CN212181075U - 分层微结构多孔光纤太赫兹低损耗波导 - Google Patents

分层微结构多孔光纤太赫兹低损耗波导 Download PDF

Info

Publication number
CN212181075U
CN212181075U CN202020030746.8U CN202020030746U CN212181075U CN 212181075 U CN212181075 U CN 212181075U CN 202020030746 U CN202020030746 U CN 202020030746U CN 212181075 U CN212181075 U CN 212181075U
Authority
CN
China
Prior art keywords
optical fiber
fiber
microstructure
terahertz
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020030746.8U
Other languages
English (en)
Inventor
李珊珊
常胜江
范飞
张昊
宋丽培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202020030746.8U priority Critical patent/CN212181075U/zh
Application granted granted Critical
Publication of CN212181075U publication Critical patent/CN212181075U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本实用新型提供了一种基于等差分层微结构多孔光纤的太赫兹低损耗波导。基底材料采用环烯烃类聚合物TOPAS,光纤横截面由三角晶格排列、半径满足差分层条件的亚波长圆形空气孔阵列组成。研究表明,当工作频率大于1.15THz时,归一化吸收损耗低于多孔度相等的均匀微结构多孔光纤,同时基模在空气包层中的能量分数降低了近70%,从而能够有效降低外界环境的干扰。本实用新型所述光纤能够显著改善均匀微结构多孔光纤在高频模场劣化、传输带宽有限、易受环境干扰等方面的不足。对于太赫兹波段宽带、低损耗波导和功能器件的应用具有重要意义。

Description

分层微结构多孔光纤太赫兹低损耗波导
技术领域
本实用新型涉及太赫兹波传输领域,具体涉及一种基于分层微结构多孔光纤的太赫兹低损耗波导。
背景技术
太赫兹应用技术发展的一个迫切要求,就是如何使体积庞大的太赫兹空间光路系统向柔性、小型和轻便的方向发展。采用波导传输太赫兹波,并应用基于波导结构的太赫兹功能器件,能够实现对太赫兹波的线上操作,从而大大降低系统的连接损耗,减小系统体积,降低设计的复杂度。深入研究基于光子晶体光纤、多孔光纤等结构的聚合物波导和功能器件,对太赫兹技术的发展具有重要意义。
多孔光纤概念由Atakaramian以及Hassani等人于2008年同时提出,一经提出就引起了广泛关注。它的传导机制不同于两种常见的光子晶体光纤——基于光子带隙原理的光子晶体光纤,和折射率引导型实芯光子晶体光纤。多孔光纤以空气为包层,纤芯具有多孔结构,因此它能够把导模的大部分能量局限在纤芯微空气孔中传输。而干燥空气在太赫兹波段的吸收损耗系数接近于零,因此这种结构大大降低了基底材料的吸收损耗,从而实现了太赫兹波段的低损耗传输。此外,多孔光纤以空气为包层,基于全内反射原理导光。因此它不像带隙型光子晶体光纤那样,需要保证微结构的完美周期性。制作多孔光纤时,对纤芯微结构的周期性和形变都没有严苛的要求,因此光纤拉制的难度被大大降低。多孔光纤在传感和通讯领域有着很大的应用潜力。
然而,由于多孔光纤以空气为包层,因此易受环境干扰。这在很大程度上限制了多孔光纤的应用。此外,传统多孔光纤通常被设计为均匀微结构,纤芯微结构基本单元的形状和尺寸完全一致,因此在高频波段,基模x,y偏振两模式的模场将会发生劣化,从而使光纤的工作带宽变窄。本实用新型针对多孔光纤在高频模场劣化、传输带宽有限、易受环境干扰等方面的不足,提出了一种通过对光纤内部微空气孔阵列的等差分层设计,来显著改善光纤传输性能的太赫兹低损耗波导。光纤基底材料采用环烯烃类聚合物(TOPAS),TOPAS是一种柔软的聚合物材料,在太赫兹波段具有低损耗、折射率恒定、易于弯曲等优点。
发明内容
本实用新型针对多孔光纤在高频模场劣化、传输带宽有限、易受环境干扰等方面的不足,提出了一种通过对光纤内部微空气孔阵列的等差分层设计,来显著改善光纤传输性能的太赫兹低损耗波导。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,其结构为圆形聚合物波导线内含若干亚波长尺度、沿轴向延伸、三角晶格排列的圆形空气孔,空气孔的尺寸采用等差分层设计,即纤芯微空气孔分为多层,设中心圆的半径为r,每向外一层,圆的半径尺寸增大固定长度Δr。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,作为纤芯基本功能单元的空气孔,其横截面形状包括但不限于圆形、矩形、椭圆形、蜂窝状或其他组合孔阵列等结构。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,纤芯微结构可以采用三角晶格、四方晶格、八角晶格等结构。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,其特征在于,光纤内部空气孔阵列采用分层设计,不同层空气孔的尺寸满足一定关系,这种关系包括但不限于等差数列,也可满足等比数列,斐波那契数列、非均匀差数列等,其目的是通过调节空气孔阵列的尺寸形成折射率梯度差,从而显著改善光纤的传输性能。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,不仅可以应用在太赫兹波段,也可推广到微波、红外、可见光等波段。
所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,可选基底材料包括但不限于PP (聚丙烯),HDPE(高密度聚乙烯),ABS(丙烯腈-丁二烯-苯乙烯共聚物),PMMA(聚甲基丙烯酸甲酯),TOPAS(环烯烃类聚合物),PLA(聚乳酸)等材料。
作为优选,光纤微结构基本单元设计为圆形。
作为优选,光纤微结构空气孔阵列采用三角晶格排列。
作为优选,纤芯微结构不同层空气孔尺寸满足等差数列。
作为优选,光纤基底材料选择Topas。
本实用新型具备以下优点:1.均匀微结构多孔光纤在高频波段会出现模场劣化,本实用新型所述光纤在纤芯引入了等差分层微结构设计,形成了折射率梯度差,因此在高频波段模场仍然集中在纤芯区域,不易发生劣化;2.相比于均匀微结构多孔光纤,本实用新型所述光纤模场更集中,光纤基模的能量不易扩散,因此具有更宽的工作带宽;3.由于分层微结构设计会形成折射率分布梯度差,光纤能量不易扩散到空气包层,因此相比于均匀微结构多孔光纤,本实用新型所述光纤具有抗环境干扰的优势;4.随着3D打印技术的飞速发展,微米和纳米尺度的精细微结构将更容易被制造。本实用新型所述基于分层微结构多孔光纤的太赫兹低损耗波导,对于太赫兹应用领域的宽带、低损耗、柔性、集成化传输等需求具有重要意义。
附图说明
图1是基于等差分层微结构多孔光纤的太赫兹低损耗波导横截面示意图:光纤由内含若干圆形空气孔11的聚合物波导12组成;波导直径为D,圆形空气孔为三角晶格排列,晶格常数为L;空气孔采用等差分层设计,中心空气孔30的半径为r,第一层至第五层空气孔分别标注为31,32,33,34,35,每向外一层空气孔半径增加Δr。
图2是分层微结构多孔光纤的色散曲线和模式双折射。
图3是两种光纤的归一化吸收损耗系数,分别为:多孔度相等的均匀微结构多孔光纤和分层微结构多孔光纤,多孔度P≈56.48%。
图4是两种光纤在空气包层中的基模能量分数,分别为:多孔度相等的均匀微结构多孔光纤和分层微结构多孔光纤,多孔度P≈56.48%。
图5是归一化吸收损耗系数增量:分层微结构多孔光纤与均匀微结构多孔光纤对比。
图6是空气包层基模能量分数降低量:分层微结构多孔光纤与均匀微结构多孔光纤对比。
图7是两种多孔光纤基模稳态的模场分布:多孔度相等的均匀微结构多孔光纤与分层微结构多孔光纤,入射光频率为1.2THz。
具体实施方式
下面结合附图和实例对本实用新型进行详细的描述。
实例:基于等差分层微结构多孔光纤的太赫兹低损耗波导(图1),由内含若干圆形空气孔11的聚合物波导12组成;空气孔采用等差分层设计,中心空气孔为30,第一层至第五层空气孔分别标注为31,32,33,34,35。
波导直径为D,圆形空气孔为三角晶格排列,晶格常数为L;
波导直径为D=556μm,光纤中圆形空气孔为三角晶格排列,晶格常数为L=25μm;空气孔采用等差分层设计,中心空气孔30的半径为r=18μm,每向外一层空气孔半径增加Δr=1μm。第一层至第五层空气孔31-35,半径分别为19μm,20μm,21μm,22μm,23μm。
在本实例中光纤基底材料12选择环烯烃类聚合物TOPAS,TOPAS在太赫兹波段具有较低的材料吸收损耗和相对恒定的折射率。
图2给出了分层微结构多孔光纤的色散曲线和模式双折射。由于光纤中微结构基本单元为圆形空气孔,因此光纤具有较低的模式双折射。由图可知,光纤的模式双折射B始终在 10-5-10-6量级。
图3给出了两种多孔光纤的归一化吸收损耗对比,分别为多孔度相等的均匀微结构多孔光纤和分层微结构多孔光纤,多孔度P≈56.48%。由图可知,两种光纤的归一化吸收损耗系数随频率增大而增大,当入射光频率小于1.15THz时,均匀微结构多孔光纤的归一化损耗系数略低于分层微结构光纤;当入射光频率大于1.15THz时,均匀微结构多孔光纤的归一化损耗系数高于分层微结构多孔光纤。
图4给出了两种多孔光纤基模在空气包层中的能量分数。多孔光纤以空气为包层,在空气包层中的能量分数越大,则说明光纤越易受环境干扰。由图可知,在0.3THz-1.2THz,分层微结构多孔光纤基模在空气包层中的能量分数始终低于均匀微结构多孔光纤。
由图5和图6:归一化吸收损耗系数增量和空气包层能量分数降低百分比可知,相比于多孔度相同的均匀微结构多孔光纤,分层微结构多孔光纤的归一化吸收损耗系数在0.3THz-1.1THz只是略有增加,始终小于8%,当入射光频率大于1.15THz时,分层微结构多孔光纤的归一化吸收损耗系数低于均匀微结构多孔光纤。在1.2THz,分层微结构多孔光纤基模在空气包层中的能量分数远低于均匀微结构多孔光纤,x-y-两偏振模式分别降低了69.01%和68.81%。也就是说,相比于同样多孔度的均匀微结构多孔光纤,本实用新型所述分层微结构多孔光纤在1.2THz附近具有更低的归一化吸收损耗,且基模在空气包层中的能量分数降低了近70%,从而有效降低外界环境的干扰。
图7给出了两种多孔光纤在1.2THz基模稳态的模场分布。由图可知,均匀微结构多孔光纤在1.2THz附近基模的模场发生了劣化。而本实用新型所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,模场能够被更好的限制在纤芯区域,且在空气包层中的能量分数远低于均匀微结构多孔光纤。
本实用新型所述基于等差分层微结构多孔光纤的太赫兹低损耗波导,其加工制造可以采用两种方式:(1)以聚合物材料为基材的3D打印。太赫兹光纤器件微结构尺寸较大,因此可以采用高精度3D打印的方式来制作光纤。(2)传统光纤拉制方法:用形状相同,但空心尺寸不同的聚合物波导管,分层密堆积的方式来制作光纤的预制棒,拉制后也能得到类似的微结构。

Claims (6)

1.一种分层微结构多孔光纤太赫兹低损耗波导,其特征是,光纤由纤芯和空气包层两部分组成,纤芯基本结构为聚合物材料内含若干沿轴向排列,横截面微结构尺寸满足等差分层条件的圆形空气孔阵列。
2.根据权利要求1所述的分层微结构多孔光纤太赫兹低损耗波导,其特征在于,光纤是以空气为包层的折射率引导型多孔光纤。
3.根据权利要求1所述的分层微结构多孔光纤太赫兹低损耗波导,其特征在于,多孔光纤横截面为三角晶格排列,具有六方对称性的圆形空气孔,晶格常数可以设置为25μm。
4.根据权利要求1所述的分层微结构多孔光纤太赫兹低损耗波导,其特征在于,多孔光纤的微结构采用等差分层设计,即在光纤横截面上,纤芯微结构分为多层,微结构基本单元为圆形,圆的半径为r,每向外一层,圆的半径尺寸增大固定长度Δr。
5.根据权利要求1所述的分层微结构多孔光纤太赫兹低损耗波导,其特征在于,光纤内部空气孔阵列采用分层设计,不同层空气孔的尺寸满足一定关系,这种关系可以为等差数列,等比数列,斐波那契数列、非均匀差数列,其目的是通过调节空气孔阵列的尺寸形成折射率梯度差,从而显著改善光纤的传输性能。
6.根据权利要求1所述的分层微结构多孔光纤太赫兹低损耗波导,其特征在于,其结构可应用于太赫兹、微波、红外、可见光等波段。
CN202020030746.8U 2020-01-08 2020-01-08 分层微结构多孔光纤太赫兹低损耗波导 Active CN212181075U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020030746.8U CN212181075U (zh) 2020-01-08 2020-01-08 分层微结构多孔光纤太赫兹低损耗波导

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020030746.8U CN212181075U (zh) 2020-01-08 2020-01-08 分层微结构多孔光纤太赫兹低损耗波导

Publications (1)

Publication Number Publication Date
CN212181075U true CN212181075U (zh) 2020-12-18

Family

ID=73773415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020030746.8U Active CN212181075U (zh) 2020-01-08 2020-01-08 分层微结构多孔光纤太赫兹低损耗波导

Country Status (1)

Country Link
CN (1) CN212181075U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158081A (zh) * 2020-01-08 2020-05-15 南开大学 分层微结构多孔光纤太赫兹低损耗波导
CN112930017A (zh) * 2021-01-18 2021-06-08 四川大学 一种新型的微波高效等离子体火炬发生器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158081A (zh) * 2020-01-08 2020-05-15 南开大学 分层微结构多孔光纤太赫兹低损耗波导
CN112930017A (zh) * 2021-01-18 2021-06-08 四川大学 一种新型的微波高效等离子体火炬发生器

Similar Documents

Publication Publication Date Title
Argyros Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre‐Based Metamaterials
KR100390642B1 (ko) 테라헤르츠파 전송을 위한 플라스틱 광결정 섬유 및 그제조 방법
Olyaee et al. Design and optimization of index-guiding photonic crystal fiber gas sensor
US9612395B2 (en) Optical fiber with a variable refractive index profile
Morshed et al. Proposal of simple gas sensor based on micro structure optical fiber
KR100485998B1 (ko) 압출 다이를 이용한 플라스틱 광섬유 모재의 제조방법
CN212181075U (zh) 分层微结构多孔光纤太赫兹低损耗波导
Asaduzzaman et al. Highly sensitive simple structure circular photonic crystal fiber based chemical sensor
Zhang et al. A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band: design and simulation
Asaduzzaman et al. Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss
Ahmed et al. Numerical demonstration of triangular shaped photonic crystal fibre‐based biosensor in the Terahertz range
Yakasai et al. Theoretical assessment of a porous core photonic crystal fiber for terahertz wave propagation
CN111158081A (zh) 分层微结构多孔光纤太赫兹低损耗波导
Monir et al. High birefringent, low loss and flattened dispersion asymmetric slotted core-based photonic crystal fiber in THz regime
Arif et al. High sensitive PCF based chemical sensor for ethanol detection
CN105511014B (zh) 一种纳米空气孔传光的多孔芯光子晶体光纤
Liu et al. Quasiperiodic photonic crystal fiber
WO2009104010A1 (en) Optical fibre
Singh et al. Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method
Gupta et al. Photonic crystal fiber based surface plasmon resonance bio-sensors with bimetallic selectively filled metal layers
CN211043721U (zh) 一种基于等差分层微结构的太赫兹高双折射光子晶体光纤
CN105891944A (zh) 基于光子晶体光纤的侧芯spr折射率传感模型
CN211602925U (zh) 太赫兹微结构双芯光纤超灵敏微流体传感器
Sharma et al. Optical characteristics of polymer-infused microstructured optical fiber using an analytical field model
Lu et al. A THz fiber polarization splitter based on anti-resonant hollow-core fiber with the asymmetric dual-suspended cores

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant