CN211878291U - High-definition wide-angle day and night confocal optical system and camera module - Google Patents

High-definition wide-angle day and night confocal optical system and camera module Download PDF

Info

Publication number
CN211878291U
CN211878291U CN201922469954.8U CN201922469954U CN211878291U CN 211878291 U CN211878291 U CN 211878291U CN 201922469954 U CN201922469954 U CN 201922469954U CN 211878291 U CN211878291 U CN 211878291U
Authority
CN
China
Prior art keywords
lens
surface side
optical system
focal length
focal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922469954.8U
Other languages
Chinese (zh)
Inventor
刘洪海
刘振庭
汪鸿飞
杜亮
刘佳俊
刘易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Hongjing Optoelectronics Technology Co Ltd
Original Assignee
Guangdong Hongjing Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Hongjing Optoelectronics Technology Co Ltd filed Critical Guangdong Hongjing Optoelectronics Technology Co Ltd
Priority to CN201922469954.8U priority Critical patent/CN211878291U/en
Application granted granted Critical
Publication of CN211878291U publication Critical patent/CN211878291U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

The embodiment of the utility model discloses confocal optical system of high definition wide angle day night includes from the object plane to image planes along the optical axis in proper order: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens; the object surface side of the first lens is a convex surface, the image surface side of the first lens is a concave surface, and the focal power of the first lens is negative; the object surface side of the second lens is a concave surface, the image surface side is a convex surface, and the focal power of the second lens is positive; the third lens is a biconvex lens, and the focal power of the third lens is positive; the fourth lens is a biconcave lens, and the focal power of the fourth lens is negative; the image surface side of the fifth lens is a convex surface, and the focal power of the fifth lens is positive; the sixth lens is a biconvex lens, and the focal power of the sixth lens is positive; the seventh lens element has a concave object surface side and a convex image surface side, and has negative refractive power. On the other hand, the embodiment of the utility model provides a still provide a camera module. The embodiment of the utility model is composed of 7 lenses, the number of the lenses is reasonable, and the structure is simple; the optical fiber has the good performances of day and night confocal, large visual angle, high pixel, good heat elimination difference and the like.

Description

High-definition wide-angle day and night confocal optical system and camera module
The technical field is as follows:
the utility model relates to an optical system and the module of making a video recording of using thereof, especially a confocal optical system of high definition wide angle day night and the module of making a video recording.
Background art:
with the development of scientific technology, the high-definition wide-angle day and night confocal optical system or the camera module can observe a wider space range due to a large visual angle, and can ensure that the high-definition wide-angle day and night confocal optical system or the camera module can effectively work under the conditions of day and night, so that the high-definition wide-angle day and night confocal optical system or the camera module is widely applied to the field of automobiles and the field of assistant driving. However, the number of lenses is large, and the structure is complicated.
The invention content is as follows:
exist the lens number many for overcoming current optical system or the module of making a video recording, problem that the structure is complicated, the embodiment of the utility model provides a confocal optical system of high definition wide angle day night on the one hand.
A high-definition wide-angle day and night confocal optical system sequentially comprises the following components from an object plane to an image plane along an optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens;
the object surface side of the first lens is a convex surface, the image surface side of the first lens is a concave surface, and the focal power of the first lens is negative;
the object surface side of the second lens is a concave surface, the image surface side is a convex surface, and the focal power of the second lens is positive;
the object surface side of the third lens is a convex surface, the image surface side is a convex surface, and the focal power of the third lens is positive;
the object surface side of the fourth lens is a concave surface, the image surface side of the fourth lens is a concave surface, and the focal power of the fourth lens is negative;
the image surface side of the fifth lens is a convex surface, and the focal power of the fifth lens is positive;
the object surface side of the sixth lens is a convex surface, the image surface side is a convex surface, and the focal power of the sixth lens is positive;
the seventh lens element has a concave object surface side and a convex image surface side, and has negative refractive power.
On the other hand, the embodiment of the utility model provides a still provide a camera module.
The utility model provides a module of making a video recording, includes optical lens at least, installs the aforesaid in the optical lens high definition wide angle day night confocal optical system.
The optical system and the camera module of the embodiment of the utility model mainly comprise 7 lenses, the number of the lenses is reasonable, and the structure is simple; different lenses are combined with each other and the focal power is reasonably distributed, so that the confocal optical lens has good performances of day and night confocal performance, large visual angle, high pixel, good heat difference elimination and the like.
Description of the drawings:
in order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without creative efforts.
Fig. 1 is a first schematic structural diagram of an embodiment of an optical system or a camera module according to the present invention;
fig. 2 is a distortion curve diagram at +25 ℃ of an embodiment of the optical system or camera module of the present invention;
fig. 3 is a MTF curve at +25 ℃ for an embodiment of an optical system or a camera module according to the present invention;
fig. 4 is a diagram of the relative illuminance at +25 ℃ of the embodiment of the optical system or the camera module of the present invention;
FIG. 5 is a graph of MTF at-40 ℃ for an embodiment of an optical system or camera module of the present invention;
fig. 6 is a MTF curve at +85 ℃ for an embodiment of an optical system or a camera module according to the present invention;
fig. 7 is a schematic structural diagram of a second embodiment of an optical system or a camera module according to the present invention;
fig. 8 is a third schematic structural diagram of an embodiment of an optical system or a camera module according to the present invention.
The specific implementation mode is as follows:
in order to make the technical problem, technical solution and advantageous effects solved by the present invention more clearly understood, the following description is given in conjunction with the accompanying drawings and embodiments to further explain the present invention in detail. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
When embodiments of the present invention refer to the ordinal numbers "first", "second", etc., it should be understood that the terms are used for distinguishing only when they do express the ordinal order in context.
In the description of the present invention, it is to be noted that, unless otherwise explicitly specified or limited, the terms "mounted," "connected," and "connected" are to be construed broadly, and may be, for example, fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meaning of the above terms in the present invention can be understood in specific cases to those skilled in the art.
As shown in fig. 1, the embodiment of the utility model provides a confocal optical system of high definition wide angle day night includes from the object plane to image plane 9 along the optical axis in proper order: a first lens 1, a second lens 2, a third lens 3, a fourth lens 4, a fifth lens 5, a sixth lens 6, and a seventh lens 7.
The object surface side of the first lens 1 is a convex surface, the image surface side is a concave surface, and the focal power is negative;
the object surface side of the second lens 2 is a concave surface, the image surface side is a convex surface, and the focal power is positive;
the object surface side of the third lens 3 is a convex surface, the image surface side is a convex surface, and the focal power is positive;
the object plane side of the fourth lens 4 is a concave surface, the image plane side is a concave surface, and the focal power is negative;
the fifth lens element 5 has a convex object surface side and a convex image surface side, and has positive focal power;
the object surface side of the sixth lens element 6 is a convex surface, the image surface side is a convex surface, and the focal power thereof is positive;
the seventh lens element 7 has a concave object surface side and a convex image surface side, and has negative refractive power.
The optical system of the embodiment of the present invention mainly comprises 7 lenses, the number of the lenses is reasonable, and the structure is simple; different lenses are combined with each other and the focal power is reasonably distributed, so that the confocal optical lens has good performances of day and night confocal performance, large visual angle, high pixel, good heat difference elimination and the like.
Further, as another preferred embodiment of the present invention, without limitation, as shown in fig. 7,
the object surface side of the first lens 1 is a convex surface, the image surface side is a concave surface, and the focal power is negative;
the object surface side of the second lens 2 is a concave surface, the image surface side is a convex surface, and the focal power is positive;
the object surface side of the third lens 3 is a convex surface, the image surface side is a convex surface, and the focal power is positive;
the object plane side of the fourth lens 4 is a concave surface, the image plane side is a concave surface, and the focal power is negative;
the object plane side of the fifth lens 5 is a plane, the image plane side is a convex surface, and the focal power of the fifth lens is positive;
the object surface side of the sixth lens element 6 is a convex surface, the image surface side is a convex surface, and the focal power thereof is positive;
the seventh lens element 7 has a concave object surface side and a convex image surface side, and has negative refractive power.
Still further, as another preferred embodiment of the present invention, without limitation, as shown in figure 8,
the object surface side of the first lens 1 is a convex surface, the image surface side is a concave surface, and the focal power is negative;
the object surface side of the second lens 2 is a concave surface, the image surface side is a convex surface, and the focal power is positive;
the object surface side of the third lens 3 is a convex surface, the image surface side is a convex surface, and the focal power is positive;
the object plane side of the fourth lens 4 is a concave surface, the image plane side is a concave surface, and the focal power is negative;
the fifth lens 5 has a concave object surface side and a convex image surface side, and has positive focal power;
the object surface side of the sixth lens element 6 is a convex surface, the image surface side is a convex surface, and the focal power thereof is positive;
the seventh lens element 7 has a concave object surface side and a convex image surface side, and has negative refractive power.
Further, as a preferred embodiment of the present invention, but not limited thereto, the fifth lens 5 is an aspheric lens, the sixth lens 6 and the seventh lens 7 are mutually cemented to form a combined lens, and the optical system satisfies TTL/EFL ≦ 6.50, where TTL is a distance from an object side vertex of the first lens 1 of the optical system to the imaging plane 9, and EFL is an effective focal length of the optical system. The structure is simple and compact, and good optical performance can be ensured.
Still further, as a preferred embodiment of the present invention, not limited thereto, the combination lens satisfies the following conditions: 3.5< f67<15, where f67 is the focal length of the sixth lens 6 and the seventh lens 7 combined with each other. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, without limitation, each lens of the present optical system satisfies the following conditions:
(1)-15<f1<-2;
(2)100<f2<1000;
(3)5<f3<15;
(4)-15<f4<-2;
(5)2<f5<15;
(6)2<f6<15;
(7)-20<f7<-2;
where f1 is the focal length of the first lens 1, f2 is the focal length of the second lens 2, f3 is the focal length of the third lens 3, f4 is the focal length of the fourth lens 4, f5 is the focal length of the fifth lens 5, f6 is the focal length of the sixth lens 6, and f7 is the focal length of the seventh lens 7. Through the mutual combination of different lenses and the reasonable distribution of focal power, the optical system has good performances such as large aperture, large visual angle, high pixel and very good athermal difference.
Still further, as a preferred embodiment of the present invention, but not limited thereto, each lens of the optical system satisfies the following condition:
(1)-5.0<f1/f<-0.5;
(2)50<f2/f<500;
(3)0.5<f3/f<5.0;
(4)-5.0<f4/f<-0.5;
(5)0.5<f5/f<5.0;
(6)0.5<f6/f<5.0;
(7)-0.5<f7/f<-5.0;
where f is a focal length of the entire optical system, f1 is a focal length of the first lens 1, f2 is a focal length of the second lens 2, f3 is a focal length of the third lens 3, f4 is a focal length of the fourth lens 4, f5 is a focal length of the fifth lens 5, f6 is a focal length of the sixth lens 6, and f7 is a focal length of the seventh lens 7. Through the mutual combination of different lenses and the reasonable distribution of focal power, the optical system has good performances such as large aperture, large visual angle, high pixel and very good athermal difference.
Further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd1 of the material and the abbe constant Vd1 of the first lens 1 satisfy: 1.60< Nd1<1.85, 35< Vd1< 55. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd2 of the material and the abbe constant Vd2 of the material of the second lens 2 satisfy: 1.70< Nd2<1.95, 25< Vd2< 55. Simple structure and can ensure good optical performance.
Further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd3 of the material and the abbe constant Vd3 of the third lens 3 satisfy: 1.60< Nd3<1.85, 35< Vd3< 55. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd4 of the material and the abbe constant Vd4 of the material of the fourth lens 4 satisfy: 1.55< Nd4<1.75, 25< Vd4< 50. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd5 of the material and the abbe constant Vd5 of the fifth lens 5 satisfy: 1.45< Nd5<1.65, 60< Vd5< 95. Simple structure and can ensure good optical performance.
Further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd6 of the material and the abbe constant Vd6 of the sixth lens element 6 satisfy: 1.45< Nd6<1.65, 60< Vd6< 95. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the refractive index Nd7 of the material and the abbe constant Vd7 of the seventh lens 7 satisfy: 1.75< Nd7<2.05, 15< Vd7< 40. Simple structure and can ensure good optical performance.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the fifth lens 5 is a glass aspherical lens. Simple structure and can ensure good optical performance.
Further, as a preferred embodiment of the present invention, but not limiting, the diaphragm 8 of the optical system is located between the second lens 2 and the third lens 3. For adjusting the intensity of the light beam.
Still further, as a preferred embodiment of the present invention, but not limited thereto, a dual-pass filter is disposed between the seventh lens 7 and the image plane 9, and allows visible light and specified infrared light waves to pass through.
Specifically, the basic parameters of the optical system are shown in the following table:
Figure DEST_PATH_GDA0002594076180000071
Figure DEST_PATH_GDA0002594076180000081
in the above table, S1, S2 correspond to two surfaces of the first lens 1 from the object plane to the image plane 9 along the optical axis; s3, S4 correspond to both surfaces of the second lens 2; s5 is stop STO; s6, S7 correspond to both surfaces of the third lens 3; s8, S9 correspond to both surfaces of the fourth lens 4; s10, S11 correspond to both surfaces of the fifth lens 5; s12, S13 correspond to both surfaces of the sixth lens 6; s13, S14 correspond to both surfaces of the seventh lens 7; s15 and S16 correspond to two surfaces of the double-wave-pass filter; IMA is the image plane 9.
Still further, as a preferred embodiment of the present invention, but not limited thereto, the surface of the fifth lens 5 is an aspherical shape, which satisfies the following equation:
Figure DEST_PATH_GDA0002594076180000082
wherein, the parameter c is 1/R, namely the curvature corresponding to the radius, y is a radial coordinate, the unit of which is the same as the unit of the length of the lens, k is a conic coefficient, a1To a8The coefficients are respectively corresponding to the radial coordinates. The aspheric correlation values of the fifth lens 5 are shown in the following table:
Figure DEST_PATH_GDA0002594076180000091
as can be seen from fig. 2 to 6, the optical system of the present embodiment has good performances of day and night confocal, large viewing angle, high pixel, and very good athermal property.
The utility model provides a module of making a video recording, includes optical lens at least, installs the aforesaid in the optical lens high definition wide angle day night confocal optical system.
The camera module of the embodiment of the present invention mainly comprises 7 lenses, the number of the lenses is reasonable, and the structure is simple; different lenses are combined with each other and the focal power is reasonably distributed, so that the confocal optical lens has good performances of day and night confocal performance, large visual angle, high pixel, good heat difference elimination and the like.
The foregoing is illustrative of one or more embodiments provided in connection with the detailed description and is not to be construed as limiting the invention to the precise embodiments disclosed herein. All with the utility model discloses a method, structure etc. are similar, the same, or to the utility model discloses make a plurality of technological deductions or replacement under the design prerequisite, all should regard as the utility model discloses a protection scope.

Claims (9)

1. A high-definition wide-angle day and night confocal optical system sequentially comprises the following components from an object plane to an image plane along an optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens; it is characterized in that the preparation method is characterized in that,
the object surface side of the first lens is a convex surface, the image surface side of the first lens is a concave surface, and the focal power of the first lens is negative;
the object surface side of the second lens is a concave surface, the image surface side is a convex surface, and the focal power of the second lens is positive;
the object surface side of the third lens is a convex surface, the image surface side is a convex surface, and the focal power of the third lens is positive;
the object surface side of the fourth lens is a concave surface, the image surface side of the fourth lens is a concave surface, and the focal power of the fourth lens is negative;
the image surface side of the fifth lens is a convex surface, and the focal power of the fifth lens is positive;
the object surface side of the sixth lens is a convex surface, the image surface side is a convex surface, and the focal power of the sixth lens is positive;
the seventh lens element has a concave object surface side and a convex image surface side, and has negative refractive power.
2. The high-definition wide-angle day and night confocal optical system of claim 1, wherein the sixth lens and the seventh lens are cemented together to form a combined lens, and a focal length f67 of the combined lens satisfies the following condition: 3.5< f67< 15.
3. The high-definition wide-angle day and night confocal optical system of claim 1, wherein the optical system satisfies TTL/EFL ≦ 6.50, where TTL is a distance from an object plane side vertex of the first lens of the optical system to the image plane, and EFL is an effective focal length of the optical system.
4. The high-definition wide-angle day and night confocal optical system of claim 1, wherein each lens of the optical system satisfies the following condition:
(1)-15<f1<-2;
(2)100<f2<1000;
(3)5<f3<15;
(4)-15<f4<-2;
(5)2<f5<15;
(6)2<f6<15;
(7)-20<f7<-2;
wherein f1 is the focal length of the first lens, f2 is the focal length of the second lens, f3 is the focal length of the third lens, f4 is the focal length of the fourth lens, f5 is the focal length of the fifth lens, f6 is the focal length of the sixth lens, and f7 is the focal length of the seventh lens.
5. The high-definition wide-angle day and night confocal optical system of claim 1, wherein each lens of the optical system satisfies the following condition:
(1)-5.0<f1/f<-0.5;
(2)50<f2/f<500;
(3)0.5<f3/f<5.0;
(4)-5.0<f4/f<-0.5;
(5)0.5<f5/f<5.0;
(6)0.5<f6/f<5.0;
(7)-0.5<f7/f<-5.0;
where f is a focal length of the entire optical system, f1 is a focal length of the first lens, f2 is a focal length of the second lens, f3 is a focal length of the third lens, f4 is a focal length of the fourth lens, f5 is a focal length of the fifth lens, f6 is a focal length of the sixth lens, and f7 is a focal length of the seventh lens.
6. The high-definition wide-angle day-night confocal optical system of claim 1, wherein the fifth lens is a glass aspheric lens.
7. The high-definition wide-angle day-night confocal optical system of claim 1, wherein a stop of the optical system is located between the second lens and the third lens.
8. The high-definition wide-angle day and night confocal optical system as claimed in any one of claims 1 to 7, wherein the refractive index Nd1 of the material and the Abbe constant Vd1 of the material of the first lens satisfy: 1.60< Nd1<1.85, 35< Vd1< 55; and/or
The refractive index Nd2 of the material of the second lens and the Abbe constant Vd2 of the material satisfy that: 1.70< Nd2<1.95, 25< Vd2< 55; and/or
The refractive index Nd3 of the material and the Abbe constant Vd3 of the material of the third lens satisfy that: 1.60< Nd3<1.85, 35< Vd3< 55; and/or
The refractive index Nd4 of the material and the Abbe constant Vd4 of the material of the fourth lens satisfy that: 1.55< Nd4<1.75, 25< Vd4< 50; and/or
The refractive index Nd5 of the material of the fifth lens and the Abbe constant Vd5 of the material satisfy that: 1.45< Nd5<1.65, 60< Vd5< 95; and/or
The refractive index Nd6 of the material and the Abbe constant Vd6 of the material of the sixth lens 6 satisfy that: 1.45< Nd6<1.65, 60< Vd6< 95; and/or
The refractive index Nd7 of the material and the Abbe constant Vd7 of the seventh lens 7 satisfy the following conditions: 1.75< Nd7<2.05, 15< Vd7< 40.
9. A camera module, comprising at least an optical lens, wherein the high-definition wide-angle day and night confocal optical system as claimed in any one of claims 1 to 8 is installed in the optical lens.
CN201922469954.8U 2019-12-31 2019-12-31 High-definition wide-angle day and night confocal optical system and camera module Active CN211878291U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922469954.8U CN211878291U (en) 2019-12-31 2019-12-31 High-definition wide-angle day and night confocal optical system and camera module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922469954.8U CN211878291U (en) 2019-12-31 2019-12-31 High-definition wide-angle day and night confocal optical system and camera module

Publications (1)

Publication Number Publication Date
CN211878291U true CN211878291U (en) 2020-11-06

Family

ID=73259983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922469954.8U Active CN211878291U (en) 2019-12-31 2019-12-31 High-definition wide-angle day and night confocal optical system and camera module

Country Status (1)

Country Link
CN (1) CN211878291U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035303A (en) * 2021-10-23 2022-02-11 广东弘景光电科技股份有限公司 Small-size super-wide-angle day and night camera module
CN114035302A (en) * 2021-10-23 2022-02-11 广东弘景光电科技股份有限公司 Small-size ultra-wide-angle day and night dual-purpose optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035303A (en) * 2021-10-23 2022-02-11 广东弘景光电科技股份有限公司 Small-size super-wide-angle day and night camera module
CN114035302A (en) * 2021-10-23 2022-02-11 广东弘景光电科技股份有限公司 Small-size ultra-wide-angle day and night dual-purpose optical system
CN114035302B (en) * 2021-10-23 2024-05-03 广东弘景光电科技股份有限公司 Small-volume ultra-wide angle day and night dual-purpose optical system
CN114035303B (en) * 2021-10-23 2024-05-03 广东弘景光电科技股份有限公司 Small-volume ultra-wide angle day and night dual-purpose camera module

Similar Documents

Publication Publication Date Title
CN111796404B (en) High-pixel wide-angle day and night confocal camera module
CN210072173U (en) Wide-angle day and night confocal athermalization optical system and camera module applying same
CN108445608B (en) High-pixel wide-angle infrared optical system and camera module applying same
CN108319004B (en) High-pixel ultra-wide angle optical system and camera module applying same
CN111045197A (en) High-definition wide-angle day and night confocal optical system and camera module applying same
CN211878291U (en) High-definition wide-angle day and night confocal optical system and camera module
CN107193111B (en) High-pixel fisheye optical system and camera module applying same
CN216870931U (en) Optical system based on free-form surface design and camera module
CN209400781U (en) High-pixel wide-angle day and night confocal optical system and its camera module of application
CN212433497U (en) Small-size fisheye optical system with ultra-wide angle, ultra-high pixel and low chromatic aberration and camera module
CN108761745B (en) Wide-angle optical system and camera module using same
CN114609762B (en) Small-volume large-wide-angle optical system and camera module applying same
CN110161655A (en) Wide-angle day and night camera module of the confocal type without thermalization optical system and its application
CN208421383U (en) The high pixel fish eye optical systems of ultra-wide angle and its camera module of application
CN107621689B (en) Miniaturized fish-eye optical system
CN217112862U (en) Small-size large-wide-angle optical system and camera module applying same
CN108427184A (en) The big target surface Depth Imaging optical system of co carbonization and its camera module of application
CN111880292B (en) Small-volume fisheye camera module with ultra-wide angle, ultra-high pixel and low chromatic aberration
CN108535847B (en) Super wide angle high pixel fisheye optical system and camera module of using thereof
CN209690595U (en) High definition wide-angle day and night confocal optical system and its camera module of application
CN208596251U (en) Wide-angle optics and its camera module of application
CN107728293B (en) High-pixel ultra-wide angle optical system
CN108490590B (en) Day and night confocal fish eye monitoring optical system and camera module applying same
CN107121758B (en) High-pixel ultra-wide-angle optical system and camera module applying same
CN207440375U (en) High pixel ultra-wide angle optical system and its camera module of application

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant