CN211856471U - 回声医疗器械回声反射性量化测试系统 - Google Patents
回声医疗器械回声反射性量化测试系统 Download PDFInfo
- Publication number
- CN211856471U CN211856471U CN201921364733.8U CN201921364733U CN211856471U CN 211856471 U CN211856471 U CN 211856471U CN 201921364733 U CN201921364733 U CN 201921364733U CN 211856471 U CN211856471 U CN 211856471U
- Authority
- CN
- China
- Prior art keywords
- medical instrument
- guide
- probe
- echogenicity
- holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/58—Testing, adjusting or calibrating the diagnostic device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8934—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
- G01S15/8938—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/5205—Means for monitoring or calibrating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/22—Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/98—Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
- G06V10/993—Evaluation of the quality of the acquired pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本实用新型涉及一种回声医疗器械回声反射性量化测试系统,包括夹具组件和超声波诊断设备,其特征在于,夹具组件包括:框架;探头夹具,探头夹具具有第一导杆和用于保持超声波探头的探头夹,探头夹可动地保持在第一导杆上,并且超声波探头连接到超声波诊断设备;和医疗器械试样夹具,医疗器械试样夹具具有第二导杆和用于保持医疗器械试样的医疗器械试样夹,医疗器械试样夹可动地保持在第二导杆上;其中,在框架上设有导轨,第一导杆的两端和第二导杆的两端分别可动地设置在导轨中。
Description
技术领域
本实用新型涉及回声反射性量化测试系统,尤其是涉及回声医疗器械的回声反射性量化测试系统。
背景技术
在临床中超声波检查已经越来越普及,并且很多情况下在妇产科、腹部和心脏诊断中是首选,这是因为超声波检查是无创伤、快速且便宜的手段。
随着介入性超声波检查的发展,越来越多地在回声医疗器械的辅助下采用B型灰阶超声波图像来在线监测穿刺,以减小造成额外创伤风险的失败率。但是,对于医疗器械厂商来说最关键的问题是如何在产品开发周期中量化地表征回声医疗器械的回声反射性。
虽然几十年前研究者就意识到了回声反射性的量化对于标准回声分析来说很关键,但是临床判断回声反射性主要还是依赖于主观评估来描述感兴趣区域(ROI)的形态和明度。迄今为止,还没有关于回声反射性分析量化方法的标准或指南。
已经做出了一些尝试对常用于颈动脉斑块/狭窄的B型灰阶图像给出量化描述,但聚焦于组织分类的努力还相当有限。在这些尝试中,所有的数据(具体地是B型超声波图像)都是由有至少十年临床超声波诊断经验的超声波检查医师产生的,他们致力于寻找对于斑块或一定组织的量化分析结果和历史结果之间的关联性。极少有人关注对医疗器械量化分析来指导对回声医疗器械的表征。
之前对婴儿肝或肾超声波评价做了一些工作,这在某种程度上提供了通过对标准组织模拟材料进行测试以建立灰阶直方图超声波明度指标(A.C.Lamont,“Ultrasoundassessment of liver and kidney brightness in infants,use of the gray-levelhistogram”,Investigative Radiology,1995,30(4),232-238)来进行进一步研究的基础。但是,在这方面并未找到更多的工作成果。以前对灰阶图像的量化分析主要是用于颈动脉斑块。由K.Nagano等人进行的一项工作是通过对斑块进行集成背向散射分析来评价回声反射性,但是需要仅用一定的超声波装置来进行测量(K.Nagano et al,“Quantitativeevaluation of carotid plaque echogenicity by integrated backscatter analysis:correlation with symptomatic history and histologic findings”,CerebrovascularDiseases,2008,26,578-583)。
其他一些之前的尝试是,利用机构内部编写的程序或普通商业图像处理软件(例如Adobe Photoshop)对灰阶图像进行像素分析。有一种尝试是在应用两种不同的图像分析软件之间进行比较。采用所有这些尝试,研究者努力寻找灰阶中位数(GSM)与组织纹理历史分析之间的关联。实际中,很难确定一种适用于参数设定各异的不同超声波设备的图像分析标准方法,因为ROI明度绝对值受设备本身、探头类型以及增益设定等的影响。GSM计算的另一种研发是归一法,预先把血液GSM定义为0并把血管外膜GSM定义为另一值。一些尝试得出了具有一定关联性的良好结果,但另一些尝试则没有。D.Craiem等人意识到了具有相同GSM值但斑块明度的不同分散,指出了ROI的GSM某种程度上反映了仅一小部分ROI的绝对明度,但几乎不能反映ROI的平均明度(D.Craiem et al,“Atheromatous plaques:quantitative analysis of the echogenicity of different layers”,Rev EspCardiol,2009,62(9)984-991)。
D.Pazinato等人采用了GSM方法来对血液、血脂、肌肉、纤维和钙等其他组织的数据集分类(D.V.Pazinota,“Pixel-level tissue classification for ultrasoundimages”,IEEE Journal of Biomedical and Health Informatics,2016,20(1),256-267)。他们借用了先前的GSM定义方法,即分别把血液和血管外膜定义为0和190。在他们的工作结果中,GSM分析和历史结果之间的关联性相对较低。
J.A.Manley采用肝为基准对肾进行了量化分析(J.A.Manley,“How echogenic isechogenic?Quantitative acoustics of the renal cortex”,American Journal ofKidney Diseases,2001,37(4),706-711)。但是,他们没有把某一ROI定义为最大和最小像素密度来进行归一。A.D.Luiza等人也进行了类似工作:采用GSM方法对肾组织进行量化表征,把全黑区域定义为0并把肾筋膜定义为200,还提出了不同肾组织的灰阶范围(A.Luiza,“Ultrasound tissue characterization of the normal kidney”,UltrasoundQuarterly,2012,28(4)275-280)。
实用新型内容
本实用新型旨在开发一种标准测试系统,用于对在手术过程中进行在线监测的医疗器械的回声反射性进行量化表征,在灰阶超声波图像中识别ROI相对于环境的明度平均值差异。例如,本实用新型可用于对经皮肾镜手术的回声医疗器械进行回声反射性测试。例如,回声医疗器械是球囊扩张器(或者说球囊导管)。本实用新型也可用于对受测介质进行回声反射性测试。
根据本实用新型,提供了一种回声医疗器械回声反射性量化测试系统,包括夹具组件和超声波诊断设备,其特征在于,夹具组件包括:框架;探头夹具,探头夹具具有第一导杆和用于保持超声波探头的探头夹,探头夹可动地保持在第一导杆上,并且超声波探头连接到超声波诊断设备;和医疗器械试样夹具,医疗器械试样夹具具有第二导杆和用于保持医疗器械试样的医疗器械试样夹,医疗器械试样夹可动地保持在第二导杆上;其中,在框架上设有导轨,第一导杆的两端和第二导杆的两端分别可动地设置在导轨中。
根据一个实施例,在探头夹在第一导杆上固定不动的情况下,医疗器械试样夹沿第二导杆移动。
根据一个实施例,在医疗器械试样夹在第二导杆上固定不动的情况下,探头夹沿第一导杆移动。
根据一个实施例,探头夹沿第一导杆移动并同时医疗器械试样夹沿第二导杆移动。
根据一个实施例,第二导杆垂直于超声波探头的超声波阵列声波发生平面。
根据一个实施例,医疗器械试样夹还能围绕第二导杆旋转,以允许调节角度。
根据一个实施例,回声医疗器械回声反射性量化测试系统还包括用于保持测试介质的容器和处于框架正下方的升降台上,容器放在升降台上。
根据一个实施例,框架可以是封闭式框架或开放式框架。
根据一个实施例,超声波探头具有主平面和厚度,超声波探头的超声波阵列声波发生平面为平行于主平面并垂直于厚度,探头的主平面垂直于第一导杆和第二导杆。
根据一个实施例,超声波诊断设备包括分析单元,分析单元配置成:读取回声医疗器械试样或测试介质的感兴趣区域的灰阶平均值,读取与感兴趣区域具有相似像素数的邻近区域的灰阶平均值,并计算感兴趣区域灰阶平均值与邻近区域灰阶平均值之差。
根据一个实施例,分析单元配置成:计算感兴趣区域灰阶平均值与邻近区域灰阶平均值的至少三个差,并对所述至少三个差计算平均值。
附图说明
根据以下参考附图对示例性实施例的描述,本实用新型的其他特征将变得明显。
图1是本实用新型回声反射性量化测试系统的俯视立体图。
图2是本实用新型回声反射性量化测试系统的探头夹的俯视图。
图3是本实用新型回声反射性量化测试系统的医疗器械试样夹具的立体图。
图4是本实用新型回声反射性量化测试系统的俯视立体图。
图5是本实用新型回声反射性量化测试系统的探头夹具的俯视立体图。
图6是本实用新型回声反射性量化测试系统的医疗器械试样夹具的俯视立体图。
图7是本实用新型回声反射性量化测试系统的医疗器械夹具的放大立体图,去除了医疗器械试样。
具体实施方式
在下文中,将参考附图描述根据本实用新型的实施例。回声医疗器械的示例包括用于经皮肾镜手术的医疗器械。例如,回声医疗器械是球囊扩张器(或者说球囊导管)。但是,应当注意,回声医疗器械的示例并不限于此。根据具体应用用途的不同,回声医疗器械可以是本领域技术人员所知的其它医疗器械,例如腹部用医疗器械、妇产科医疗器械、心脏用医疗器械等等。
以下描述的实施例只是作为具体示例。然而,本实用新型不限于说明书中描述的实施例。
回声医疗器械回声反射性量化测试系统主要包括以下方面:用于夹持超声波探头和医疗器械试样的夹具组件;超声波诊断设备;测试介质;像素分析方法。
用于夹持超声波探头和医疗器械试样的夹具组件:
测试系统中夹具组件是很重要的,以便使因医疗器械试样和超声波探头不当夹持所导致的意外差异最小化。如图1所示,夹具组件包括框架。根据一个实施例,框架例如为长方体形。夹具组件还包括:探头夹具1.1,探头夹具具有第一导杆和用于保持超声波探头1.6的探头夹1.2(图2中放大示出),探头夹1.2可动地保持在第一导杆上;和医疗器械试样夹具,医疗器械试样夹具具有第二导杆和用于夹持医疗器械试样1.7(参见图3、图6)的医疗器械试样夹1.4,医疗器械试样夹1.4可动地保持在第二导杆上。在框架上,设有两个相对的导轨1.3,第一导杆的两端和第二导杆的两端分别可动地设置在导轨中。
如图2所示,探头夹1.2的形状可根据超声波探头1.6的外形来调整,以确保探头夹具1.1能够稳定地夹持超声波探头1.6。
通过使第一导杆和第二导杆在框架的导轨中平移,就可以调节探头夹1.2和医疗器械试样夹1.4之间的相对位置或距离,从而可以调节超声波探头1.6和医疗器械试样1.7之间的相对位置或距离。此外,探头夹具和医疗器械试样夹具之间的距离需要调节到较好地模拟实际应用情况。一种调节方式是:固定探头夹(固定探头1.6),并通过在第二导杆上沿着方向1.4.1(该方向垂直于探头1.6发生声波的超声波阵列,后面会更详细描述)移动医疗器械试样夹1.4来调节医疗器械试样1.7的位置。其他方式可以是:固定医疗器械试样夹1.4并沿第一导杆移动探头夹1.2;或者是同时沿第一导杆移动探头夹和沿第二导杆移动医疗器械试样夹。
此外,医疗器械试样夹1.4是可旋转调节的,以便能可旋转地调节医疗器械试样1.7。具体地,如图3所示,除了能沿着第二导杆平移以外,医疗器械试样夹1.4还能围绕第二导杆在垂直于方向1.4.1的方向1.4.2上旋转,以允许调节检测角度。例如,在医疗器械试样是球囊扩张器的情况下,通过旋转医疗器械试样夹能够更好地模拟球囊扩张器在实际应用时的穿刺角度。
测试介质以及夹具设定:
回声反射性量化测试系统还可以包括用于保持测试介质的容器1.5。可以用各种不同的测试介质来填充容器1.5。测试介质2.1从统计学角度来说应该是稳定的,接近临床应用环境。可以选择的是模拟的流体、模拟的生物组织或尸体器官。
如图4所示,把测试介质2.1(商业模拟流体)注入到容器1.5中,把容器1.5放在升降台2.2上,并处于框架正下方。替代地,框架本身是封闭式的,这样模拟流体可直接注入到框架内,或者模拟器官也可直接放入框架内,从而不再需要单独的容器。
把超声波探头1.6固定到探头夹1.2上,如图2所示。把探头夹1.2连同超声波探头1.6一起放在探头夹具1.1的第一导杆上,见图1(图5示出的是未放探头夹1.2和超声波探头1.6的探头夹具)。如前所述,探头夹1.2和探头夹具1.1的形状可根据用在特定测试中的超声波探头外形来改变。
利用升降台2.2移动容器1.5,以确保超声波探头1.6和医疗器械试样1.7放在容器内的测试介质液面之下。这样,如果是对测试介质进行回声反射性量化测试的话,那么就能确保测试介质的ROI处于超声波探头的声路(即探头长轴的中心)的正下方。此外,如图2所示,超声波探头1.6为扁平的,具有主平面和厚度。探头1.6的超声波阵列声波发生方向为平行于主平面并垂直于厚度。探头的主平面垂直于测试介质液面,并且垂直于第一导杆和第二导杆。这样,如前所述,探头夹在第一导轨上的平移方向以及医疗器械试样夹在第二导杆上的平移方向都垂直于探头的超声波阵列声波发生方向。
把医疗器械试样1.7夹在医疗器械试样夹1.4上(图3、图6)。如上所述,医疗器械试样夹1.4的设计可以根据医疗器械试样的外形来调整。
在第一导杆上移动探头夹1.2或在第二导杆上移动医疗器械试样夹1.4,以得到二者之间的合适距离,例如约10cm。距离可随测试医疗器械的类型不同而变化。此外,如果是对医疗器械试样进行回声反射性量化测试的话,那么通过在第一导杆上移动探头夹1.2或在第二导杆上移动医疗器械试样夹1.4,就能确保医疗器械试样(及其ROI)与探头发射的超声波阵列处于同一平面中。
此外,如前所述,通过使医疗器械试样夹1.4在垂直于方向1.4.1的方向1.4.2上旋转(如图3所示),可以把医疗器械试样夹1.4调节一定角度,例如约30°,见图3、图6、图7。角度可随测试医疗器械预期使用类型不同而变化。
超声波诊断设备的设定:
首先,把超声波诊断设备连接到电源。然后,把超声波探头连接到超声波诊断设备,例如把探头信号线插入超声波诊断设备的插口中。接下来,开启超声波诊断设备的开关,并开启超声波诊断设备面板上的开关。
根据本实用新型,例如,如果是对用于经皮肾镜手术的医疗器械(球囊扩张器)进行测试,那么把超声波探头和超声波诊断设备设定为泌尿模式(肾和输尿管)。但是,也可以根据医疗器械预期用途不同来设定其他模式,例如腹部用医疗器械模式、妇产科医疗器械模式、心脏用医疗器械模式等等。同样,具体参数也可以根据医疗器械预期用途不同而设定为其他参数。
接下来,可以对医疗器械试样捕捉图像。
i)把医疗器械试样放在医疗器械试样夹具上。例如,如果是对用于经皮肾镜手术的医疗器械(球囊扩张器)进行测试,那么把未充盈或充气的球囊放在医疗器械试样夹具上,远侧尖端进入测试介质的深度为8cm。深度可根据医疗器械预期用途不同而变化。
ii)在超声波诊断设备中记录医疗器械试样信息。
iii)微调医疗器械试样夹具在水平方向上的位置,以确保球囊尖端、锥形区和球囊主体的一部分在灰阶图像中显示为最亮的影。
iv)捕捉回声球囊的至少三个图像。
v)取出医疗器械试样并清洗。
像素分析(图像分析):
灰阶图像的量化分析可采用分析单元来进行,该分析单元可以是商业图像处理软件,例如Adobe Photoshop。可以读取ROI中每个像素的灰阶值,并输出灰阶平均值和像素数。也可以输出灰阶中位数,但这在本实用新型中不采用。还应该分析靠近ROI且具有相似像素数的附近区域,以计算ROI相对于附近区域的明度差异(也就是灰阶差异)。
由于临床回声反射性改善应由外科医生在手术过程中肉眼判断,因此回声反射性改善应带来能够由肉眼区分的ROI相对于环境的明度差异。此外,相对于环境(或附近区域)而言,ROI的灰阶绝对值带来的临床好处比归一值要小,因为绝对值会受多个因素的影响。因此,ROI相对于环境的灰阶相对值可用作判断回声反射性的关键参数。
像素分析的一个关键步骤是,需要根据肉眼识别ROI边缘来从整个图像中手动选择ROI。这种主观动作实际上要求与外科医生在手术过程中做的一样,即快速监测医疗器械的位置并相应进行调整。在此过程中,外科医生根据视觉观察医疗器械的明度(即灰阶)来做出快速决定,具体地,根据本实用新型,如果用像素分析来计算的话是用平均值,而非中位数。
像素分析可以包括但不限于以下具体步骤。
1)超声波诊断设备包括分析单元,用分析单元(例如Adobe Photoshop CS5)打开一个图像。
2)把信号通道改变为明度。
3)用快速选择工具选择ROI。
4)读取灰阶平均值,并记录为GS1。
5)用快速选择工具选择ROI的邻近区域,确保选择像素数与步骤3)中的像素数一致。
6)读取步骤5)中选取的邻近区域的灰阶平均值,并记录为GS2。
7)把ROI相对于邻近区域的灰阶相对值定义为RGV=GS1-GS2。
8)对同一个医疗器械试样需要分析至少三个图像,重复步骤1)-7)。
9)对步骤8)中获得的至少三个RGV计算平均值,作为最终结果。
虽然已经参考示例性实施例描述了本实用新型,但是应当理解本实用新型不限于所公开的示例性实施例。所附权利要求书的范围应当赋予最广义的解释,以便涵盖所有变型以及等同的结构和功能。
Claims (9)
1.一种回声医疗器械回声反射性量化测试系统,包括夹具组件和超声波诊断设备,其特征在于,夹具组件包括:框架;探头夹具,探头夹具具有第一导杆和用于保持超声波探头的探头夹,探头夹可动地保持在第一导杆上,并且超声波探头连接到超声波诊断设备;和医疗器械试样夹具,医疗器械试样夹具具有第二导杆和用于保持医疗器械试样的医疗器械试样夹,医疗器械试样夹可动地保持在第二导杆上;其中,在框架上设有导轨,第一导杆的两端和第二导杆的两端分别可动地设置在导轨中。
2.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,在探头夹在第一导杆上固定不动的情况下,医疗器械试样夹沿第二导杆移动。
3.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,在医疗器械试样夹在第二导杆上固定不动的情况下,探头夹沿第一导杆移动。
4.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,探头夹沿第一导杆移动并同时医疗器械试样夹沿第二导杆移动。
5.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,第二导杆垂直于超声波探头的超声波阵列声波发生平面。
6.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,医疗器械试样夹还能围绕第二导杆旋转,以允许调节角度。
7.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,回声医疗器械回声反射性量化测试系统还包括用于保持测试介质的容器和处于框架正下方的升降台上,容器放在升降台上。
8.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,框架是封闭式框架或开放式框架。
9.根据权利要求1所述的回声医疗器械回声反射性量化测试系统,其特征在于,超声波探头具有主平面和厚度,超声波探头的超声波阵列声波发生平面为平行于主平面并垂直于厚度,探头的主平面垂直于第一导杆和第二导杆。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201921364733.8U CN211856471U (zh) | 2019-08-22 | 2019-08-22 | 回声医疗器械回声反射性量化测试系统 |
| US17/000,540 US12178660B2 (en) | 2019-08-22 | 2020-08-24 | Echogenicity quantitative test system for an echogenic medical device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201921364733.8U CN211856471U (zh) | 2019-08-22 | 2019-08-22 | 回声医疗器械回声反射性量化测试系统 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN211856471U true CN211856471U (zh) | 2020-11-03 |
Family
ID=73130233
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201921364733.8U Active CN211856471U (zh) | 2019-08-22 | 2019-08-22 | 回声医疗器械回声反射性量化测试系统 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US12178660B2 (zh) |
| CN (1) | CN211856471U (zh) |
Family Cites Families (245)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6045508A (en) | 1997-02-27 | 2000-04-04 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
| US6796976B1 (en) | 1998-03-06 | 2004-09-28 | Scimed Life Systems, Inc. | Establishing access to the body |
| US6368316B1 (en) | 1998-06-11 | 2002-04-09 | Target Therapeutics, Inc. | Catheter with composite stiffener |
| US6736803B2 (en) | 1999-01-13 | 2004-05-18 | Cawood Family Limited Partnership | Urine bag and self-retracting drain tube therefor |
| US6190915B1 (en) | 1999-06-25 | 2001-02-20 | Wisconsin Alumni Research Foundation | Ultrasound phantoms |
| US6238343B1 (en) | 1999-06-28 | 2001-05-29 | Wisconsin Alumni Research Foundation | Quality assurance ultrasound phantoms |
| US6647132B1 (en) | 1999-08-06 | 2003-11-11 | Cognex Technology And Investment Corporation | Methods and apparatuses for identifying regions of similar texture in an image |
| US6605943B1 (en) | 1999-08-24 | 2003-08-12 | Inner Vision Biometrics Pty Ltd | Method of mapping proton transverse relaxation time constants or functions thereof in a target subject to localised movement using nuclear magnetic resonance imaging |
| WO2001023027A1 (en) | 1999-09-27 | 2001-04-05 | Essex Technology, Inc. | Rotate-to-advance catheterization system |
| US6454744B1 (en) | 1999-12-23 | 2002-09-24 | Tfx Medical, Inc. | Peelable PTFE sheaths and methods for manufacture of same |
| US6520934B1 (en) | 1999-12-29 | 2003-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter assemblies with flexible radiopaque marker |
| US6540721B1 (en) | 1999-12-29 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Balloon catheter with flexible radiopaque polymeric marker |
| US7101353B2 (en) | 1999-12-30 | 2006-09-05 | Cook Vascular Incorporated | Splittable medical valve |
| US6599237B1 (en) | 2000-01-10 | 2003-07-29 | Errol O. Singh | Instrument and method for facilitating endoscopic examination and surgical procedures |
| US6589262B1 (en) | 2000-03-31 | 2003-07-08 | Medamicus, Inc. | Locking catheter introducing system |
| US6368277B1 (en) | 2000-04-05 | 2002-04-09 | Siemens Medical Solutions Usa, Inc. | Dynamic measurement of parameters within a sequence of images |
| US7660621B2 (en) | 2000-04-07 | 2010-02-09 | Medtronic, Inc. | Medical device introducer |
| US6673060B1 (en) | 2000-04-25 | 2004-01-06 | Manan Medical Products, Inc. | Drainage catheter and method for forming same |
| FR2810247B1 (fr) | 2000-06-14 | 2008-07-25 | Prodimed | Dispositif echogene et/ou radio opaque pour le prelevement ou le transfert dans les organes genitaux |
| US7001396B2 (en) | 2003-03-26 | 2006-02-21 | Enpath Medical, Inc. | Safety introducer assembly and method |
| US6494860B2 (en) | 2001-02-08 | 2002-12-17 | Oscor Inc. | Introducer with multiple sheaths and method of use therefor |
| FI113395B (fi) | 2001-05-03 | 2004-04-15 | Evac Int Oy | Venttiilielin |
| US6723052B2 (en) | 2001-06-07 | 2004-04-20 | Stanley L. Mills | Echogenic medical device |
| US6892087B2 (en) | 2001-11-01 | 2005-05-10 | Oscor Inc. | Vascular introducer with mapping capabilities |
| GB0123596D0 (en) | 2001-10-02 | 2001-11-21 | Smiths Group Plc | Medico-surgical devices |
| US20070038056A1 (en) | 2001-10-11 | 2007-02-15 | Carlo Pappone | System and methods for locating and ablating arrhythomogenic tissues |
| US7158692B2 (en) | 2001-10-15 | 2007-01-02 | Insightful Corporation | System and method for mining quantitive information from medical images |
| AU2002367387B2 (en) | 2001-12-26 | 2009-05-21 | Yale University | Vascular access device |
| US6692464B2 (en) | 2002-02-28 | 2004-02-17 | Cook, Incorporated | T-fitting for splittable sheath |
| US8137317B2 (en) | 2002-03-15 | 2012-03-20 | Oscor Inc. | Locking vascular introducer assembly with adjustable hemostatic seal |
| US7314481B2 (en) | 2002-05-31 | 2008-01-01 | Wilson-Cook Medical Inc. | Stent introducer apparatus |
| US7481805B2 (en) | 2002-06-27 | 2009-01-27 | Innoventus Project Ab | Drainage catheter |
| ATE533436T1 (de) | 2002-06-28 | 2011-12-15 | Cook Medical Technologies Llc | Brust-einführvorrichtung |
| WO2004002562A2 (en) | 2002-06-28 | 2004-01-08 | Cook Critical Care | Introducer sheath |
| EP1393771B1 (en) | 2002-08-06 | 2007-10-24 | Abbott Laboratories Vascular Enterprises Limited | Balloon catheter with radioopaque marker |
| US7422571B2 (en) | 2002-08-29 | 2008-09-09 | Medical Components, Inc. | Releasably locking dilator and sheath assembly |
| ES2374505T3 (es) | 2002-08-29 | 2012-02-17 | Medical Components, Inc. | Conjunto de dilatador y funda de enclavamiento liberable. |
| US6733489B2 (en) | 2002-09-26 | 2004-05-11 | Angiodynamics, Inc. | Vascular orientation marker for determining the orientation of a blood vessel |
| US20040067591A1 (en) | 2002-10-04 | 2004-04-08 | Wisconsin Alumni Research Foundation | Tissue mimicking elastography phantoms |
| US6887263B2 (en) | 2002-10-18 | 2005-05-03 | Radiant Medical, Inc. | Valved connector assembly and sterility barriers for heat exchange catheters and other closed loop catheters |
| US7153277B2 (en) | 2002-12-03 | 2006-12-26 | Scimed Life Systems, Inc. | Composite medical device with markers |
| US10493259B2 (en) | 2003-01-21 | 2019-12-03 | Baylis Medical Company Inc. | Medical apparatus for fluid communication |
| US7655021B2 (en) | 2003-03-10 | 2010-02-02 | Boston Scientific Scimed, Inc. | Dilator with expandable member |
| US7276062B2 (en) | 2003-03-12 | 2007-10-02 | Biosence Webster, Inc. | Deflectable catheter with hinge |
| US8262671B2 (en) | 2003-03-14 | 2012-09-11 | Oscor Inc. | Vascular introducer having hemostatic valve with integral seal |
| US7001369B2 (en) | 2003-03-27 | 2006-02-21 | Scimed Life Systems, Inc. | Medical device |
| CA2522175C (en) | 2003-04-14 | 2009-07-28 | Cook Incorporated | Large diameter delivery catheter/sheath |
| US7879024B2 (en) | 2003-06-26 | 2011-02-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Splittable cannula having radiopaque marker |
| US7985232B2 (en) | 2003-07-08 | 2011-07-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Detachable hemostasis valve and splittable sheath assembly |
| US20050064223A1 (en) | 2003-09-22 | 2005-03-24 | Bavaro Vincent Peter | Polymeric marker with high radiopacity |
| US7591813B2 (en) | 2003-10-01 | 2009-09-22 | Micrus Endovascular Corporation | Long nose manipulatable catheter |
| US20050096538A1 (en) | 2003-10-29 | 2005-05-05 | Siemens Medical Solutions Usa, Inc. | Image plane stabilization for medical imaging |
| US7217256B2 (en) | 2003-11-17 | 2007-05-15 | Angiodynamics, Inc. | Locking catheter hub |
| US9241735B2 (en) | 2003-12-05 | 2016-01-26 | Onset Medical Corporation | Expandable percutaneous sheath |
| GB2410901B (en) | 2004-02-11 | 2008-09-24 | Mediplus Ltd | Catheter guide wire |
| US7780715B2 (en) | 2004-03-04 | 2010-08-24 | Y Med, Inc. | Vessel treatment devices |
| US7377915B2 (en) | 2004-04-01 | 2008-05-27 | C. R. Bard, Inc. | Catheter connector system |
| US7524305B2 (en) | 2004-09-07 | 2009-04-28 | B. Braun Medical, Inc. | Peel-away introducer and method for making the same |
| US7306585B2 (en) | 2004-09-30 | 2007-12-11 | Engineering Resources Group, Inc. | Guide catheter |
| US7736331B2 (en) | 2005-03-11 | 2010-06-15 | Merit Medical Systems, Inc. | Drainage catheter hub with welded suture and sidewall stylet |
| US20060212009A1 (en) | 2005-03-16 | 2006-09-21 | Accisano Nicholas G Iii | Drainage catheter hub with rotatable lever handle |
| WO2006113099A1 (en) | 2005-04-14 | 2006-10-26 | Image-Guided Neurologics, Inc. | Composite mr-compatible stylet |
| BRPI0609069A8 (pt) | 2005-04-28 | 2018-01-02 | St Jude Medical Atrial Fibrillation Div Inc | Corpo para cateter ou capa protetora |
| US7780650B2 (en) | 2005-05-04 | 2010-08-24 | Spirus Medical, Inc. | Rotate-to-advance catheterization system |
| JP4771456B2 (ja) | 2005-05-13 | 2011-09-14 | テルモ株式会社 | カテーテル |
| US8137309B2 (en) | 2005-07-01 | 2012-03-20 | C.R. Brad, Inc. | Indwelling urinary drainage catheter |
| US7578814B2 (en) | 2005-08-05 | 2009-08-25 | Merit Medical Systems, Inc. | Drainage catheter with lockable hub |
| CN100484479C (zh) | 2005-08-26 | 2009-05-06 | 深圳迈瑞生物医疗电子股份有限公司 | 超声图像增强与斑点抑制方法 |
| US7874987B2 (en) | 2005-10-28 | 2011-01-25 | Biosense Webster, Inc. | Targets and methods for ultrasound catheter calibration |
| US8540666B2 (en) | 2005-12-21 | 2013-09-24 | Boston Scientific Scimed, Inc. | Echogenic occlusive balloon and delivery system |
| US7677078B2 (en) | 2006-02-02 | 2010-03-16 | Siemens Medical Solutions Usa, Inc. | Line-based calibration of ultrasound transducer integrated with a pose sensor |
| US7794402B2 (en) | 2006-05-15 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
| US10639452B2 (en) | 2006-07-13 | 2020-05-05 | Best Medical International, Inc. | Echo-opaque urethral catheter |
| US9233226B2 (en) | 2006-08-22 | 2016-01-12 | Merit Medical Systems, Inc. | Drainage catheter with pig-tail straightener |
| US10856904B2 (en) | 2006-11-30 | 2020-12-08 | Medtronic, Inc. | Flexible introducer |
| WO2008073852A2 (en) | 2006-12-08 | 2008-06-19 | Onset Medical Corporation | Expandable medical access sheath |
| US10166070B2 (en) | 2007-01-02 | 2019-01-01 | Baylis Medical Company Inc. | Electrosurgical pericardial puncture |
| US7922696B2 (en) | 2007-01-24 | 2011-04-12 | Access Scientific, Inc. | Access device |
| CN101631584A (zh) | 2007-02-09 | 2010-01-20 | 史蒂文·J·费里 | 用于在活体脉管系统中进行腔内通过的系统 |
| US9498282B2 (en) | 2007-02-09 | 2016-11-22 | Boston Scientific Scimed, Inc. | Medical probe with echogenic and insulative properties |
| JP5925415B2 (ja) | 2007-04-18 | 2016-05-25 | アクセス サイエンティフィック、インク. | 進入装置 |
| AU2008268632B2 (en) | 2007-06-22 | 2013-10-17 | Medical Components, Inc. | Tearaway sheath assembly with hemostasis valve |
| US7909798B2 (en) | 2007-07-25 | 2011-03-22 | Oscor Inc. | Peel-away introducer sheath having pitched peel lines and method of making same |
| US8211136B2 (en) | 2007-08-31 | 2012-07-03 | Kimberly-Clark Worldwide, Inc. | Stoma dilator |
| EP2195063B1 (en) | 2007-09-18 | 2019-08-07 | Medical Components, Inc. | Tearaway sheath assembly with split hemostasis valve |
| US7875021B2 (en) | 2007-09-19 | 2011-01-25 | Nastaran Minassians | Closed specimen collection system |
| US9044266B2 (en) | 2007-09-19 | 2015-06-02 | Cook Medical Technologies Llc | Implant deployment device |
| US9282945B2 (en) | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
| US9352129B2 (en) | 2007-12-13 | 2016-05-31 | Medical Components, Inc. | Introducer assembly with cap and method of using same |
| US8287585B2 (en) | 2007-12-26 | 2012-10-16 | The Regents Of The University Of Michigan | Ostial stenting system |
| EP3597252A1 (en) | 2008-01-29 | 2020-01-22 | Medical Components, Inc. | Introducer sheath assembly with hub and method of joining a hub to sheath tube |
| CA2711454C (en) | 2008-03-14 | 2016-11-29 | Medical Components, Inc. | Tearaway introducer sheath with hemostasis valve |
| JP5495607B2 (ja) | 2008-05-27 | 2014-05-21 | キヤノン株式会社 | 超音波診断装置 |
| US8128617B2 (en) | 2008-05-27 | 2012-03-06 | Boston Scientific Scimed, Inc. | Electrical mapping and cryo ablating with a balloon catheter |
| US8070694B2 (en) | 2008-07-14 | 2011-12-06 | Medtronic Vascular, Inc. | Fiber based medical devices and aspiration catheters |
| US7993305B2 (en) | 2008-10-22 | 2011-08-09 | Greatbatch Ltd. | Splittable valved introducer apparatus |
| US7951110B2 (en) | 2008-11-10 | 2011-05-31 | Onset Medical Corporation | Expandable spinal sheath and method of use |
| WO2010065265A2 (en) | 2008-11-25 | 2010-06-10 | Edwards Lifesciences Corporation | Apparatus and method for in situ expansion of prosthetic device |
| US8700129B2 (en) | 2008-12-31 | 2014-04-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Devices and methods for catheter localization |
| EP2216069B1 (en) | 2009-02-06 | 2014-01-22 | VistaMed R & D Ltd. | Catheter introducer |
| US8690776B2 (en) | 2009-02-17 | 2014-04-08 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image guided surgery |
| EP2398402B1 (en) | 2009-02-20 | 2016-04-20 | Covidien LP | Devices for venous occlusion for the treatment of venous insufficiency |
| US8500688B2 (en) | 2009-04-16 | 2013-08-06 | Medtronic, Inc. | Retrograde coronary sinus perfusion cannula and methods of using same |
| WO2010132608A2 (en) | 2009-05-12 | 2010-11-18 | Access Scientific, Inc. | Access device with valve |
| FR2950241B1 (fr) | 2009-09-18 | 2011-09-23 | Commissariat Energie Atomique | Fantome bi-modalite d'organes et procede de realisation associe |
| EP2491283B1 (en) | 2009-10-22 | 2020-09-23 | Cook Medical Technologies LLC | Locking assembly for a drainage catheter |
| EP2504055B1 (en) | 2009-11-24 | 2018-02-28 | Cook Medical Technologies LLC | Locking assembly for a drainage catheter |
| US8610899B2 (en) * | 2009-12-02 | 2013-12-17 | Lumetrics, Inc. | Rotational and linear system and methods for scanning of objects |
| US8948474B2 (en) | 2010-01-25 | 2015-02-03 | Amcad Biomed Corporation | Quantification method of the feature of a tumor and an imaging method of the same |
| US9773307B2 (en) | 2010-01-25 | 2017-09-26 | Amcad Biomed Corporation | Quantification and imaging methods and system of the echo texture feature |
| US10249037B2 (en) | 2010-01-25 | 2019-04-02 | Amcad Biomed Corporation | Echogenicity quantification method and calibration method for ultrasonic device using echogenicity index |
| EP2528653B1 (en) | 2010-01-28 | 2019-04-24 | Cook Medical Technologies LLC | Apparatus for destruction of vascular thrombus |
| US8956327B2 (en) | 2010-02-08 | 2015-02-17 | Access Scientific, Llc | Access device |
| EP2548605B1 (en) | 2010-03-15 | 2021-06-16 | Terumo Kabushiki Kaisha | Introducer assembly |
| JP5804543B2 (ja) | 2010-04-05 | 2015-11-04 | 株式会社根本杏林堂 | ミキシングデバイス、ミキシングチューブ、薬液注入システム及び薬液の混合方法 |
| US9955940B1 (en) | 2010-04-23 | 2018-05-01 | Avent, Inc. | Echogenic nerve block catheter and echogenic catheter tip |
| US8377083B2 (en) | 2010-04-27 | 2013-02-19 | Medtronic Vascular, Inc. | Percutaneous methods and apparatus for creating native tissue venous valves |
| US8460323B2 (en) | 2010-04-27 | 2013-06-11 | Medtronic Vascular, Inc. | Percutaneous methods for apparatus for creating native tissue venous valves |
| JP6094895B2 (ja) | 2010-06-30 | 2017-03-15 | マフィン・インコーポレイテッドMuffin Incorporated | 血管フィルタおよびシステム |
| US8641717B2 (en) | 2010-07-01 | 2014-02-04 | DePuy Synthes Products, LLC | Guidewire insertion methods and devices |
| KR101125626B1 (ko) | 2010-08-12 | 2012-03-28 | 안용철 | 벌룬 카테터 |
| US9211234B2 (en) | 2010-09-27 | 2015-12-15 | Avent, Inc. | Configurable percutaneous endoscopic gastrostomy tube |
| JP6160000B2 (ja) | 2010-10-01 | 2017-07-12 | ヴァリアン メディカル システムズ インコーポレイテッド | 移植片を送達する、例えば肺にマーカーを気管支鏡的に移植するための送達カテーテル |
| US9254146B2 (en) | 2010-10-18 | 2016-02-09 | Avent, Inc. | Echogenic nerve block apparatus and system |
| US8888787B2 (en) | 2010-11-15 | 2014-11-18 | JBW7 Innovations, LLC | Percutaneous renal access system |
| US8478383B2 (en) | 2010-12-14 | 2013-07-02 | Biosense Webster (Israel), Ltd. | Probe tracking using multiple tracking methods |
| US8652098B2 (en) | 2011-03-08 | 2014-02-18 | Abbott Cardiovascular Systems Inc. | Catheter with radiopaque coil |
| US8945011B2 (en) | 2011-04-05 | 2015-02-03 | Houston Medical Robotics, Inc. | Systems and methods for accessing the lumen of a vessel |
| US8696582B2 (en) | 2011-05-10 | 2014-04-15 | The University Of British Columbia | Apparatus and method for imaging a medical instrument |
| US8986283B2 (en) | 2011-05-18 | 2015-03-24 | Solo-Dex, Llc | Continuous anesthesia nerve conduction apparatus, system and method thereof |
| US9668654B2 (en) | 2011-05-18 | 2017-06-06 | Sundar Rajendran | Ultrasound monitored continuous anesthesia nerve conduction apparatus and method by bolus injection |
| WO2013013080A1 (en) | 2011-07-20 | 2013-01-24 | Sapheon, Inc. | Enhanced ultrasound visualization of intravascular devices |
| US8753313B2 (en) | 2011-07-22 | 2014-06-17 | Greatbatch Ltd. | Introducer handle notch design/concept |
| EP3970779A1 (en) | 2011-08-17 | 2022-03-23 | Smiths Medical ASD, Inc. | Access device with valve |
| GB2494113B (en) | 2011-08-25 | 2013-07-17 | Cook Medical Technologies Llc | Medical balloon and balloon catheter assembly |
| GB2494395B (en) | 2011-09-02 | 2014-01-08 | Cook Medical Technologies Llc | Ultrasonically visible scoring balloon |
| GB2494905B (en) | 2011-09-23 | 2013-08-14 | Cook Medical Technologies Llc | Introducer placement system |
| EP2572749B1 (en) | 2011-09-23 | 2022-04-27 | Covidien LP | Distal access balloon guide catheter |
| EP2768564B1 (en) | 2011-10-21 | 2016-04-27 | Boston Scientific Scimed, Inc. | Locking catheter hub |
| US8887552B2 (en) | 2011-12-01 | 2014-11-18 | Wisconsin Alumni Research Foundation | Ultrasound phantom having a curved surface |
| US9149606B2 (en) | 2011-12-09 | 2015-10-06 | Teleflex Medical Incorporated | Enhanced introducer assembly |
| AU2012358846B2 (en) | 2011-12-21 | 2015-08-06 | Cardiac Pacemakers, Inc. | Directional features for implantable medical leads |
| HUE045735T2 (hu) | 2011-12-28 | 2020-01-28 | Custom Medical Applications Inc | Katéterek, beleértve a kanyarodást mutató katétereket, katéter-egységek, beleértve az ilyen katétereket, és a kapcsolódó módszerek |
| US20130190609A1 (en) | 2012-01-25 | 2013-07-25 | Cook Medical Technologies Llc | Echogenic medical device |
| US10249036B2 (en) | 2012-02-22 | 2019-04-02 | Veran Medical Technologies, Inc. | Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation |
| EP2633828B1 (en) | 2012-02-28 | 2019-08-07 | Cook Medical Technologies LLC | Introducer assembly |
| EP2822636B1 (en) | 2012-03-09 | 2019-07-24 | Clearstream Technologies Limited | Medical balloon with radiopaque end portion for precisely identifying a working surface location |
| EP2822635B8 (en) | 2012-03-09 | 2018-11-14 | Clearstream Technologies Limited | Medical balloon with radiopaque identifier for precisely identifying the working surface |
| US9445837B2 (en) | 2012-03-16 | 2016-09-20 | Nfinium Vascular Technologies Llc | Surgical needle with enhanced ultrasound reflectivity |
| US9566413B2 (en) | 2012-03-23 | 2017-02-14 | Terumo Medical Corporation | Dilator centering device and assemblies |
| GB2500628B (en) | 2012-03-27 | 2016-08-10 | Cook Medical Technologies Llc | Medical balloon with particles therein |
| WO2013170081A1 (en) | 2012-05-11 | 2013-11-14 | Heartstitch, Inc. | Suturing devices and methods for suturing an anatomic structure |
| US20130310765A1 (en) | 2012-05-17 | 2013-11-21 | Medical Components, Inc. | Valve for dilator and sheath assembly |
| US20150165170A1 (en) | 2012-07-24 | 2015-06-18 | Clearstream Technologies Limited | Balloon catheter with enhanced locatability |
| EP2887989B1 (en) | 2012-08-23 | 2021-02-24 | Philips Image Guided Therapy Corporation | Device for anatomical lesion length estimation |
| CA2881942A1 (en) | 2012-08-23 | 2014-02-27 | Volcano Corporation | Device, system, and method utilizing a radiopaque element for anatomical lesion length estimation |
| US9149176B2 (en) | 2012-09-13 | 2015-10-06 | Emmy Medical, Llc | 4-way cystoscopy catheter |
| US9504476B2 (en) | 2012-10-01 | 2016-11-29 | Microvention, Inc. | Catheter markers |
| EP2914327B1 (en) | 2012-11-01 | 2021-08-04 | Muffin Incorporated | Implements for identifying sheath migration |
| JP2016511644A (ja) | 2012-12-21 | 2016-04-21 | ジェイソン スペンサー, | カテーテル配向マーカー |
| US9554785B2 (en) | 2012-12-21 | 2017-01-31 | Essential Medical, Inc. | Vascular locating systems and methods of use |
| RU2663072C2 (ru) | 2012-12-31 | 2018-08-01 | Клирстрим Текнолоджис Лимитэд | Рентгеноконтрастный баллонный катетер и проводник для позиционирования |
| CN104853800B (zh) | 2012-12-31 | 2019-07-16 | 明讯科技有限公司 | 具有瞬态不透射线标记的球囊导管 |
| US10034655B2 (en) | 2013-02-05 | 2018-07-31 | Muffin Incorporated | Temporal echogenic markers |
| US20140221828A1 (en) | 2013-02-05 | 2014-08-07 | Muffin Incorporated | Non-linear echogenic markers |
| WO2014133708A1 (en) | 2013-02-26 | 2014-09-04 | Cook Medical Technologies Llc | Balloon catheter |
| US9474882B2 (en) | 2013-02-26 | 2016-10-25 | Prytime Medical Devices, Inc. | Fluoroscopy-independent balloon guided occlusion catheter and methods |
| WO2014138099A1 (en) | 2013-03-06 | 2014-09-12 | Muffin Incorporated | Echolucent guidewire tip |
| US9522253B2 (en) | 2013-03-13 | 2016-12-20 | Vascular Solutions, Inc. | Drainage or feeding catheter assembly |
| EP2967498B1 (en) | 2013-03-14 | 2020-02-12 | Muffin Incorporated | Echogenic surface |
| US9566087B2 (en) | 2013-03-15 | 2017-02-14 | Access Scientific, Llc | Vascular access device |
| US9693820B2 (en) | 2013-03-15 | 2017-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
| US10792067B2 (en) | 2013-06-03 | 2020-10-06 | Faculty Physicians And Surgeons Of Loma Linda University Of Medicine | Methods and apparatuses for fluoro-less or near fluoro-less percutaneous surgery access |
| US10076307B2 (en) | 2013-06-20 | 2018-09-18 | Avent, Inc. | Echogenic article with compound indentations |
| KR101566160B1 (ko) | 2013-08-23 | 2015-11-05 | 주식회사 한화 | 탄자트랩을 이용한 총류탄 |
| US10792490B2 (en) | 2013-11-12 | 2020-10-06 | Medtronic, Inc. | Open channel implant tools and implant techniques utilizing such tools |
| WO2015077445A1 (en) | 2013-11-21 | 2015-05-28 | Jet Medical, Inc. | System for facilitating intranasal guidance |
| GB201419864D0 (en) | 2014-11-07 | 2014-12-24 | Cook Medical Technologies Llc | Medical balloon |
| CA2871300A1 (en) | 2013-11-29 | 2015-05-29 | Cook Medical Technologies Llc | Medical balloon |
| JP6292846B2 (ja) | 2013-11-29 | 2018-03-14 | キヤノン株式会社 | 音響波診断装置に用いられるファントム |
| US9629981B2 (en) | 2013-12-13 | 2017-04-25 | Dolcera Information Technology Services Private Limited | Drainage catheter |
| US9655594B2 (en) | 2013-12-17 | 2017-05-23 | Seno Medical Instruments, Inc. | Methods and compositions for tissue-equivalent opto-acoustic phantoms |
| EP3082612A2 (en) | 2013-12-18 | 2016-10-26 | Koninklijke Philips N.V. | Electromagnetic tracker based ultrasound probe calibration |
| US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
| US20170049997A1 (en) | 2014-01-30 | 2017-02-23 | Singapore Health Services Pte | Arterial sheath which allows distal perfusion within a cannulated vessel |
| US20150273120A1 (en) | 2014-03-26 | 2015-10-01 | Boston Scientific Scimed, Inc. | Medical devices for drainage |
| EP3116592B1 (en) | 2014-03-28 | 2019-05-08 | Spiration, Inc. D.B.A. Olympus Respiratory America | Device having echogenic features |
| KR102364071B1 (ko) | 2014-03-31 | 2022-02-16 | 클리어스트림 테크놀러지스 리미티드 | 혈관내 시술 중 형광투시법 사용을 감소시키기 위한 카테터 구조물 |
| US10220192B2 (en) | 2014-04-23 | 2019-03-05 | Intervalve Medical, Inc. | Post dilation balloon with marker bands for use with stented valves |
| EP3139839B1 (en) | 2014-05-07 | 2024-01-24 | Muffin Incorporated | Guide members and associated apparatuses useful for intravascular ultrasound procedures |
| US20170182304A1 (en) | 2014-05-07 | 2017-06-29 | Avent, Inc. | Medical port with replaceable catheter |
| US20180126129A1 (en) | 2014-07-21 | 2018-05-10 | Stentorium Ltd | Implantable Stent |
| KR102294194B1 (ko) | 2014-08-05 | 2021-08-26 | 삼성전자주식회사 | 관심영역의 시각화 장치 및 방법 |
| CA2956401C (en) | 2014-08-12 | 2022-10-25 | Brightwater Medical, Inc. | Systems and methods for coupling and decoupling a catheter |
| US20160067391A1 (en) | 2014-09-04 | 2016-03-10 | Prometheus Deltatech Limited | Transcutaneous device for removal of fluid from a body |
| US11027104B2 (en) | 2014-09-04 | 2021-06-08 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
| CN106573130B (zh) | 2014-09-04 | 2020-01-24 | 泰尔茂株式会社 | 导管 |
| US9980699B2 (en) | 2014-09-12 | 2018-05-29 | Cook Medical Technologies Llc | Shaped echogenic needle groove |
| EP3193765B1 (en) | 2014-09-16 | 2018-12-12 | Koninklijke Philips N.V. | Processing system arranged to cooperate with an optical-shape-sensing-enabled interventional device |
| US9737284B2 (en) | 2014-10-23 | 2017-08-22 | Korea Research Institute Of Standards And Science | Phantom for measuring thickness of thin layer using ultrasonic imaging device and method of using thereof |
| US20160120509A1 (en) | 2014-10-30 | 2016-05-05 | Mubin I. Syed | Hypodermic needle with enhanced ultrasound signature for carotid artery stenting |
| WO2016094068A1 (en) | 2014-12-09 | 2016-06-16 | Cook Medical Technologies Llc | Two pronged handle |
| KR102557218B1 (ko) | 2015-01-20 | 2023-07-18 | 스펙트럼 스파인 아이피 홀딩스, 엘엘씨 | 수술용 배액 시스템 및 사용 방법 |
| EP3056238B1 (en) | 2015-02-13 | 2019-08-28 | Asahi Intecc Co., Ltd. | Catheter |
| US10052489B2 (en) | 2015-03-23 | 2018-08-21 | Greatbatch Ltd. | Apparatus and method for implanting an implantable device |
| JP6440547B2 (ja) | 2015-03-27 | 2018-12-19 | 朝日インテック株式会社 | バルーンカテーテル |
| US10173033B2 (en) | 2015-04-16 | 2019-01-08 | Baylis Medical Company Inc. | Imaging marker |
| US11027099B2 (en) | 2015-04-30 | 2021-06-08 | Smiths Medical Asd, Inc. | Vascular access device |
| US11083868B2 (en) | 2015-05-13 | 2021-08-10 | Innoventions Ltd. | System for inhibiting biofilm formation on catheters, other indwelling or implantable devices and other devices |
| EP3294401A4 (en) | 2015-05-15 | 2019-01-09 | Merit Medical Systems, Inc. | QUICK RELEASE HAVES FOR MEDICAL DEVICES |
| MX391267B (es) | 2015-06-18 | 2025-03-21 | Avent Inc | Miembro de espiral ecogénico para un ensamble de catéter. |
| CA2989772C (en) | 2015-06-18 | 2021-06-01 | Avent, Inc. | Echogenic catheter member |
| US10304226B2 (en) | 2015-07-29 | 2019-05-28 | B-K Medical Aps | Ultrasound focal zone system and method |
| GB2540998A (en) | 2015-08-04 | 2017-02-08 | Phagenesis Ltd | Catheter |
| EP3135205A1 (en) | 2015-08-28 | 2017-03-01 | ETH Zurich | Hand-held medical ultrasound apparatus |
| WO2017056968A1 (ja) | 2015-09-29 | 2017-04-06 | 株式会社資生堂 | 表面特性測定方法、表面特性測定装置、及び表面特性測定プログラム |
| US10716544B2 (en) | 2015-10-08 | 2020-07-21 | Zmk Medical Technologies Inc. | System for 3D multi-parametric ultrasound imaging |
| US9517185B1 (en) | 2015-10-19 | 2016-12-13 | King Saud University | Feeding tube system |
| EP3367936B1 (en) | 2015-10-26 | 2023-09-06 | Smiths Medical International Limited | Echogenic needle assemblies |
| US10765404B2 (en) | 2015-10-27 | 2020-09-08 | Koninklijke Philips N.V. | Medical probe for ultrasound imaging |
| US9920188B2 (en) | 2015-11-02 | 2018-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | PVCP phantoms and their use |
| WO2017120313A1 (en) | 2016-01-06 | 2017-07-13 | Boston Scientific Scimed, Inc. | Percutaneous access device |
| US10814110B2 (en) | 2016-02-08 | 2020-10-27 | EM Device Lab, Inc. | Drainage catheter system including a hub |
| CN108601923A (zh) | 2016-02-11 | 2018-09-28 | 阿波罗恩有限公司 | 弗利氏导尿管及其制造方法 |
| US10369330B2 (en) | 2016-02-11 | 2019-08-06 | Cook Medical Technologies Llc | Drainage catheter hub with a semi-compressed suture seal |
| US10183145B2 (en) | 2016-02-24 | 2019-01-22 | Incept, Llc | Enhanced flexibility neurovascular catheter |
| CA3016033A1 (en) | 2016-03-02 | 2017-09-08 | Incube Labs, Llc | Urethral catheters and methods for facilitated introduction into the urinary tract |
| EP3383282A4 (en) | 2016-05-04 | 2019-09-11 | Renalpro Medical, Inc. | DEVICES AND METHOD FOR TREATING ACUTE KIDNEY INJURY |
| US20170333682A1 (en) | 2016-05-23 | 2017-11-23 | Vascutech Medical Llc | Tearaway Sheath Introducer and Method |
| US10074037B2 (en) | 2016-06-03 | 2018-09-11 | Siemens Healthcare Gmbh | System and method for determining optimal operating parameters for medical imaging |
| US20180036033A1 (en) | 2016-08-03 | 2018-02-08 | Anthony R. Ignagni | Systems and methods for electrode placement in deep muscles and nerves using ultrasound guidance |
| JP6241907B1 (ja) | 2016-10-04 | 2017-12-06 | 朝日インテック株式会社 | カテーテル及びバルーンカテーテル |
| US11052234B2 (en) | 2017-02-15 | 2021-07-06 | Celeste V. Bonham | Connector with integrated non-return check valve for extension tubing and urology collection systems |
| KR102385220B1 (ko) | 2017-02-27 | 2022-04-11 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | 마커를 포함하는 전개 카테터 |
| US10925643B2 (en) | 2017-06-19 | 2021-02-23 | Cook Medical Technologies Llc | Introducer for uterine tamponade assembly and methods of using the same |
| WO2019018255A1 (en) | 2017-07-17 | 2019-01-24 | Boston Scientific Scimed, Inc. | POROUS BALLOON HAVING A RADIO-OPAQUE MARKER |
| US10201689B1 (en) | 2017-08-07 | 2019-02-12 | Advanced Dilation Strategies, LLC | Urethral balloon dilator catheter |
| US20190053790A1 (en) | 2017-08-17 | 2019-02-21 | Contraline, Inc. | Systems and methods for automated image recognition of implants and compositions with long-lasting echogenicity |
| US10238834B2 (en) | 2017-08-25 | 2019-03-26 | Teleflex Innovations S.À.R.L. | Catheter |
| IL303852B2 (en) | 2017-09-14 | 2024-09-01 | Abiomed Inc | Integrated expandable access for medical device introducer |
| US20190083061A1 (en) | 2017-09-18 | 2019-03-21 | Verathon Inc. | Compact calibration for mechanical three-dimensional ultrasound probe |
| EP3476344B1 (en) | 2017-10-05 | 2020-03-25 | Heraeus Deutschland GmbH & Co. KG | Catheter system |
| US20190105474A1 (en) | 2017-10-08 | 2019-04-11 | Sheibley Medical LLC | Drainage catheter with balloon |
| CN111343928B (zh) | 2017-10-27 | 2023-12-08 | 波士顿科学医学有限公司 | 细胞采集与制备装置和方法 |
| US10219788B2 (en) | 2017-12-23 | 2019-03-05 | Faraj Tabeie | String phantom with four independent parameters for evaluation of doppler ultrasonography instruments |
-
2019
- 2019-08-22 CN CN201921364733.8U patent/CN211856471U/zh active Active
-
2020
- 2020-08-24 US US17/000,540 patent/US12178660B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20210055414A1 (en) | 2021-02-25 |
| US12178660B2 (en) | 2024-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114246611B (zh) | 用于超声成像系统的自适应接口的系统和方法 | |
| Wear et al. | US backscatter for liver fat quantification: an AIUM-RSNA QIBA pulse-echo quantitative ultrasound initiative | |
| EP4132366A1 (en) | Automated prostate analysis system | |
| CN101553172B (zh) | 超声波诊断装置 | |
| US20080091124A1 (en) | Method and apparatus for treatment of tissue | |
| CN105246415B (zh) | 超声波观测装置以及超声波观测装置的动作方法 | |
| CN101511273A (zh) | 超声波乳房诊断系统 | |
| CN112971844A (zh) | 一种超声图像的采集质量的评估方法及超声成像设备 | |
| CN101511274A (zh) | 超声波乳房诊断系统 | |
| CN111698947B (zh) | 多参数组织硬度量化 | |
| JP6538280B2 (ja) | 被験者の組織を特徴付ける装置及び方法 | |
| CN112773403A (zh) | 一种超声成像方法和系统 | |
| CN113768546A (zh) | 超声弹性图像生成与处理系统和方法 | |
| Doyle et al. | A review of the recommendations governing quality assurance of ultrasound systems used for guidance in prostate brachytherapy | |
| Fiori et al. | A comparative study on depth of penetration measurements in diagnostic ultrasounds through the adaptive SNR threshold method | |
| Bekedam et al. | Intra-operative resection margin model of tongue carcinoma using 3D reconstructed ultrasound | |
| CN211856471U (zh) | 回声医疗器械回声反射性量化测试系统 | |
| CN114202504B (zh) | 颈动脉超声自动多普勒方法、超声设备及存储介质 | |
| Long et al. | Systematic optimization of ultrasound grayscale imaging presets and its application in abdominal scanning | |
| CN113854949A (zh) | 基于宫腔镜的光声成像系统及其工作方法 | |
| US8249692B2 (en) | Method and device for image optimization in ultrasound recordings | |
| KR20240015562A (ko) | 매질과 연관된 초음파 이미지 데이터를 매질과 연관된 다른 이미지 데이터와 연결하는 방법 및 시스템 | |
| Fiori et al. | A preliminary study on the blind angle estimation for quality assessment of color Doppler ultrasound diagnostic systems | |
| Zhou et al. | Ultrasound grayscale image quality comparison between a 2D intracavitary transducer and a 3D intracavitary transducer used in 2D mode: a phantom study | |
| Hangiandreou et al. | Clinical ultrasonography physics: Emerging practice |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant |