CN211994712U - Pressure regulating assembly and ink cartridge - Google Patents

Pressure regulating assembly and ink cartridge Download PDF

Info

Publication number
CN211994712U
CN211994712U CN201921549124.XU CN201921549124U CN211994712U CN 211994712 U CN211994712 U CN 211994712U CN 201921549124 U CN201921549124 U CN 201921549124U CN 211994712 U CN211994712 U CN 211994712U
Authority
CN
China
Prior art keywords
pressure
chamber
elastic diaphragm
pressure regulating
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921549124.XU
Other languages
Chinese (zh)
Inventor
赵升魁
林东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Jet Technology Co ltd
Original Assignee
E Jet Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Jet Technology Co ltd filed Critical E Jet Technology Co ltd
Priority to CN201921549124.XU priority Critical patent/CN211994712U/en
Application granted granted Critical
Publication of CN211994712U publication Critical patent/CN211994712U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The utility model relates to a pressure regulating assembly, pressure regulating assembly is arranged in adjusting the pressure in the liquid holding chamber that rather than communicating, including pressure regulating chamber, elastic diaphragm and restriction elastic diaphragm's restriction piece, elastic diaphragm is located between pressure regulating chamber and the restriction piece, and pressure regulating chamber and liquid holding chamber communicate, and one side of elastic diaphragm towards the restriction piece is first side, and one side towards pressure regulating chamber is the second side, the part that elastic diaphragm and pressure regulating chamber are relative sets up in the air at the second side; when the air pressure in the liquid accommodating chamber becomes small, the elastic diaphragm deforms toward the pressure adjusting chamber, and at this time, the pressure adjusting chamber and the external atmosphere can communicate.

Description

Pressure regulating assembly and ink cartridge
Technical Field
The present invention relates to a pressure regulating assembly for a liquid container in which gas and liquid are exchanged and the flow rate of the liquid is controlled, and more particularly, to an ink cartridge having the pressure regulating assembly.
Background
The ink box is a common container which exchanges gas and liquid, the flow speed of ink in the ink box is controlled, when the ink-jet printer which is suitable for the ink box works, the ink contained in the ink box is sucked, in order to ensure the stable flow of the ink which is supplied to the ink-jet printer by the ink box, the flow speed of the ink is required to be controlled,
one of the conventional control methods is to provide a pressure adjustment chamber in a position of the ink cartridge adjacent to the ink outlet, the pressure adjustment chamber being communicated with an ink storage chamber containing ink through a communication hole, and to provide an elastic diaphragm and a support member at an outermost side of the pressure adjustment chamber, a chamber formed between the elastic diaphragm and the support member being communicated with the ink outlet; when the pressure in the ink box cavity is not changed, the elastic diaphragm seals the communicating hole under the elastic force of the spring; when the ink of the ink outlet is sucked by the ink-jet printer, the air pressure of the ink outlet is reduced, the air pressure of the cavity between the elastic membrane and the supporting member is also reduced, the elastic membrane is pushed away from the communicating hole under the action of the external atmospheric pressure, the communicating hole is opened, the ink in the ink storage cavity is supplemented to the ink outlet through the communicating hole, and when the pressure of the ink outlet is gradually recovered to be normal, the elastic membrane seals the communicating hole again under the action of the elastic restoring force of the spring.
Practice proves that by using the method to control the ink flow, the contact surface between the elastic membrane and the communicating hole is ensured to be smooth enough, otherwise, the elastic membrane and the communicating hole cannot be completely sealed, and the manufacturing precision requirement of the elastic membrane and the communicating hole is higher; on the other hand, the spring soaked in the ink for a long time is corroded by the ink, the elastic performance of the spring is further influenced, and the incomplete sealing between the elastic diaphragm and the communication hole is also caused.
SUMMERY OF THE UTILITY MODEL
The utility model provides a pressure regulating assembly and ink horn, through this pressure regulating assembly's regulation, the ink flow in the ink horn can be controlled steadily.
In order to achieve the above purpose, the utility model adopts the following technical scheme:
the pressure adjusting assembly is used for adjusting the pressure in the liquid containing cavity communicated with the pressure adjusting assembly and comprises a pressure adjusting cavity, an elastic diaphragm and a limiting part for limiting the elastic diaphragm, the elastic diaphragm is positioned between the pressure adjusting cavity and the limiting part, the pressure adjusting cavity is communicated with the liquid containing cavity, one side of the elastic diaphragm, facing the limiting part, is a first side, one side of the elastic diaphragm, facing the pressure adjusting cavity, is a second side, and the part, opposite to the pressure adjusting cavity, of the elastic diaphragm is arranged in a suspended mode on the second side; when the air pressure in the liquid accommodating chamber becomes small, the elastic diaphragm deforms toward the pressure adjusting chamber, and at this time, the pressure adjusting chamber and the external atmosphere can communicate.
The elastic membrane and the limiting piece are arranged at intervals.
The elastic diaphragm is provided with a notch, when the air pressure in the liquid accommodating cavity is reduced, the elastic diaphragm deforms towards the pressure adjusting cavity, and the notch is opened from the unopened state; when the air pressure in the liquid containing cavity is increased, the elastic diaphragm is not deformed.
The pressure adjusting cavity is communicated with the liquid containing cavity through a communicating hole, and the notch and the communicating hole are arranged in a staggered mode.
The utility model also provides an ink box, the ink box including enclose close the casing that forms the storage ink chamber that is used for holding the ink, set up ink outlet, the inlet port on the casing and as above pressure regulating assembly, wherein, pressure regulating assembly and inlet port and storage ink chamber intercommunication, the ink passes through the ink outlet and flows.
Drawings
Fig. 1 is a perspective view of a liquid container according to an embodiment of the present invention.
Fig. 2 is an exploded view of a pressure adjustment assembly in a liquid container according to an embodiment of the present invention.
Fig. 3A is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to an embodiment of the present invention is unchanged.
Fig. 3B is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to an embodiment of the present invention is reduced.
Fig. 3C is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to an embodiment of the present invention is increased.
Fig. 4A is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to the second embodiment of the present invention is unchanged.
Fig. 4B is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to the second embodiment of the present invention is reduced.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
[ example one ]
Fig. 1 is a perspective view of a liquid container according to an embodiment of the present invention; fig. 2 is an exploded view of a pressure adjustment assembly in a liquid container according to an embodiment of the present invention.
As shown in fig. 1, the liquid container 1 contains liquid for supplying to the outside, and includes a housing 2 enclosing to form a liquid containing cavity Q, and a liquid outlet 5, an air inlet 3 and a pressure regulating assembly 4 arranged on the housing 2, the liquid container 1 supplies liquid to the outside through the liquid outlet 5, outside air enters the liquid containing cavity Q through the air inlet 3, and the pressure regulating assembly 4 regulates the air pressure in the liquid containing cavity Q according to the external requirement, thereby controlling the liquid flow rate of the liquid outlet 5.
In a conventional liquid container 1, such as an ink cartridge 1, which needs to exchange gas and liquid and control the flow rate of the liquid, a cartridge housing 2 is formed with an ink storage chamber Q for storing ink and supplying the ink to an inkjet printer, when the inkjet printer sucks the ink, the pressure in the ink storage chamber Q is reduced, and a pressure regulating assembly 4 regulates the pressure in the ink storage chamber Q to ensure that the ink stably flows out from an ink outlet 5.
As shown in fig. 2, the pressure regulating assembly 4 includes a control chamber 41, an elastic diaphragm 42 installed in the control chamber 41, and a restricting member 44 for restricting the elastic diaphragm 42, the restricting member 44 being installed on the housing 2, the control chamber 41 being formed recessed from the outer surface of the housing 2 toward the liquid containing chamber Q; the elastic diaphragm 42 is not in contact with the restriction member 44, that is, a space S1 (shown in fig. 3A) is formed between the elastic diaphragm 42 and the restriction member 44; further, the control chamber 41 is provided with a step surface 411, the outer peripheral portion of the elastic diaphragm 42 is fixed to the step surface 411, and a space S2 (as shown in fig. 3A) is formed between the elastic diaphragm 42 and the bottom surface 412 of the control chamber 41, that is, the elastic diaphragm 42 is suspended except for the outer peripheral portion. The control chamber 41 communicates with the liquid containing chamber Q through the communication hole 21, and thus the elastic diaphragm 42 is elastically deformed in the control chamber 41 in response to a change in the pressure in the liquid containing chamber Q, thereby regulating the pressure in the liquid containing chamber Q.
Further, the pressure regulating assembly 4 further comprises a pressing ring 43 for fixing the elastic diaphragm 42 in the control chamber 41, and when the liquid container 1 is completely assembled, the pressing ring 43 slightly exceeds the control chamber 41 to ensure that the limiting piece 44 can be tightly contacted with the pressing ring 43; meanwhile, the housing 2 is further provided with a first air inlet 22 communicated with the air inlet 3, and the pressing ring 43 is further provided with a second air inlet 431 communicated with the first air inlet 22, preferably, the whole pressing ring 43 is circular, and the second air inlet 431 penetrates through the pressing ring 43 in the radial direction but does not penetrate through the thickness direction of the pressing ring 43, so that the second air inlet 431 is also correspondingly provided with a connecting part 432 in the thickness direction of the pressing ring 43, the integrity of the pressing ring 43 in the circumferential direction is ensured, the strength is not reduced, the whole peripheral part of the elastic diaphragm 42 can be pressed, and the parts of the elastic diaphragm 42 corresponding to the second air inlet 431 are prevented from being loosened to cause sealing failure.
By providing the first air inlet 22 and the second air inlet 431, the outside air can enter the first air inlet 22 from the air inlet hole 3, and then enter the space S1 enclosed by the pressing ring 43, the elastic diaphragm 42, and the restriction member 44 through the second air inlet 431.
Further, the elastic diaphragm 42 is provided with a slit 420, and when the elastic diaphragm 42 is not deformed, the slit 420 is not opened, and air cannot flow through the slit 420, and when the slit 420 is opened by the deformation, the air introduced into the space S1 can enter the space S2 through the slit 420, and then enter the liquid containing chamber Q through the communication hole 21.
The following describes the movement of the elastic diaphragm 42 in response to a change in the pressure in the liquid containing chamber Q with reference to fig. 3A, 3B and 3C.
Fig. 3A is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the cavity of the liquid container according to an embodiment of the present invention is unchanged; fig. 3B is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to an embodiment of the present invention is reduced; fig. 3C is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to an embodiment of the present invention is increased.
When the liquid container 1 is not in operation, the air pressure in the liquid containing chamber Q makes the air pressure in the space S2 and the space S1 keep balanced, the elastic diaphragm 42 is in a normal state, at this time, the elastic diaphragm 42 is not elastically deformed, further, the space S1 will be referred to as a pressure buffer chamber and the space S2 will be referred to as a pressure adjusting chamber according to the function, that is, the elastic diaphragm 42 divides the adjusting chamber 42 into the pressure buffer chamber S1 and the pressure adjusting chamber S2, wherein the pressure adjusting chamber S2 communicates with the liquid containing portion Q and the pressure buffer chamber S1 communicates with the external atmosphere.
As shown in fig. 2 and 3A, a side of the elastic diaphragm 42 facing the pressure buffer chamber S1 is defined as a first side 421, a side facing the pressure adjustment chamber S2 is defined as a second side 422, and when the elastic diaphragm 42 is not elastically deformed, a distance between the first side 421 and the limiting member 44 is defined as f1, and a distance between the second side 422 and the control chamber bottom surface 412 is defined as f2, and since the limiting member 44 and the elastic diaphragm 42 are both in close contact with the pressure ring 43, the distance f1 is actually a thickness of the pressure ring 43, or the distance f1 is a depth of the pressure buffer chamber S1, and the distance f2 is a depth of the pressure adjustment chamber S2.
When the liquid in the liquid containing chamber Q is supplied to the outside through the liquid outlet 5, the air pressure in the liquid containing chamber Q is lowered, and the air pressure in the pressure regulating chamber S2 is also lowered through the communication hole 21, as described above, the pressure buffer chamber S1 is communicated with the outside atmosphere through the second air inlet 431, the first air inlet 22 and the air inlet 3, as shown in fig. 3B, and the elastic diaphragm 42 starts to deform in a direction close to the liquid containing chamber Q (pressure regulating chamber S2) by the pressure of the outside atmosphere, and as the liquid in the liquid containing chamber Q continues to decrease, the elastic diaphragm 42 continues to deform toward the pressure regulating chamber S2. Based on the position of the notch 420, when the deformation of the elastic membrane 42 reaches f3, the notch 420 opens, the outside air can enter the pressure buffer chamber S1 through the air inlet hole 3, the first air inlet 22 and the second air inlet 431, then enter the pressure adjusting chamber S2 through the notch 420, and finally enter the liquid accommodating chamber Q through the communication hole 22, so that the air pressure in the liquid accommodating chamber Q gradually rises, finally, the air pressure in the liquid accommodating chamber Q reaches a predetermined value, the air pressures in the pressure adjusting chamber S2 and the pressure buffer chamber S1 return to a balanced state, the elastic membrane 42 also returns to a normal state without deformation, and the notch 420 closes; when the liquid containing chamber Q is supplied with the liquid again, the elastic diaphragm 42 repeats the above-described process again.
When the elastic diaphragm 42 is not elastically deformed, the slit 420 is closed, and even if the liquid container 1 is in transit or shaken by an external force, the liquid in the liquid accommodating chamber Q enters the pressure regulating chamber S2 through the communication hole 22, and the liquid cannot enter the pressure buffer chamber S1 through the slit 420, and thus the liquid does not flow back to the air intake hole 3 and overflow.
The embodiment of the present invention provides an air inlet 3 is not directly communicated with the second air inlet 431 on the compression ring 43, and is also designed for preventing liquid from overflowing, even if the liquid breaks through the notch 420 and enters into the pressure buffer chamber S1, the part of liquid will reach the air inlet 3 and still need to pass through the second air inlet 431, the first air inlet 22 and the channel between the first air inlet 22 and the air inlet 3, rather than reach the air inlet 3 at once.
Of course, even when the liquid in the liquid containing chamber Q is not supplied to the outside, the pressure regulating member 4 operates in response to a change in the air pressure in the liquid containing chamber Q to ensure that the air pressure in the liquid containing chamber Q is kept in equilibrium with the external atmospheric pressure.
For example, when the external atmospheric pressure becomes large, the air pressure in the liquid containing chamber Q is relatively decreased, and likewise, the elastic diaphragm 42 is deformed again toward the pressure regulating chamber S2, and when the external atmospheric pressure is sufficient to open the slit 420 of the elastic diaphragm 42, the external air enters the liquid containing chamber Q through the slit 420, and finally the air pressure of the liquid containing chamber Q is maintained in equilibrium with the external atmospheric pressure.
For example, when the external atmospheric pressure decreases or the atmospheric pressure of the liquid accommodating chamber Q increases, as shown in fig. 3C, the elastic diaphragm 42 starts to deform toward the pressure buffer chamber S1, and when the deformation amount of the elastic diaphragm 42 reaches f1, the elastic diaphragm 42 comes into contact with the restriction member 44, at this time, the elastic diaphragm 42 cannot be deformed any more, the notch 420 is not opened, the liquid in the liquid accommodating chamber Q cannot enter the pressure buffer chamber S1 through the notch 420, and therefore, the liquid cannot overflow through the air inlet 3; meanwhile, the increased air pressure in the liquid containing chamber Q is consumed by the elastic diaphragm 42 being deformed away from the liquid containing chamber Q (the pressure buffer chamber S1), and thus the increased air pressure in the liquid containing chamber Q does not press the liquid to flow out from the liquid outlet 5.
As is apparent from the above description, the elastic diaphragm 42 is capable of deforming toward the pressure buffer chamber S1 or the pressure adjustment chamber S2 in response to a change in the air pressure in the liquid containing chamber Q to ensure that the air pressure in the liquid containing chamber Q is maintained at a predetermined value, and when the elastic diaphragm 42 is deformed toward the pressure adjustment chamber S2 (close to the liquid containing chamber Q) and reaches a predetermined deformation amount, the slit 420 provided in the elastic diaphragm 42 can be opened, and external air can enter the liquid containing chamber Q through the slit 420; when the elastic diaphragm 42 is deformed toward the pressure buffer chamber S1 (away from the liquid containing chamber Q), the amount of deformation of the elastic diaphragm 42 cannot be such that the slits 420 are opened due to the restriction of the restriction member 44, the slits 420 remain closed, and the liquid in the liquid containing chamber Q cannot flow back to the air intake port 3 through the slits 420, that is, the slits 420 can be opened only in one direction.
To ensure that the elastic diaphragm 42 can realize the one-way opening function, in the embodiment of the present invention, the depth f1 of the pressure buffer chamber S1 and the depth f2 of the pressure adjusting chamber S2 need to satisfy:
the depth f1 of the pressure buffer chamber S1 cannot exceed the amount of deformation of the elastic diaphragm 42 toward the pressure buffer chamber S1 (away from the liquid accommodating chamber Q), and when the slit 420 can be opened, the amount of deformation of the elastic diaphragm 42, or in other words, the depth f1 of the pressure buffer chamber S1 cannot exceed the amount of deformation of the elastic diaphragm 42 toward the pressure buffer chamber S1 (away from the liquid accommodating chamber Q), and the pressure buffer chamber S1 can communicate with the pressure adjustment chamber S2.
The depth f2 of the pressure regulating chamber S2 should be greater than the amount of deformation of the elastic diaphragm 42 toward the pressure regulating chamber S2 (near the liquid containing chamber Q), and when the slit 420 is opened, the amount of deformation of the elastic diaphragm 42, or the depth f2 of the pressure regulating chamber S2 should be greater than the amount of deformation of the elastic diaphragm 42 when the elastic diaphragm 42 is deformed toward the pressure regulating chamber S2 (near the liquid containing chamber Q), and the pressure buffer chamber S1 communicates with the pressure regulating chamber S2.
The maximum depth value f1 of the pressure buffer chamber S1 and the minimum depth value f2 of the pressure adjustment chamber S2 are defined above, and when the pressure buffer chamber S1 and the pressure adjustment chamber S2 are irregular chambers, the maximum depth value f1 should be the maximum distance between the first side 421 corresponding to the notch 420 and the limiting member 44, and the minimum depth value f2 should be the minimum distance between the second side 422 corresponding to the notch 420 and the bottom surface 412 of the control chamber.
Preferably, the notch 420 is disposed at the center of the elastic diaphragm 42 and is not opposite to the communication hole 21, and no matter the external air enters the liquid containing chamber Q through the notch 420, or the air or liquid in the liquid containing chamber Q enters the pressure buffer chamber S1 through the notch 420, by such design, the liquid or gas circulation can be buffered, and the gas or liquid instantaneous flow rate is prevented from being too large to cause unstable gas pressure in the liquid containing chamber Q; further, the elastic diaphragm 42 is disposed between the pressure buffer chamber S1 and the pressure adjustment chamber S2, and the elastic diaphragm 42 is suspended, specifically, the portion of the elastic diaphragm 42 facing the pressure buffer chamber S1 and the pressure adjustment chamber S2 is suspended, that is, the portion of the elastic diaphragm 42 facing the pressure buffer chamber S1 and the pressure adjustment chamber S2 is not supported, and at least the portion of the elastic diaphragm 42 where the notch 420 is disposed is suspended or not supported, so as to ensure that the elastic diaphragm 42 can deform toward the pressure buffer chamber S1 or the pressure adjustment chamber S2 in response to the air pressure change in the liquid accommodating chamber Q.
As described above, the present invention relates to a pressure regulating assembly 4, which does not need to be provided with a spring, utilizes the elastic diaphragm 42 provided with the notch 420 to deform to the pressure buffer chamber S1 or the pressure regulating chamber S2 according to the change of the air pressure in the liquid containing chamber Q, and sets the notch 420 to be air-guide only when the elastic diaphragm 42 deforms to the pressure regulating chamber S2 (close to the liquid containing chamber Q), so as to stabilize the air pressure in the liquid containing chamber Q, and achieve the purpose of controlling the liquid in the liquid containing chamber Q to stably flow out from the liquid outlet 5.
[ example two ]
The liquid container relating to the present embodiment is substantially the same as the above-described embodiment, and the same reference numerals will be used hereinafter, and the liquid container in the present embodiment is not provided with the pressure buffer chamber S1 but is provided with only the pressure adjustment chamber S2 (control chamber 41).
Fig. 4A is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the cavity of the liquid container according to the second embodiment of the present invention is unchanged; fig. 4B is a cross-sectional view along the AA direction in fig. 2 when the air pressure in the liquid container cavity according to the second embodiment of the present invention is reduced.
The elastic diaphragm 42 having the cut 420 in the liquid container 1' is directly connected to the limiting member 44 without a space therebetween, and thus the pressure buffering chamber S1 is not formed between the two, as shown in the figure, the elastic diaphragm 42 is attached to the limiting member 44, or the step surface 411 is disposed closer to the outer surface of the case 2, the elastic diaphragm 42 is directly welded or attached to the step surface 411, the first side 421 of the elastic diaphragm directly faces the limiting member 44, and the second side 422 of the elastic diaphragm faces the pressure adjusting chamber S2.
The minimum distance between the second side 422 and the bottom surface 412 of the control chamber is f2 ', as shown in fig. 4B, when the elastic diaphragm 42 is deformed toward the liquid containing chamber Q and the slits 420 are initially opened, the amount of deformation of the elastic diaphragm 42 is f 3', and f2 '> f 3' is satisfied, that is, when the air pressure in the liquid containing chamber Q is reduced, the elastic diaphragm 42 is deformed toward the liquid containing chamber Q until the slits 420 are opened, external air can enter between the elastic diaphragm 42 and the restriction member 44 through the opening provided at the edge of the elastic diaphragm 42, after the slits 420 are opened, the air again enters the pressure adjusting chamber S2 through the slits 420 and then enters the liquid containing chamber Q through the communication hole 21 to stabilize the air pressure in the liquid containing chamber Q; the portion of the elastic diaphragm opposite the pressure regulating cavity S2 is suspended at the second side 422, i.e. at least the portion of the elastic diaphragm 42 provided with the cut-out 420 is suspended or unsupported at the second side 422.
In this embodiment, the pressure buffer chamber S1 is no longer provided, so that when the air pressure in the liquid accommodating chamber Q is too high, the gas therein will no longer force the elastic diaphragm 42 to deform toward the limiting member 44, and at this time, the gas discharged from the liquid accommodating chamber Q can be accommodated by increasing the volume of the pressure adjusting chamber S2, for example, increasing the value of the minimum distance f 2', when the liquid accommodating chamber Q has a tendency to press the elastic diaphragm 42 toward the limiting member 44 due to the increase of the air pressure therein, the pressure adjusting chamber S2 with increased volume can disperse the pressing force, so that the elastic diaphragm 42 does not have to deform toward the limiting member 44 while the pressure in the liquid accommodating chamber Q is ensured to be stable, and therefore, the requirement of the number of times of deformation of the elastic diaphragm 42 can be reduced by half, and the requirement of the material of the elastic diaphragm 42 can be reduced.
In summary, the pressure regulating assembly 4 of the present embodiment does not need to provide a spring, does not need to provide the pressure buffer chamber S1, and only needs to provide the pressure regulating chamber S2, and the pressure regulating chamber S2 is increased to counteract the force of the liquid containing chamber Q pressing the elastic diaphragm 42 against the limiting member 44 due to the increase of the internal pressure thereof, so as to finally achieve the purpose of ensuring the pressure in the liquid containing chamber Q to be stable.

Claims (4)

1. The pressure regulating assembly is used for regulating the pressure in the liquid containing cavity communicated with the pressure regulating assembly and comprises a pressure regulating cavity, an elastic diaphragm and a limiting part for limiting the elastic diaphragm, the elastic diaphragm is positioned between the pressure regulating cavity and the limiting part, the pressure regulating cavity is communicated with the liquid containing cavity, the pressure regulating assembly is characterized in that,
one side of the elastic membrane facing the limiting part is a first side, one side of the elastic membrane facing the pressure adjusting cavity is a second side, and the part of the elastic membrane opposite to the pressure adjusting cavity is arranged in a suspended mode on the second side;
when the air pressure in the liquid accommodating cavity is reduced, the elastic diaphragm deforms towards the pressure adjusting cavity, and at the moment, the pressure adjusting cavity can be communicated with the external atmosphere;
the elastic membrane and the limiting piece are arranged at intervals.
2. Pressure regulating assembly according to claim 1, characterized in that the elastic diaphragm is provided with a cut-out, which deforms towards the pressure regulating chamber when the air pressure in the liquid containing chamber decreases, the cut-out going from unopened to opened state; when the air pressure in the liquid containing cavity is increased, the elastic diaphragm is not deformed.
3. The pressure regulating assembly of claim 2, wherein the pressure regulating chamber communicates with the liquid accommodating chamber through a communication hole, and the cutout is offset from the communication hole.
4. Ink cartridge, characterized in that the ink cartridge comprises a housing enclosing an ink reservoir for containing ink, an ink outlet arranged on the housing, an air inlet, and a pressure regulating assembly according to any of claims 1-3, wherein the pressure regulating assembly communicates with the air inlet and the ink reservoir, and the ink flows out through the ink outlet.
CN201921549124.XU 2019-09-17 2019-09-17 Pressure regulating assembly and ink cartridge Active CN211994712U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921549124.XU CN211994712U (en) 2019-09-17 2019-09-17 Pressure regulating assembly and ink cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921549124.XU CN211994712U (en) 2019-09-17 2019-09-17 Pressure regulating assembly and ink cartridge

Publications (1)

Publication Number Publication Date
CN211994712U true CN211994712U (en) 2020-11-24

Family

ID=73413047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921549124.XU Active CN211994712U (en) 2019-09-17 2019-09-17 Pressure regulating assembly and ink cartridge

Country Status (1)

Country Link
CN (1) CN211994712U (en)

Similar Documents

Publication Publication Date Title
EP1016533B1 (en) Ink supply unit
US20030146959A1 (en) Ink cartridge for ink jet printer
US5640993A (en) Fuel vapor recovery control valve device
EP3825129B1 (en) Valve assembly and ink box provided with same
JP4261983B2 (en) Ink tank
KR20010098679A (en) Ink container and ink jet cartridge
KR100823756B1 (en) Ink cartridge and method of regulating fluid flow
CN109720101B (en) Pressure regulating assembly, pressure regulating method and ink box
CN211994712U (en) Pressure regulating assembly and ink cartridge
JP3959072B2 (en) ink cartridge
CN209813438U (en) Pressure regulating assembly and ink cartridge
CN209813437U (en) Pressure regulating assembly and ink cartridge
US20060232649A1 (en) Ink cartridge for inkjet printer
CN211808471U (en) Ink box
JP2005047242A (en) Liquid cartridge
JP4182491B2 (en) Liquid cartridge
JP2001270129A (en) Connection unit for ink-jet recording device
TWI287510B (en) Ink cartridge of inkjet printer
CN212400649U (en) Ink box with one-way valve device
CA2552635C (en) Ink cartridge for an inkjet printer
EP1942005B1 (en) An ink cartridge
CN212219661U (en) Ink box
CN219486938U (en) Ink cartridge
CN212765312U (en) Valve assembly and ink cartridge having the same
JP3237575U (en) Pressure control unit and cartridge with it

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220411

Address after: 519000 room 505, building 3, No. 798, qinzheng Road, Hengqin new area, Zhuhai City, Guangdong Province

Patentee after: Zhuhai Yuzhi Technology Co.,Ltd.

Address before: 519000 2nd floor, office building, No.7, Pingbei 2nd Road, Nanping Science Park, Zhuhai City, Guangdong Province

Patentee before: E-JET TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230412

Address after: 519000 Room 301, 3 / F, forming workshop (building a), No. 8, Pingdong Second Road, Nanping, Zhuhai, Guangdong

Patentee after: E-JET TECHNOLOGY Co.,Ltd.

Address before: 519000 room 505, building 3, No. 798, qinzheng Road, Hengqin new area, Zhuhai City, Guangdong Province

Patentee before: Zhuhai Yuzhi Technology Co.,Ltd.