CN212003523U - Micro Piezo Pump Module - Google Patents
Micro Piezo Pump Module Download PDFInfo
- Publication number
- CN212003523U CN212003523U CN201921342219.4U CN201921342219U CN212003523U CN 212003523 U CN212003523 U CN 212003523U CN 201921342219 U CN201921342219 U CN 201921342219U CN 212003523 U CN212003523 U CN 212003523U
- Authority
- CN
- China
- Prior art keywords
- piezoelectric pump
- resistor
- electrode
- type mosfet
- electrically connected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004891 communication Methods 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
一种微型压电泵模块,包含压电泵、微处理器、驱动组件、电流检测器以及回授电路;驱动组件、电流检测器及回授电路电连接于微处理器与压电泵之间,微处理器通过驱动组件驱使压电泵运作,并由回授电路及电流检测器确认压电泵的运作情况,借此调整压电泵的作动频率、工作电压及消耗功率。
A micro piezoelectric pump module includes a piezoelectric pump, a microprocessor, a driving component, a current detector and a feedback circuit; the driving component, the current detector and the feedback circuit are electrically connected between the microprocessor and the piezoelectric pump. The microprocessor drives the piezoelectric pump to operate through the driving component, and the feedback circuit and the current detector confirm the operating status of the piezoelectric pump, thereby adjusting the actuation frequency, working voltage and power consumption of the piezoelectric pump.
Description
【技术领域】【Technical field】
本案关于一种微型压电泵模块,尤指一种能够调整工作电压且能够快速确认其作动频率的微型压电泵模块。This case is about a miniature piezoelectric pump module, especially a miniature piezoelectric pump module that can adjust the working voltage and quickly confirm its operating frequency.
【背景技术】【Background technique】
随着科技的日新月异,流体输送装置的应用上亦愈来愈多元化,举凡工业应用、生医应用、医疗保健、电子散热……等,甚至近来热门的穿戴式装置皆可见它的踨影,可见传统的泵已渐渐有朝向装置微小化的趋势,但传统的泵难以将尺寸缩小至公厘等级,故目前的微型流体输送装置仅能使用压电泵结构来作为微型流体传输装置。With the rapid development of science and technology, the application of fluid delivery devices has become more and more diversified, such as industrial applications, biomedical applications, medical care, electronic cooling, etc., and even the recent popular wearable devices can be seen. It can be seen that the traditional pump has gradually tended to miniaturize the device, but it is difficult to reduce the size of the traditional pump to the millimeter level, so the current micro fluid delivery device can only use the piezoelectric pump structure as the micro fluid transmission device.
而压电泵是施加电压至压电件,压电件因压电效应产生形变,其内部压力发生变化进带动送流体传输的泵,因此压电件上的工作电压影响压电泵的效能甚巨,但是目前供给压电件上的工作电压会因损耗、热源等影响造成工作电压的浮动、不足,造成目前的压电泵效能不稳、或效能降低的问题。The piezoelectric pump applies voltage to the piezoelectric element, the piezoelectric element is deformed due to the piezoelectric effect, and its internal pressure changes to drive the pump for fluid transmission. Therefore, the working voltage on the piezoelectric element affects the efficiency of the piezoelectric pump. However, due to the influence of loss, heat source, etc., the working voltage currently supplied to the piezoelectric element will cause the working voltage to fluctuate and be insufficient, resulting in the problem that the current piezoelectric pump has unstable performance or reduced performance.
且,压电泵于持续运作时,由于压电件是以极高频率下快速变形,产生大量热能,将影响到压电件的作动频率,进而影响到压电泵的效率,而当压电泵的作动频率失真时,需要重新确认压电泵的作动频率,十分耗时以及在确认作动频率时压电泵无法在较佳的作动频率下运作,将会降低压电泵的效率,因此,在压电泵运作过程中,当其作动频率失真时,如何在短时间确认其作动频率亦为压电泵当下必须解决的课题。Moreover, when the piezoelectric pump is in continuous operation, since the piezoelectric element is rapidly deformed at a very high frequency, a large amount of heat energy is generated, which will affect the operating frequency of the piezoelectric element, thereby affecting the efficiency of the piezoelectric pump. When the operating frequency of the electric pump is distorted, it is necessary to reconfirm the operating frequency of the piezoelectric pump. Therefore, when the operating frequency of the piezoelectric pump is distorted, how to confirm the operating frequency in a short time is also a problem that the piezoelectric pump must solve at present.
【实用新型内容】【Content of utility model】
本案的主要目的在于提供一种微型压电泵结构,通过回授电路取得压电件的工作电压,并将其回传至微处理器,使得微处理器能以控制压电件上的工作电压。The main purpose of this case is to provide a micro piezoelectric pump structure, which obtains the working voltage of the piezoelectric element through a feedback circuit and transmits it back to the microprocessor, so that the microprocessor can control the working voltage on the piezoelectric element. .
为达上述目的,本案的较广义实施态样为提供一种微型压电泵模块,包含:一压电泵,该压电泵具有一第一电极、一第二电极及一压电件;一微处理器,输出一控制信号及一调变信号;一驱动组件,电连接于该微处理器及该压电泵之间,该驱动组件包含:一变压件,接收该调变信号以输出一工作电压至该压电泵;一逆变件,接收该控制信号,借由该控制信号调整该压电泵的该第一电极与该第二电极接收该工作电压或接地,当该第一电极接收该工作电压时,该第二电极接地;当该第一电极接地时,该第二电极接收该工作电压;通过该第一电极与该第二电极的电压差,使该压电泵的该压电件因压电效应产生形变,用以输送流体;以及一电流检测器,电连接于该变压件与该逆变件之间,检测该压电泵作动时的电流值;以及一回授电路,电连接于该压电泵与该微处理器之间,借由该压电泵该工作电压产生一回授电压;其中,该微处理器输出具有一第一频率区间的该控制信号,该逆变件依据该控制信号使该压电泵于该第一频率区间内作动,由该电流检测器传递其电流值至该微处理器,该微处理器选取该压电泵于该第一频率区间内的最大电流值所对应的频率作为一第一中心频率,该微处理器以该第一中心频率为基准,前后各取一频率区段作为一第二频率区间调整该控制信号,该逆变件依据该控制信号使该压电泵于该第二频率区间内作动,并由该电流检测器传递其电流值至该微处理器,该微处理器选取该压电泵于该第二频率区间内的最大电流值所对应的频率作为一第二中心频率,该微处理器以该第二中心频率为基准,前后各取一次频率区段作为一第三频率区间调整该控制信号,该逆变件依据该控制信号使该压电泵于该第三频率区间内作动,并由该电流检测器传递其电流值至该微处理器,该微处理器选取该压电泵于该第三频率区间内的最大电流值所对应的频率作为一作动频率,该微处理器将具有该作动频率的该控制信号传递至该逆变件,该逆变件驱使该压电泵于该作动频率下运作,且该压电泵作动后,每间隔一作动时间,该逆变件输出具有该第三频率区间的控制信号至逆变件,驱使该压电泵于该第三频率区间作动,并取该第三频率区间内的最大电流值所对应的频率作为该作动频率,令该压电泵于该作动频率下运作;此外,该微处理器可依据该回授电压调整该变压件输出的该压电泵的工作电压,亦可调控该工作电压来调整该压电泵的消耗功率。In order to achieve the above purpose, a broader implementation aspect of this case is to provide a miniature piezoelectric pump module, including: a piezoelectric pump, the piezoelectric pump has a first electrode, a second electrode and a piezoelectric element; a a microprocessor, which outputs a control signal and a modulation signal; a driving component, which is electrically connected between the microprocessor and the piezoelectric pump, the driving component includes: a voltage transformer, which receives the modulation signal to output A working voltage is applied to the piezoelectric pump; an inverter element receives the control signal, and adjusts the first electrode and the second electrode of the piezoelectric pump to receive the working voltage or ground by the control signal. When the electrode receives the working voltage, the second electrode is grounded; when the first electrode is grounded, the second electrode receives the working voltage; the voltage difference between the first electrode and the second electrode makes the piezoelectric pump The piezoelectric element is deformed due to the piezoelectric effect for conveying fluid; and a current detector is electrically connected between the transforming element and the inverter element to detect the current value when the piezoelectric pump is actuated; and A feedback circuit is electrically connected between the piezoelectric pump and the microprocessor, and a feedback voltage is generated by the working voltage of the piezoelectric pump; wherein, the microprocessor outputs the a control signal, the inverter makes the piezoelectric pump actuate in the first frequency range according to the control signal, the current detector transmits its current value to the microprocessor, and the microprocessor selects the piezoelectric pump The frequency corresponding to the maximum current value in the first frequency interval is used as a first center frequency, and the microprocessor takes the first center frequency as a reference, and selects a frequency interval before and after as a second frequency interval to adjust the a control signal, the inverter makes the piezoelectric pump actuate in the second frequency range according to the control signal, and the current detector transmits its current value to the microprocessor, and the microprocessor selects the piezoelectric pump The frequency corresponding to the maximum current value of the pump in the second frequency range is used as a second center frequency, and the microprocessor takes the second center frequency as a reference, and takes one frequency range before and after as a third frequency range adjustment the control signal, the inverter makes the piezoelectric pump actuate in the third frequency range according to the control signal, and the current detector transmits its current value to the microprocessor, and the microprocessor selects the voltage The frequency corresponding to the maximum current value of the electric pump in the third frequency interval is used as an operating frequency, and the microprocessor transmits the control signal with the operating frequency to the inverter, and the inverter drives the voltage The electric pump operates at the operating frequency, and after the piezoelectric pump is activated, the inverter element outputs a control signal having the third frequency interval to the inverter element at every operating time interval to drive the piezoelectric pump to The third frequency interval operates, and the frequency corresponding to the maximum current value in the third frequency interval is taken as the operating frequency, so that the piezoelectric pump operates at the operating frequency; in addition, the microprocessor may The working voltage of the piezoelectric pump output by the transformer is adjusted according to the feedback voltage, and the power consumption of the piezoelectric pump can also be adjusted by adjusting the working voltage.
【附图说明】【Description of drawings】
图1为本案微型压电泵模块的方块图。FIG. 1 is a block diagram of the miniature piezoelectric pump module of the present invention.
图2为本案微型压电泵模块的电路示意图。FIG. 2 is a schematic circuit diagram of the miniature piezoelectric pump module of the present invention.
图3A为第一控制步骤下其回授电路的等效电路图。FIG. 3A is an equivalent circuit diagram of its feedback circuit in the first control step.
图3B为第二控制步骤下其回授电路的等效电路图。FIG. 3B is an equivalent circuit diagram of its feedback circuit under the second control step.
【具体实施方式】【Detailed ways】
体现本案特征与优点的实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本案。Embodiments embodying the features and advantages of the present case will be described in detail in the description of the latter paragraph. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and diagrams therein are essentially used for illustration rather than limiting this case.
请参阅图1所示,微型压电泵模块100包含:一微处理器1、一驱动组件2、一压电泵3及一回授电路4。微处理器1输出一控制信号及一调变信号至驱动组件2,驱动组件2电连接压电泵3,并借由控制信号及调变信号提供一工作电压给压电泵3运作,回授电路4提供压电泵3的一作动工作电压回授给微处理器1,微处理器1再通过控制信号及调变信号使驱动组件2调整压电泵3的工作电压,使压电泵3的作动电压对应调整,其中,作动电压为压电泵3于实际作动时的电压。Please refer to FIG. 1 , the miniature
请参阅图1及图2所示,微处理器1具有一控制单元11、一转换单元12以及一通讯单元13。驱动组件2具有一变压件21、一逆变件22以及一电流检测器23。压电泵3具有一第一电极31、一第二电极32以及一压电件33。通讯单元13电连接至该变压件21,以输出调变信号给变压件21。变压件21依据调变信号将电压调变为工作电压,再将工作电压传输给逆变件22。控制单元11电连接至逆变件22,用以通过逆变件22控制压电泵3的第一电极31与第二电极32所接收到的是工作电压或是接地,借此调整压电泵3的作动频率。Please refer to FIG. 1 and FIG. 2 , the microprocessor 1 has a
电流检测器23电连接于变压件21与逆变件22之间,检测压电泵3于作动时的电流值给微处理器1,于本案中,电流检测器23将会回传压电泵3于各频率下作动时的电流值供微处理器1判断。The
请继续参阅图2所示,回授电路4电连接于压电泵3与微处理器1之间,回授电路4包含有一第一电阻R1、一第二电阻R2、一第三电阻R3及一电容C。第一电阻R1具有一第一接点41a及一第二接点41b。第二电阻R2具有一第三接点42a及一第四接点42b。第三电阻R3具有一第五接点43a及一第六接点43b。电容C具有一第七接点44a及一第八接点44b。其中,第一电阻R1的第一接点41a电连接压电泵3的第一电极31,第二电阻R2的第三接点42a电连接压电泵3的第二电极32,第三电阻R3的第六接点43b电连接电容C的第八接点44b并接地,第三电阻R3的第五接点43a电连接电容C的第七接点44a,使第三电阻R3与电容C并联后电连接至第一电阻R1的第二接点41b、第二电阻R2的第四接点42b及微处理器1,令压电泵3的第一电极31与第二电极32之间的工作电压进行分压,以产生回授电压回授至微处理器1的转换单元12。其中,第一电阻R1跟第二电阻R2的电阻值相同,但不以此为限。此外,电容C其功能为滤波,避免噪声干扰回授电压。Please continue to refer to FIG. 2 , the
承上所述,变压件21更包含一电压输出端211、一变压回授端212及一变压回授电路213。电压输出端211经电流检测器23电连接至逆变件22。变压回授电路213电连接微处理器1及变压回授端212之间,其中,变压回授电路213包含有一第四电阻R4及一第五电阻R5,第四电阻R4具有一第一端点213a及一第二端点213b,第五电阻R5具有一第三端点213c及一第四端点213d。第四电阻R4的第一端点213a电连接电压输出端211。第五电阻R5的第三端点213c电连接第四电阻R4的第二端点213b及变压回授端212,而第五电阻R5的第四端点213d则接地。其中,第五电阻R5为一可变电阻,于本实施例中,第五电阻R5为一数字可变电阻,具有一通讯介面213e,通讯介面213e电连接至微处理器1的通讯单元13,让通讯单元13得以传输调变信号至数字可变电阻(第五电阻R5)来调整其电阻值。变压件21的电压输出端211所输出的工作电压经过变压回授电路213的第四电阻R4及第五电阻R5分压后,将分压后的工作电压由变压回授端212回传至变压件21,供变压件21参考其输出的工作电压是否符合理想工作电压,若其工作电压与理想工作电压有差异,则再次调变输出的工作电压使其不断地调整以趋近理想工作电压,最后将工作电压调整到与理想工作电压一致。其中,工作电压为变压件21由电压输出端211所输出的实际电压,理想工作电压则是微处理器1传递的调变信号。As mentioned above, the
请继续参阅图2,逆变件22包含有:一缓冲闸221、一反相器222、一第一P型金氧半场效晶体管223、一第二P型金氧半场效晶体管224、一第一N型金氧半场效晶体管225及一第二N型金氧半场效晶体管226。缓冲闸221具有一缓冲输入端221a及一缓冲输出端221b。反相器222具有一反相输入端222a及一反相输出端222b。第一P型金氧半场效晶体管223、第二P型金氧半场效晶体管224、第一N型金氧半场效晶体管225及第二N型金氧半场效晶体管226皆分别具有一栅极G、一漏极D及一源极S。其中,缓冲闸221的缓冲输入端221a及反相器222的反相输入端222a电连接微处理器1的控制单元11,用以接收控制信号,且该控制信号可为但不限为一脉波宽度调变信号(PWM)。缓冲闸221的缓冲输出端221b电连接第一P型金氧半场效晶体管223的栅极G及第一N型金氧半场效晶体管225的栅极G。反相器222的反相输出端222b电连接第二P型金氧半场效晶体管224的栅极G及第二N型金氧半场效晶体管226的栅极G。第一P型金氧半场效晶体管223的源极S与第二P型金氧半场效晶体管224的源极S经电流检测器23电连接变压件21的电压输出端211,来接收变压件21输出的工作电压。第一P型金氧半场效晶体管223的漏极D电连接第一N型金氧半场效晶体管225的漏极D及压电泵3的第二电极32。第二P型金氧半场效晶体管224的漏极D电连接第二N型金氧半场效晶体管226的漏极D及压电泵3的第一电极31。第一N型金氧半场效晶体管225的源极S电连接第二N型金氧半场效晶体管226的源极S并接地。Please continue to refer to FIG. 2, the
承上所述,上述的第一P型金氧半场效晶体管223、第二P型金氧半场效晶体管224、第一N型金氧半场效晶体管225及第二N型金氧半场效晶体管226形成一H桥的架构,用以将变压件21输出的工作电压(直流)转为交流给压电泵3,故第一P型金氧半场效晶体管223与第二P型金氧半场效晶体管224需接受相反信号,第一N型金氧半场效晶体管225与第二N型金氧半场效晶体管226亦同,故将微处理器1所传输的控制信号传递至第二P型金氧半场效晶体管224前先通过反相器222,使第二P型金氧半场效晶体管224的控制信号与第一P型金氧半场效晶体管223为反相,但第一P型金氧半场效晶体管223必须要与第二P型金氧半场效晶体管224一起接到控制信号,所以于第一P型金氧半场效晶体管223前设缓冲闸221,让第一P型金氧半场效晶体管223与第二P型金氧半场效晶体管224能够同步接到相反的信号,第一N型金氧半场效晶体管225与第二N型金氧半场效晶体管226亦同;于第一控制步骤中,第一P型金氧半场效晶体管223、第二N型金氧半场效晶体管226为导通,第二P型金氧半场效晶体管224、第一N型金氧半场效晶体管225为关闭的状态下,工作电压将通过第一P型金氧半场效晶体管223传递至压电泵3的第二电极32,压电泵3的第一电极31因第二N型金氧半场效晶体管226导通而接地。于第二控制步骤中,第一P型金氧半场效晶体管223、第二N型金氧半场效晶体管226为关闭,第二P型金氧半场效晶体管224、第一N型金氧半场效晶体管225为导通的情况下,工作电压将通过第二P型金氧半场效晶体管224传递至压电泵3的第一电极31,压电泵3的第二电极32因第一N型金氧半场效晶体管225导通而接地。通过重复以上的第一控制步骤与第二控制步骤,让压电泵3的压电件33能够因第一电极31与第二电极32所接受的工作电压或接地以通过压电效应而产生形变,带动压电泵3内部的腔室(未图示)压力产生变化,来持续的传输流体。Continuing from the above, the first P-
而回授电路4则是不断地接收压电泵3的第一电极31与第二电极32的工作电压或接地。于上述第一控制步骤时,第二电极32为工作电压,第一电极31为接地,此时回授电路4的等效电路如图3A所示,第一电阻R1将会与第三电阻R3并联,此时的回授电压为(R1//R3)÷[(R1//R3)+R2]×工作电压。此外,于第二控制步骤时第一电极31为工作电压,第二电极32为接地,此时回授电路4的等效电路如图3B所示,第二电阻R2将与第三电阻R3并联,此时的回授电压为(R2//R3)÷[(R2//R3)+R1]×工作电压。回授电路4将回授电压传递至微处理器1,微处理器1接收回授电压来判断当下压电泵3的作动电压,并与工作电压比对,若作动电压与工作电压不同时,通过转换单元12将回授电压转为数字信号,来将转为数字信号的调变信号由通讯单元13传递至通讯介面213e来调整第五电阻R5(数字可变电阻)。最后变压件21的电压输出端211所输出的工作电压经过变压回授电路213的第四电阻R4及第五电阻R5分压后,将分压后的工作电压由变压回授端212回传至变压件21,供变压件21参考其输出的工作电压是否符合理想工作电压,若其工作电压与理想工作电压有差异,则再次调变输出的工作电压使其不断地调整以趋近理想工作电压,最后将工作电压调整到与理想工作电压一致,通过以上步骤让压电泵3所接受的工作电压能够一直维持在理想工作电压,来让压电泵3能够持续地在较佳效能下运作。The
请继续参阅图1及图2,首先,微处理器1输出具有一第一频率区间(如5KHz至20KHz)的控制信号,逆变件22使压电泵3于第一频率区间的各频率下依序作动。压电泵3于第一频率区间内所有频率下所作动时的电流值由电流检测器23传递给微处理器1,微处理器1选取其中最大的电流值其所对应的压电泵3的作动频率作为一第一中心频率(如20KHz),再以第一中心频率为中心基准,与其前后各取一频率区段(如6KHz),并将第一中心频率前后各取一频率区段的频率范围作为一第二频率区间(如14KHz至26KHz)。微处理器1输出具有第二频率区间的控制信号。逆变件22控制压电泵3于第二频率区间的各频率下依序作动,再由电流检测器23传递第二频率区间内各频率下作动的压电泵3。压电泵3于第二频率区间内所有频率下所作动时的电流值由电流检测器23传递给微处理器1,微处理器1选取其中最大的电流值其所对应的压电泵3的作动频率作为一第二中心频率(如24KHz),再以第二中心频率为中心基准,与其前后各取一次频率区段(如4KHz),并将第二中心频率前后各取一次频率区段的频率范围作为一第三频率区间(如20KHz至28KHz)。微处理器1输出具有第三频率区间的控制信号,逆变件22控制压电泵3于第三频率区间的各频率下依序作动,压电泵3于第三频率区间内所有频率下所作动时的电流值由电流检测器23传递给微处理器1,微处理器1选取其中最大的电流值其所对应的压电泵3的作动频率作为一第三中心频率(如27KHz),最后以第三中心频率作为压电泵3的作动频率,驱动压电泵3作动;此外,压电泵3于持续作动时会因压电件33的急速形变产生热能,导致作动频率失真,将会造成效率较低的问题,因此,压电泵3作动后,每间隔一作动时间,微处理器1将再以前述的第三频率区间(20KHz至28KHz)输出控制信号,逆变件22控制压电泵3于第三频率区间的各频率下依序作动,压电泵3于第三频率区间内所有频率下所作动时的电流值由电流检测器23传递给微处理器1,微处理器1选取其中最大的电流值其所对应的频率作为压电泵3的作动频率;前述的频率区间及中心频率等数据仅为方便理解所作的举例说明,并不以此为限。Please continue to refer to FIG. 1 and FIG. 2. First, the microprocessor 1 outputs a control signal having a first frequency range (eg, 5KHz to 20KHz), and the
承上所述,第一频率区间的范围大于第二频率区间的范围,第二频率区间的范围大于第三频率区间的范围。As mentioned above, the range of the first frequency interval is greater than the scope of the second frequency interval, and the scope of the second frequency interval is greater than the scope of the third frequency interval.
此外,本案可经由电流检测器23获得压电泵3于作动时的电流,以及由回授电路4取得压电泵3的作动电压,并且可由微处理器1调整压电泵3的工作电压,得以当压电泵3的消耗功率过大时,通过降低工作电压的方式来调整压电泵3的消耗功率,亦可设置一预设功率值,当压电泵3的消耗功率大于(或等于)预设功率值时,降低输出至压电泵3的工作电压,来避免压电泵3功率消耗的问题。In addition, in this case, the current of the
综上所述,本案提供一种微型压电泵模块,通过电流检测器以及回授电路来确认压电泵的运作情况,电流检测器可以得知压电泵于扫频时,不同频率运作时的电流值,来取得压电泵的作动频率,并且分别取得第一频率区间、第二频率区间及第三频率区间,并于压电泵因长时间作动而使作动频率失真时,利用直接使用第三频率区间来获取最佳的作动频率,大幅减少确认作动频率的时间,来避免于搜寻作动频率时,压电泵效能降低的问题,以确保持续保持最佳的传输效能,而本实用新型能够解决先前技术中,压电泵的工作电压不稳、浮动、或是不足造成效能不彰、不一致的问题,此外,在控制工作电压时,能够同时调整压电泵的功率,减少功率的损耗,极具产业的利用价值,爰依法提出申请。To sum up, this application provides a miniature piezoelectric pump module, which uses a current detector and a feedback circuit to confirm the operation of the piezoelectric pump. The current value of the piezoelectric pump is used to obtain the operating frequency of the piezoelectric pump, and the first frequency interval, the second frequency interval and the third frequency interval are obtained respectively, and when the piezoelectric pump is operated for a long time and the operating frequency is distorted, By directly using the third frequency range to obtain the best operating frequency, the time for confirming the operating frequency is greatly reduced, to avoid the problem of reducing the efficiency of the piezoelectric pump when searching for the operating frequency, and to ensure the continuous maintenance of the best transmission. The utility model can solve the problem of inconsistency and inconsistency caused by the unstable, floating, or insufficient working voltage of the piezoelectric pump in the prior art. Power, reduce power loss, have great industrial use value, and apply for it in accordance with the law.
本案得由熟习此技术之人士任施匠思而为诸般修饰,然皆不脱如附申请专利范围所欲保护者。This case can be modified by Shi Jiangsi, a person familiar with this technology, but all of them do not deviate from the protection of the scope of the patent application attached.
【符号说明】【Symbol Description】
100:微型压电泵模块100: Micro Piezo Pump Module
1:微处理器1: Microprocessor
11:控制单元11: Control unit
12:转换单元12: Conversion unit
13:通讯单元13: Communication unit
2:驱动组件2: Drive components
21:变压件21: Transformer
211:电压输出端211: Voltage output terminal
212:变压回授端212: Transformer feedback terminal
213:变压回授电路213: Transformer feedback circuit
213a:第一端点213a: first endpoint
213b:第二端点213b: Second endpoint
213c:第三端点213c: Third endpoint
213d:第四端点213d: Fourth endpoint
213e:通讯介面213e: Communication Interface
22:逆变件22: Inverter parts
221:缓冲闸221: Buffer gate
221a:缓冲输入端221a: buffer input
221b:缓冲输出端221b: Buffered output
222:反相器222: Inverter
222a:反相输入端222a: Inverting input terminal
222b:反相输出端222b: Inverting output terminal
223:第一P型金氧半场效晶体管223: The first P-type MOSFET
224:第二P型金氧半场效晶体管224: Second P-type MOSFET
225:第一N型金氧半场效晶体管225: The first N-type MOSFET
226:第二N型金氧半场效晶体管226: Second N-type MOSFET
23:电流检测器23: Current detector
3:压电泵3: Piezo Pump
31:第一电极31: The first electrode
32:第二电极32: Second electrode
33:压电件33: Piezoelectric
4:回授电路4: Feedback circuit
41a:第一接点41a: first contact
41b:第二接点41b: second contact
42a:第三接点42a: third contact
42b:第四接点42b: Fourth contact
43a:第五接点43a: Fifth Contact
43b:第六接点43b: sixth contact
44a:第七接点44a: seventh contact
44b:第八接点44b: Eighth Contact
C:电容C: Capacitor
D:漏极D: Drain
G:栅极G: Gate
R1:第一电阻R1: first resistor
R2:第二电阻R2: second resistor
R3:第三电阻R3: third resistor
R4:第四电阻R4: Fourth resistor
R5:第五电阻R5: Fifth resistor
S:源极S: source
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921342219.4U CN212003523U (en) | 2019-08-19 | 2019-08-19 | Micro Piezo Pump Module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921342219.4U CN212003523U (en) | 2019-08-19 | 2019-08-19 | Micro Piezo Pump Module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212003523U true CN212003523U (en) | 2020-11-24 |
Family
ID=73411479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921342219.4U Expired - Fee Related CN212003523U (en) | 2019-08-19 | 2019-08-19 | Micro Piezo Pump Module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212003523U (en) |
-
2019
- 2019-08-19 CN CN201921342219.4U patent/CN212003523U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM576757U (en) | Micro piezoelectric pump module | |
TWI606686B (en) | Actuating system for piezoelectric pump | |
TW201308864A (en) | Polar switch circuit | |
CN112392699B (en) | Micro Piezo Pump Module | |
TWI712258B (en) | Micro piezoelectric pump module | |
CN212003523U (en) | Micro Piezo Pump Module | |
TWM582532U (en) | Micro piezoelectric pump module | |
CN209976755U (en) | Miniature piezoelectric pump module | |
TWI691650B (en) | Miniature piezoelectric pump module | |
TWI697200B (en) | Micro piezoelectric pump module | |
CN108390238B (en) | Terahertz driving device | |
TWM545188U (en) | Actuating system for piezoelectric pump | |
CN111779659B (en) | Miniature piezoelectric pump module | |
TW201724724A (en) | Driving circuit and piezoelectrically actuated pump employ the same | |
CN111173722B (en) | Miniature piezoelectric pump module | |
CN208966532U (en) | Micro Piezo Pump Module | |
CN113001003B (en) | Nonlinear output power device of ultrasonic power supply | |
CN210835776U (en) | DC level adjusting circuit | |
US6839253B2 (en) | Multi-period cycle-alternative switching mode power supply control device | |
CN110224630B (en) | Amplitude stabilizing control circuit of ultrasonic motor | |
CN111245291B (en) | A transformerless LLC drive control circuit and method for a cylindrical stator ultrasonic motor | |
TWI802952B (en) | Voltage-controlled modulator circuit with tunable frequency and varied pulse width | |
US20140042872A1 (en) | Polarity switching circuit | |
CN110821804B (en) | Driving frequency sweep compensation method of micropump | |
CN211702385U (en) | Frequency-following electronic horn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201124 |