学 | A two-phase immersion battery liquid cooling device using phase change materials for energy storage |
CN111864304B (en) * | 2020-08-11 | 2024-04-16 | 大连理工大学 | Two-phase immersed battery liquid cooling device utilizing phase change material for energy storage |
DE102021124388A1 (en) | 2021-09-21 | 2023-03-23 | Volkswagen Aktiengesellschaft | battery cell |
CN114243165A (en) * | 2021-12-14 | 2022-03-25 | 重庆大学 | Lithium ion battery thermal management system |
CN114243165B (en) * | 2021-12-14 | 2023-10-31 | 重庆大学 | A lithium-ion battery thermal management system |
CN117270595A (en) * | 2023-11-23 | 2023-12-22 | 珠海科创储能科技有限公司 | Temperature control device for energy storage system |
CN117270595B (en) * | 2023-11-23 | 2024-02-20 | 珠海科创储能科技有限公司 | Temperature control device for energy storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN212230580U (en) | A two-phase immersion battery liquid cooling device using phase change materials for energy storage | |
CN111864304B (en) | Two-phase immersed battery liquid cooling device utilizing phase change material for energy storage | |
CN111786049A (en) | A two-phase immersion cooling system with multiple modules sharing a condensing chamber for battery cooling | |
Mahmud et al. | Lithium-ion battery thermal management for electric vehicles using phase change material: A review | |
CN212257625U (en) | A two-phase submerged battery liquid cold box filled with phase change capsules | |
CN111864305B (en) | Two-phase immersion type battery liquid cooling box filled with phase-change capsules | |
CN103855441A (en) | Battery cooling system of novel energy vehicle | |
CN212434717U (en) | A two-phase immersion cooling system with multiple modules sharing a condensing cavity | |
CN108232359B (en) | Power battery system based on gas-liquid two-phase heat dissipation and heat energy recovery | |
CN111883876A (en) | Modular battery module immersion type liquid cooling system that communicates each other | |
KR102094709B1 (en) | Battery cooling unit and battery module including the same | |
CN113241485B (en) | Increase battery package of phase transition heat transfer | |
CN111883878A (en) | Two-phase immersed battery liquid cooling system with multi-module sharing one constant voltage device | |
CN113097598B (en) | A kind of submerged passive thermal switch based on phase change material and its control method | |
CN113097599B (en) | Passive battery thermal regulator, method and management system based on supercooled phase change material | |
CN203644903U (en) | Composite cooling device for a power battery pack | |
CN203398226U (en) | Battery with efficient heat dissipation function | |
CN114678624B (en) | Two-phase immersed battery liquid cooling device for super quick charging of lithium battery and cooling system thereof | |
CN114284594A (en) | A battery and battery pack | |
CN115692929A (en) | Novel battery liquid cooling plate heat dissipation device of indirect contact type phase change material coupling finned tube | |
CN214589018U (en) | Passive battery thermal regulators, thermal management systems and battery packs based on supercooled phase change materials | |
CN212230581U (en) | A two-phase submerged battery liquid cooling system with multiple modules sharing a constant voltage device | |
CN114039122A (en) | Cooling system for power storage battery for electric automobile | |
CN211828908U (en) | Battery module and battery | |
CN218101332U (en) | A battery thermal management device based on solid-solid phase change materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20201225 Effective date of abandoning: 20240416 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20201225 Effective date of abandoning: 20240416 |