CN211830528U - Multiphase disc type hybrid excitation flux switching motor - Google Patents
Multiphase disc type hybrid excitation flux switching motor Download PDFInfo
- Publication number
- CN211830528U CN211830528U CN201921874529.0U CN201921874529U CN211830528U CN 211830528 U CN211830528 U CN 211830528U CN 201921874529 U CN201921874529 U CN 201921874529U CN 211830528 U CN211830528 U CN 211830528U
- Authority
- CN
- China
- Prior art keywords
- concentrated
- motor
- excitation
- stator
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
本实用新型公开了一种盘式混合励磁磁通切换电机,由定子铁心、转子铁心、电枢绕组、励磁绕组和永磁体组成。定子与转子同轴安装。单个定子铁心上有4*m*k*n个定子导磁齿,定子上总共设有m*q块永磁体,均匀地镶嵌在励磁槽外侧。转子铁心有(2*m*k±1)*n个沿圆周均匀分布的导磁齿;m为电机的相数,n为电机单元数,k为每个电机单元中任意一相电枢绕组串联的集中电枢绕组对数,q为正整数(保证4*k*n/q为正整数,并且小于2*k*n)。本电机通过永磁体和励磁绕组共同提供激励磁通,不仅具有很强的磁场调节能力,而且电机的轴向尺寸较小,适合应用在严格要求薄型安装,如电动汽车等需要宽调速范围的场合。
The utility model discloses a disk-type hybrid excitation magnetic flux switching motor, which is composed of a stator iron core, a rotor iron core, an armature winding, an excitation winding and a permanent magnet. The stator and the rotor are installed coaxially. There are 4*m*k*n stator magnetic conductive teeth on a single stator core, and m*q permanent magnets are arranged on the stator, which are evenly embedded outside the excitation slot. The rotor core has (2*m*k±1)*n magnetic conductive teeth evenly distributed along the circumference; m is the number of phases of the motor, n is the number of motor units, and k is any phase armature winding in each motor unit The number of pairs of concentrated armature windings in series, q is a positive integer (guaranteed that 4*k*n/q is a positive integer and less than 2*k*n). The motor provides excitation magnetic flux through permanent magnets and excitation windings. It not only has strong magnetic field adjustment ability, but also has a small axial size of the motor, which is suitable for applications in strict requirements for thin installations, such as electric vehicles, which require a wide speed regulation range. occasion.
Description
技术领域technical field
本实用新型涉及的是一种盘式混合励磁磁通切换电机,属于电机制造技术领域。The utility model relates to a disk-type hybrid excitation magnetic flux switching motor, which belongs to the technical field of motor manufacturing.
背景技术Background technique
随着新能源技术的发展,电机作为轨道交通、新能源汽车等领域的核心部件,得到了广泛的研究和应用。直流电机由于电枢电流和励磁电流均可独立调节,因此无论用于电动机时的调速特性,还是作为发电机运行时的输出电压稳定性都是众多电机中最理想的。然而,由于直流电机结构上存在机械电刷和换向器,具有维护频繁,可靠性差等缺点,限制了其使用范围。交流感应电机结构简单,无需电刷,维护方便,可靠性高,在普通传动领域得到了广泛应用,但是该电机的调速性能不佳、功率因数和效率较低。传统的永磁无刷交流电机由于功率密度大,功率因数高等优势近年来得到了较快的发展。电机轴向较长,限制了在空间较小的应用场合。With the development of new energy technology, motors have been widely researched and applied as core components in rail transit, new energy vehicles and other fields. Since the armature current and the excitation current of the DC motor can be independently adjusted, the speed regulation characteristics when used as a motor and the output voltage stability when running as a generator are the most ideal among many motors. However, due to the existence of mechanical brushes and commutators in the structure of the DC motor, it has disadvantages such as frequent maintenance and poor reliability, which limits its application range. The AC induction motor has a simple structure, no brushes, easy maintenance, and high reliability. It is widely used in the field of general transmission, but the motor has poor speed regulation performance, low power factor and efficiency. The traditional permanent magnet brushless AC motor has developed rapidly in recent years due to the advantages of high power density and high power factor. The motor shaft is long, which limits applications in small spaces.
因此,一种新型的盘式永磁磁通切换电机进入了人们的视野。这种电机的轴向较短,电机的永磁体均位于定子侧,而转子仅由铁芯组成,这不仅极大地降低了电机的复杂度,还有效地增强了永磁体的散热性,降低了永磁体发生不可逆退磁风险。电机的磁场不可调节,高速运行时需要采用弱磁控制技术来实现高速运行,这无疑增加了系统的复杂性和成本。Therefore, a new type of disk-type permanent magnet flux switching motor has entered people's field of vision. The axial direction of this motor is short, the permanent magnets of the motor are all located on the stator side, and the rotor is only composed of iron cores, which not only greatly reduces the complexity of the motor, but also effectively enhances the heat dissipation of the permanent magnets, reducing the Risk of irreversible demagnetization of permanent magnets. The magnetic field of the motor cannot be adjusted, and the field weakening control technology is required to achieve high-speed operation during high-speed operation, which undoubtedly increases the complexity and cost of the system.
近年来,盘式混合励磁磁通切换电机研究较多永磁体和励磁都位于定子侧,具有一定的调磁能力,适合于高速运行。经过研究表明,传统盘式混合励磁磁通切换电机相邻永磁体对向充磁,与永磁体相同槽内的集中励磁绕组的磁场方向与永磁磁场方向相同或相反,在一定程度上影响了集中励磁绕组的励磁效率。而且永磁体越多,调磁能力越差,当励磁电流为零时,电机存在定位转矩。In recent years, many studies on disk-type hybrid excitation flux-switching motors have been carried out. The permanent magnets and the excitation are located on the stator side, which has a certain ability to adjust the magnetic field and is suitable for high-speed operation. Studies have shown that the magnetic field direction of the concentrated excitation winding in the same slot as the permanent magnet is the same or opposite to the magnetic field direction of the permanent magnet when the adjacent permanent magnets of the traditional disk-type hybrid excitation flux switching motor are oppositely magnetized, which affects the magnetic field direction to a certain extent. The excitation efficiency of the concentrated field winding. Moreover, the more permanent magnets, the worse the magnetic adjustment ability. When the excitation current is zero, the motor has a positioning torque.
发明内容SUMMARY OF THE INVENTION
实用新型目的:Purpose of the utility model:
针对现有技术上存在的不足,本实用新型目的是在于提供一种调磁能力强、调速性能好、运行可靠、无电刷、集中电枢绕组、集中励磁绕组和永磁体均置于定子且可以单独控制、结构简单和成本低、高效率的盘式混合励磁磁通切换电机。通过控制直流集中励磁绕组的电流大小可以控制电机的励磁磁场,从而保证该电机作为电动机运行时在较宽的转速范围内具有较高的效率,作为发电机可以有更宽的调压范围;另外,由于永磁体充磁方向沿圆周切线方向,当励磁电流为零时,永磁磁场仅在定子侧形成闭合回路,此时每相绕组的总磁通为零,齿槽转矩为零。In view of the deficiencies existing in the prior art, the purpose of this utility model is to provide a kind of strong magnetic regulation ability, good speed regulation performance, reliable operation, no brushes, concentrated armature windings, concentrated excitation windings and permanent magnets all placed in the stator And can be independently controlled, the structure is simple, the cost is low, and the high-efficiency disk-type hybrid excitation magnetic flux switching motor is provided. By controlling the current of the DC concentrated excitation winding, the excitation magnetic field of the motor can be controlled, so as to ensure that the motor operates as a motor with high efficiency in a wide speed range, and as a generator, it can have a wider voltage regulation range; , since the magnetizing direction of the permanent magnet is along the tangential direction of the circumference, when the excitation current is zero, the permanent magnet magnetic field only forms a closed loop on the stator side, and the total magnetic flux of each phase winding is zero at this time, and the cogging torque is zero.
技术方案:Technical solutions:
为了实现以上功能,本实用新型提供了一种改进型盘式混合励磁磁通切换电机,它由定子、转子、集中电枢绕组、集中励磁绕组和永磁体组成;所述定子、转子均由导磁材料构成且二者之间具有气隙,所述定子上设有定子导磁齿,定子导磁齿之间有槽,部分槽中设有永磁体,定子导磁齿上设有集中电枢绕组和集中励磁绕组。In order to achieve the above functions, the present utility model provides an improved disc type hybrid excitation magnetic flux switching motor, which is composed of a stator, a rotor, a concentrated armature winding, a concentrated excitation winding and a permanent magnet; The stator is composed of magnetic materials and has an air gap between them. The stator is provided with stator magnetic conductive teeth, slots between the stator magnetic conductive teeth, permanent magnets in some of the slots, and concentrated armatures on the stator magnetic conductive teeth. windings and concentrated field windings.
上述定子的导磁齿的个数为Ns=4*m*k*n;其中,定子导磁齿上依次绕有2*m*k*n个集中电枢绕组,每个集中电枢绕组套着相邻的两个定子导磁齿,相邻的集中电枢绕组共用一个槽,设置集中电枢绕组的槽称为电枢槽;其余2*m*k*n个槽中依次设置集中励磁绕组,每个集中励磁绕组套着相邻的两个定子导磁齿,相邻两个集中励磁绕组共用或间隔一个槽,设置集中励磁绕组的槽称为励磁槽;所述定子上设有总共m*q块永磁体,均匀地镶嵌在励磁槽底部;槽中的集中励磁绕组分布在永磁体的轴向外侧;永磁体均匀分布,每两块永磁体之间间隔4*k*n/q个定子导磁齿;The number of magnetic conductive teeth of the stator is Ns=4*m*k*n; wherein, 2*m*k*n concentrated armature windings are wound on the stator magnetic conductive teeth in turn, and each concentrated armature winding is sleeved With two adjacent stator magnetic conductive teeth, the adjacent concentrated armature windings share a slot, and the slot where the concentrated armature windings are arranged is called the armature slot; the other 2*m*k*n slots are sequentially set with concentrated excitation Windings, each concentrated excitation winding is covered with two adjacent stator magnetic conductive teeth, and two adjacent concentrated excitation windings share or are separated by a slot, and the slot where the concentrated excitation winding is arranged is called the excitation slot; the stator is provided with a total of m*q permanent magnets are evenly embedded at the bottom of the excitation slot; the concentrated excitation windings in the slot are distributed on the axial outer side of the permanent magnet; the permanent magnets are evenly distributed, and the interval between every two permanent magnets is 4*k*n/q stator magnetic teeth;
所述转子为齿槽型结构,由导磁材料组成,转子导磁齿的个数为Nr=(2*m*k±1)n;The rotor has a cogged structure and is composed of magnetic conductive materials, and the number of magnetic conductive teeth of the rotor is Nr=(2*m*k±1)n;
其中,m为电机的相数,n为电机单元数,k为每个电机单元中任意一相集中电枢绕组串联的集中电枢绕组对数,q为小于2*k*n的正整数。Among them, m is the number of phases of the motor, n is the number of motor units, k is the number of concentrated armature winding pairs connected in series with any one phase concentrated armature winding in each motor unit, and q is a positive integer less than 2*k*n.
进一步的,上述每个电机单元中任意一相集中电枢绕组由k对集中电枢绕组串联组成,从任意一相的第一个集中电枢绕组起,将k个连续放置的集中电枢绕组设置为同一相,其后依次设置属于相邻相的k个集中电枢绕组,按上述排列方式依次排列,直至电机单元全部排列完成;属于同相的2k个集中电枢绕组形成k对互补集中电枢绕组,其中任意一对集中电枢绕组中的两个集中电枢绕组与转子的相对位置相差半个转子极距τs,对应为180度电角度,n 个电机单元依次设置,不同电机单元中属于同相的集中电枢绕组串联或并联联接。Further, any one-phase concentrated armature winding in each of the above-mentioned motor units is composed of k pairs of concentrated armature windings in series. From the first concentrated armature winding of any phase, k consecutively placed concentrated armature windings. Set to the same phase, then set k concentrated armature windings belonging to adjacent phases in turn, and arrange them in sequence according to the above arrangement, until all the motor units are arranged; 2k concentrated armature windings belonging to the same phase form k pairs of complementary concentrated power armature windings, in which the relative positions of the two concentrated armature windings in any pair of concentrated armature windings and the rotor differ by half the rotor pole pitch τ s , corresponding to an electrical angle of 180 degrees, n motor units are arranged in sequence, different motor units The concentrated armature windings belonging to the same phase are connected in series or in parallel.
当上述电机每两个集中励磁绕组间隔一个槽时,集中励磁绕组产生的磁场方向相同;当每两个集中励磁绕组共用一个槽时,相邻两集中励磁绕组产生的磁场方向相反;每个电机单元中的集中励磁绕组串联成集中励磁绕组单元,n个电机单元中的集中励磁绕组单元串联或并联联接。When every two concentrated excitation windings of the above-mentioned motor are separated by a slot, the magnetic fields generated by the concentrated excitation windings are in the same direction; when every two concentrated excitation windings share a slot, the magnetic fields generated by the adjacent two concentrated excitation windings are in opposite directions; each motor The concentrated excitation windings in the unit are connected in series to form a concentrated excitation winding unit, and the concentrated excitation winding units in the n motor units are connected in series or in parallel.
进一步的,上述电机所有永磁体的充磁方向沿同一圆周切线方向;每块永磁体的充磁方向和位于它轴向外侧的集中励磁绕组的磁场方向相反。当集中励磁绕组中通入的励磁电流为零时,电机中只存在永磁磁场,且永磁磁场只在定子部分形成环形闭合磁路,不会穿过气隙和转子,集中电枢绕组中的总磁通为零。Further, the magnetization directions of all permanent magnets of the above-mentioned motor are along the same circumferential tangential direction; the magnetization direction of each permanent magnet is opposite to the magnetic field direction of the concentrated excitation winding located on its axial outer side. When the excitation current in the concentrated excitation winding is zero, there is only a permanent magnetic field in the motor, and the permanent magnetic field only forms an annular closed magnetic circuit in the stator part, and will not pass through the air gap and the rotor. The total magnetic flux is zero.
作为一种优选,所述集中电枢绕组和集中励磁绕组为铜或超导材料,永磁体为铁氧体或铝铁硼等稀土材料。As a preference, the concentrated armature winding and the concentrated excitation winding are made of copper or superconducting materials, and the permanent magnets are made of rare earth materials such as ferrite or aluminum iron boron.
作为一种优选,上述盘式混合励磁磁通切换电机可作电动机或发电机运行。As a preference, the above-mentioned disk-type hybrid excitation magnetic flux switching motor can be operated as a motor or a generator.
技术效果:Technical effect:
本实用新型提供的一种盘式混合励磁磁通切换电机,其集中电枢绕组、集中励磁绕组和永磁体均位于定子侧,转子为由导磁材料构成的齿槽型结构,结构简单,可靠性高。集中电枢绕组和集中励磁绕组可以单独控制,并且通过控制直流集中励磁绕组的电流大小可以控制电机的励磁磁场,可以在宽转速范围内适应电机的特性,用作电动汽车领域可提高电机的最大转速,电机从而实现宽范围内的高效率;永磁体能够削弱电机定子轭部的磁场,降低电机的磁场饱和程度,并增加通过三相集中电枢绕组的磁通量,有效地提高了集中励磁绕组的利用率和电机效率;电机中所有永磁体的充磁方向沿同一圆周切线方向,当励磁电流为零时,永磁磁场仅在定子侧形成闭合回路,通过三相集中电枢绕组的总磁通为零,齿槽转矩为零,因此当电机空载时,切断励磁电流,能够有效减小转矩脉动。用作电动机,电机的调节磁场范围宽,适合于宽调速范围的应用场合,如电动汽车。The utility model provides a disk-type hybrid excitation magnetic flux switching motor, wherein the concentrated armature winding, the concentrated excitation winding and the permanent magnet are all located on the stator side, and the rotor is a cogged structure composed of magnetically conductive materials, which is simple in structure and reliable. Sex is high. The concentrated armature winding and the concentrated excitation winding can be controlled separately, and the excitation magnetic field of the motor can be controlled by controlling the current of the DC concentrated excitation winding, which can adapt to the characteristics of the motor in a wide speed range, and can be used in the field of electric vehicles. speed, the motor can achieve high efficiency in a wide range; the permanent magnet can weaken the magnetic field of the motor stator yoke, reduce the magnetic field saturation of the motor, and increase the magnetic flux through the three-phase concentrated armature winding, effectively improving the concentrated excitation winding. Utilization and motor efficiency; the magnetizing direction of all permanent magnets in the motor is along the same circular tangent direction, when the excitation current is zero, the permanent magnetic field only forms a closed loop on the stator side, and the total magnetic flux of the three-phase concentrated armature windings is zero, the cogging torque is zero, so when the motor has no load, the excitation current is cut off, which can effectively reduce the torque ripple. Used as a motor, the motor has a wide range of magnetic field regulation, and is suitable for applications with a wide speed regulation range, such as electric vehicles.
附图说明Description of drawings
下面结合附图和实施例对本实用新型进一步说明:Below in conjunction with accompanying drawing and embodiment, the utility model is further described:
图1本实用新型一种盘式混合励磁磁通切换电机实施例1电机三维结构示意图;1 is a schematic diagram of the three-dimensional structure of the motor in Embodiment 1 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图2本实用新型一种盘式混合励磁磁通切换电机实施例1电机定子轴向结构示意图;2 is a schematic diagram of the axial structure of the motor stator of Embodiment 1 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图3本实用新型一种盘式混合励磁磁通切换电机实施例1电机平面展开图;Fig. 3 is a flat-panel expanded view of the motor in Embodiment 1 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图4本实用新型一种盘式混合励磁磁通切换电机实施例2电机三维结构示意图;4 is a schematic diagram of the three-dimensional structure of the motor in Embodiment 2 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图5本实用新型一种盘式混合励磁磁通切换电机实施例2电机定子轴向结构示意图;5 is a schematic diagram of the axial structure of the motor stator in Embodiment 2 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图6本实用新型一种盘式混合励磁磁通切换电机实施例2电机平面展开图;FIG. 6 is an expanded view of the motor in Embodiment 2 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图7本实用新型一种盘式混合励磁磁通切换电机实施例3电机三维结构示意图;7 is a schematic diagram of the three-dimensional structure of the motor in Embodiment 3 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图8本实用新型一种盘式混合励磁磁通切换电机实施例3电机定子轴向结构示意图;8 is a schematic diagram of the axial structure of the motor stator in Embodiment 3 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图9本实用新型一种盘式混合励磁磁通切换电机实施例3电机平面展开图;FIG. 9 is a plane development view of the motor in Embodiment 3 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图10本实用新型一种盘式混合励磁磁通切换电机实施例4电机三维结构示意图;10 is a schematic three-dimensional structure diagram of the motor in Embodiment 4 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图11本实用新型一种盘式混合励磁磁通切换电机实施例4电机定子轴向结构示意图;11 is a schematic diagram of the axial structure of the motor stator of Embodiment 4 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图12本实用新型一种盘式混合励磁磁通切换电机实施例4电机平面展开图;Fig. 12 is a flat expanded view of the motor in Embodiment 4 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图13本实用新型一种盘式混合励磁磁通切换电机实施例5电机三维结构示意图;13 is a schematic three-dimensional structure diagram of the motor in Embodiment 5 of a disk-type hybrid excitation magnetic flux switching motor according to the present invention;
图14本实用新型一种盘式混合励磁磁通切换电机实施例5电机定子轴向结构示意图;14 is a schematic diagram of the axial structure of the motor stator in Embodiment 5 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图15本实用新型一种盘式混合励磁磁通切换电机实施例5电机平面展开图;Fig. 15 is a plane development view of the motor in Embodiment 5 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图16本实用新型一种盘式混合励磁磁通切换电机实施例6电机三维结构示意图;16 is a schematic three-dimensional structural diagram of the motor in Embodiment 6 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图17本实用新型一种盘式混合励磁磁通切换电机实施例6电机平面展开图;Fig. 17 is a flat-panel expanded view of the motor in Embodiment 6 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图18本实用新型一种盘式混合励磁磁通切换电机实施例7电机三维结构示意图;18 is a schematic three-dimensional structure diagram of a disk-type hybrid excitation magnetic flux switching motor according to Embodiment 7 of the present invention;
图19本实用新型一种盘式混合励磁磁通切换电机实施例7电机平面展开图;Fig. 19 is a flat-panel expanded view of the motor in Embodiment 7 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图20本实用新型一种盘式混合励磁磁通切换电机实施例8电机三维结构示意图;20 is a schematic three-dimensional structure diagram of the motor in Embodiment 8 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图21本实用新型一种盘式混合励磁磁通切换电机实施例8电机平面展开图;Fig. 21 is a flat-panel expanded view of the motor in Embodiment 8 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图22本实用新型一种盘式混合励磁磁通切换电机实施例9电机三维结构示意图;22 is a schematic three-dimensional structure diagram of the motor in Embodiment 9 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
图23本实用新型一种盘式混合励磁磁通切换电机实施例9电机平面展开图;Figure 23 is a flat-panel expanded view of the motor in Embodiment 9 of a disk-type hybrid excitation magnetic flux switching motor of the present invention;
其中,10-转子,11-定子,110-导磁齿,111-集中电枢绕组,112-集中励磁绕组,113-永磁体。Among them, 10-rotor, 11-stator, 110-magnetic conductive teeth, 111-concentrated armature winding, 112-concentrated excitation winding, 113-permanent magnet.
具体实施方式Detailed ways
本实用新型提供一种盘式混合励磁磁通切换电机,为使本实用新型的目的,技术方案及效果更加清楚,明确,以及参照附图并举实例对本实用新型进一步详细说明。应当理解,此处所描述的具体实施仅用以解释本实用新型,并不用于限定本实用新型。The utility model provides a disk-type hybrid excitation magnetic flux switching motor. In order to make the purpose, technical scheme and effect of the utility model clearer and clearer, the utility model is further described in detail with reference to the accompanying drawings and examples. It should be understood that the specific implementations described herein are only used to explain the present invention, but not to limit the present invention.
实施例1Example 1
参见图1,本实用新型的一种盘式混合励磁磁通切换电机,由定子11、转子10、集中电枢绕组111、集中励磁绕组112和永磁体113组成;所述定子11、转子10均由导磁材料构成且具有气隙;所述定子11上设有定子导磁齿110,定子导磁齿110之间有槽,部分槽中设有永磁体113,定子导磁齿110上交替设置集中电枢绕组111和集中励磁绕组112。本实施例电机中,m=3,n=1,k=1,q=1,其中,m为电机的相数,n为电机单元数,k为每个定子电机单元中一相集中电枢绕组串联的集中电枢绕组111对数,q为决定永磁体数量的系数,q的取值需使4*k*n/q为正整数。即,该电机为三相电机,具有A、B、C三相,包含1个电机单元,每个电机单元中有k=1对集中电枢绕组,定子11导磁齿110的个数为Ns=4*m*n*k=12;导磁齿依次设有集中电枢绕组111的个数为2*m*n*k=6,每个集中电枢绕组111跨两个导磁齿 110,相邻的集中电枢绕组111共用一个槽;其余2*m*k*n=6个槽中依次设置2*m*k*n=6个集中励磁绕组112,每个集中励磁绕组112跨相邻的两个导磁齿110,每两个集中励磁绕组112 共用一个槽,相邻两集中励磁绕组112产生的磁场方向相反;所述定子11上永磁体113的块数为m*q=3,均匀镶嵌在励磁槽轴向内侧,每两块永磁体之间间隔4*k*n/q=4个定子导磁齿 110,所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组产生的磁场方向相反。转子10为齿槽型,转子导磁齿的个数为Nr=(2*m*k±1)n,当k=1, m=3,n=1时,Nr可为5,7,本实施例取Nr=5;由于本实施例中k=1,n=1,电机单元中任意一相绕组所串联的集中电枢绕组111的对数为k=1(如图2所示定子轴向结构示意图,电机中的A1和A2),从任意一相的第一个集中电枢绕组起(如从A1起),有k=1个相邻放置的集中电枢绕组属于同一相,其后依次设置属于相邻相的k=1个集中电枢绕组111(即图3 中的B1和C1),按照上述排列方式,电机中的三相集中电枢绕组的排列方式为: A1-B1-C1-A2-B2-C2。属于同相的k=1个集中电枢绕组111与次级的相对位置相差半个转子极距,对应为180度电气角度,如图3中A相两集中电枢绕组A1和A2。此时,集中电枢绕组A1跨过两个导磁齿,其中心线正对着转子10齿的中心线,而集中电枢绕组A2的中心线正对着转子10槽的中心线,二者与转子10的相对位置相差半个转子极距,在空间上相差180度电气角度。Referring to FIG. 1 , a disk-type hybrid excitation magnetic flux switching motor of the present invention is composed of a
若不考虑永磁体113的影响,由于相邻的集中励磁绕组112产生的磁场方向相反,合理设置定子11上集中电枢绕组A1、A2的绕线方式可使绕组中产生反电动势相互叠加,并呈现出互补性;在转子10旋转一个电周期(即,旋转一个定子10极距)过程中,集中电枢绕组A1和A2存在磁路上的差异;如图3所示位置时,若假定此时集中电枢绕组A1中磁链近似为零,称为第一平衡位置,而集中电枢绕组A2、与A1相对转子的位置不同,相差半个转子 10极距,此时集中电枢绕组A2中的磁链也近似为零,因此该位置称为第二平衡位置。转子 10在逆时针旋转(在图3中,转子10从左向右)一个电周期的过程中,集中电枢绕组A1中磁链幅值变化过程为:第一平衡位置——正最大幅值——第二平衡位置——负最大幅值——第一平衡位置;而集中电枢绕组A2中磁链幅值变化过程为:第二平衡位置——正最大幅值——第一平衡位置——负最大幅值——第二平衡位置。A1和A2集中电枢绕组111中的磁链变化趋势对称互补。集中电枢绕组A1和A2串联成A相绕组后,它们产生的反电势的谐波分量相互抵消,得到的相反电势具有较好的正弦性。具有较好的正弦性,从而减小了转矩波动,非常适用于无刷交流(BLAC)控制;B,C两相同样具有A相的特点,三相之间相位互差120°电角度。If the influence of the
若集中励磁绕组112中通入的电流为零,仅考虑永磁体113的作用时,由于所有永磁体 113的充磁方向均沿同一圆周切线方向,永磁磁场仅在定子11、形成闭合磁路,不会穿过气隙和转子10,因此不会产生电磁转矩。如图3所示,由于轭部的存在,电机大部分的磁路是经过永磁体113所在槽的轭部,以PM1为例,永磁磁场的磁路可以描述为:PM1——PM1 相邻的定子导磁齿——轭部——PM1相邻的另外一个定子齿——回到PM1。由于永磁体113 的充磁方向沿圆周方向充磁,以永磁体PM1为参考,所以少部分永磁磁路可以描述为:PM1——与PM1相邻的定子导磁齿——轭部——与PM2相邻的定子导磁齿——PM2——与PM2 相邻的定子导磁齿——轭部——与PM3相邻的定子导磁齿——PM3——与PM3相邻的定子导磁齿——轭部——回到PM1,最终形成闭合磁路。永磁磁场在穿过永磁体113时,必然会穿过永磁体113外围的集中电枢绕组111,比如当永磁磁场穿过PM2的同时必然会穿过集中电枢绕组A2,但是由于气隙磁阻较大,永磁磁场不会通过气隙进入转子10,因此穿入和穿出集中电枢绕组A2的永磁磁场相同,最终集中电枢绕组A2中的永磁磁链为零;而对于A 相的其他集中电枢绕组A1来说,由于永磁磁链仅穿过绕组外侧的定子轭部,不会穿入或穿出集中电枢绕组A1,它的永磁磁链也为零。这一现象不随转子10的转动而改变,因此在转子10旋转的过程中A相的磁链始终为零,无相反电势产生。由于永磁体113均匀分布且三相对称,B、C两相同样具有A相的特点,这一特性有效地消除了传统混合励磁磁通切换电机在发生短路故障时无法完全灭磁导致短路电流过大的缺点。If the current flowing into the concentrated excitation winding 112 is zero, and only the action of the
当同时考虑永磁体113和集中励磁绕组112产生的磁场时,由于永磁体113的充磁方向和位于其径向外侧的集中励磁绕组112产生的磁场方向相反,具体表现为:一方面,在定子轭部,永磁磁场和电励磁磁场方向相反,当定子11的磁场饱和程度过高,永磁磁场能有效地减少定子轭部磁场的饱和程度,并有效降低电机铁耗;另一方面,永磁磁场可以降低定子导磁齿110的磁场饱和程度,从而间接提高三相绕组中的励磁磁链,因此,可以有效提高三相绕组的反电势。When considering the magnetic field generated by the
当电机需要运行在大扭矩时,增加直流励磁电流的大小,从而增强电机的励磁磁场强度,可以提高电机励磁效率;小扭矩时,可以增加直流励磁电流,提高减小转矩,提高电机的效率。When the motor needs to run at high torque, increase the magnitude of the DC excitation current, thereby enhancing the excitation magnetic field strength of the motor, which can improve the excitation efficiency of the motor; when the torque is small, the DC excitation current can be increased, reducing the torque and improving the efficiency of the motor .
实施例2Example 2
图4为一台盘式混合励磁磁通切换电机。本实施例中,m=3,n=2,k=1,q=1。与实施例 1电机的不同之处在于,本实施例定子11上电机单元数n=2。即,该电机为三相电机,具有 A、B、C三相,包含2个电机单元,每个电机单元中有k=1对集中电枢绕组,定子11导磁齿110的个数为Ns=4*m*n*k=24;导磁齿依次设有集中电枢绕组111的个数为2*m*n*k=12,每个集中电枢绕组111跨两个导磁齿110,相邻的集中电枢绕组111共用一个槽;其余 2*m*k*n=12个槽中依次设置2*m*k*n=12个集中励磁绕组112,每个集中励磁绕组112跨相邻的两个导磁齿110,每两个集中励磁绕组112共用一个槽,相邻两集中励磁绕组112产生的磁场方向相反;定子11中第一电机单元中的集中励磁绕组串联联接组成第一集中励磁绕组单元,第一集中励磁绕组单元和第二集中励磁绕组单元可串联或并联组成集中励磁绕组;所述定子11上永磁体113的块数为m*q=3,均匀镶嵌在励磁槽轴向内侧,每两块永磁体之间间隔 4*k*n/q=8个定子导磁齿110,所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组产生的磁场方向相反。转子10为齿槽型,转子导磁齿的个数为 Nr=(2*m*k±1)n,当k=1,m=3,n=2时,Nr可为10,14,本实施例取Nr=14;Figure 4 shows a disk-type hybrid excitation flux switching motor. In this embodiment, m=3, n=2, k=1, and q=1. The difference from the motor of the first embodiment is that the number of motor units on the
由于本实施例中k=1,n=2,电机单元中任意一相绕组所串联的集中电枢绕组111的对数为k=1(如图5所示定子轴向结构示意图,第一电机单元中的A1和A2或第二电机单元中的 A3和A4),从任意一相的第一个集中电枢绕组起(如从A1起),有k=1个相邻放置的集中电枢绕组属于同一相,其后依次设置属于相邻相的k=1个集中电枢绕组111(即图6中的B1 和C1),按照上述排列方式,第一电机单元中的三相集中电枢绕组的排列方式为: A1-B1-C1-A2-B2-C2。属于同相的2k=2个集中电枢绕组111与次级的相对位置相差半个转子极距,对应为180度电气角度,图6中A相两集中电枢绕组A1和A2。此时,集中电枢绕组A1跨过两个导磁齿,其中心线正对着转子10齿的中心线,而集中电枢绕组A2的中心线正对着转子10槽的中心线,二者与转子10的相对位置相差半个转子极距,在空间上相差180度电气角度。Since k=1 and n=2 in this embodiment, the logarithm of the
若不考虑永磁体113的影响,由于相邻的集中励磁绕组112产生的磁场方向相反,合理设置定子11上集中电枢绕组A1、A2的绕线方式可使绕组中产生反电动势相互叠加,并呈现出互补性;在转子10旋转一个电周期(即,旋转一个定子10极距)过程中,集中电枢绕组A1和A2存在磁路上的差异;如图3所示位置时,若假定此时集中电枢绕组A1中磁链近似为零,称为第一平衡位置,而集中电枢绕组A2与A1相对转子的位置不同,相差半个转子 10极距,此时集中电枢绕组A2中的磁链也近似为零,因此该位置称为第二平衡位置。转子 10在逆时针旋转(在图6中,转子10从左向右)一个电周期的过程中,集中电枢绕组A1中磁链幅值变化过程为:第一平衡位置——正最大幅值——第二平衡位置——负最大幅值——第一平衡位置;而集中电枢绕组A2中磁链幅值变化过程为:第二平衡位置——正最大幅值——第一平衡位置——负最大幅值——第二平衡位置。A1和A2两部分集中电枢绕组中的磁链变化趋势对称互补。集中电枢绕组A1和A2串联成A相绕组后,它们产生的反电势的谐波分量相互抵消,得到的相反电势具有较好的正弦性。同样,第二电机单元中的集中电枢绕组A3、A4也具有第一电机单元的特性,因此,集中电枢绕组A3、A4之间也具有互补特性。当两个电机单元中的集中电枢绕组A1、A2、A3和A4串联组成定子11的A相绕组时,集中绕组中产生的反电势高次谐波相互抵消,具有较好的正弦性,从而减小了转矩波动,非常适用于无刷交流(BLAC)控制;B,C两相同样具有A相的特点,三相之间相位互差120°电角度。If the influence of the
若集中励磁绕组112中通入的电流为零,仅考虑永磁体113的作用时,由于所有永磁体 113的充磁方向均沿同一圆周切线方向,永磁磁场仅在定子11、形成闭合磁路,不会穿过气隙和转子10,因此不会产生电磁转矩。如图6所示,由于轭部的存在,电机大部分的磁路是经过永磁体113所在槽的轭部,以PM1为例,永磁磁场的磁路可以描述为:PM1——PM1 相邻的定子齿——定子轭部——PM1相邻的另外一个定子齿——回到PM1。由于永磁体沿同圆周切线方向充磁,所以一部分磁路是沿定子11轭部圆周形成回路,若以PM1为参考,永磁磁场的磁路可以描述为:PM1——与PM1相邻的定子导磁齿——定子轭部——与PM2相邻的定子导磁齿——PM2——PM2相邻的定子导磁齿——定子轭部——PM3相邻的定子导磁齿——PM3——PM3相邻定子导磁齿——定子轭部——PM1相邻的永磁体——回到PM1,并按照此路径依次穿过余下的永磁体113,最终形成闭合磁路。永磁磁场在穿过永磁体113时,必然会穿过永磁体113外围的集中电枢绕组111,比如当永磁磁场穿过PM2的同时必然会穿过集中电枢绕组A12,但是由于气隙磁阻较大,永磁磁场不会通过气隙进入转子10,因此穿入和穿出集中电枢绕组A2的永磁磁场相同,最终集中电枢绕组A2中的永磁磁链几乎为零;而对于A相的其他集中电枢绕组A1、A3和A4来说,由于永磁磁链仅穿过绕组外侧的定子轭部,不会穿入或穿出集中电枢绕组A1、A3和A4,它们的永磁磁链也为零。这一现象不随转子10的转动而改变,因此在转子10旋转的过程中A相的磁链始终为零,无相反电势产生。由于永磁体113均匀分布且三相对称,B、C两相同样具有A相的特点。因此本实施例具有与实施例1相同的特性。If the current flowing into the concentrated excitation winding 112 is zero, and only the action of the
实施例3Example 3
图7为一台盘式混合励磁磁通切换电机。本实施例中,m=3,n=2,k=1,q=2。与实施例 2电机的不同之处在于,本实施例定子11上永磁体113的块数m*q=6,均匀镶嵌在励磁槽轴向内部,每两块永磁体之间间隔4*k*n/q=4个定子导磁齿110。所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组产生的磁场方向相反。Figure 7 shows a disk-type hybrid excitation flux switching motor. In this embodiment, m=3, n=2, k=1, and q=2. The difference from the motor in Embodiment 2 is that the number of
在本实施例中,如图8所示,电机绕组的数量和排列方式同实施例2,三相绕组中的磁链变化和反电动势具有与实施例2相同的特性。永磁体块数相对于实施例2电机增加了一倍,定子11上m*q=6块永磁体均匀分布且相互对称。由于本实施例电机中永磁体113的充磁方向与实施例1电机具有相同的特点,如图9所示,由于永磁体所在槽轭部的存在,大部分的用磁场经过轭部,以PM1为例可以描述为:PM1——PM1相邻定子导磁齿110——轭部——PM1相邻另一定子导磁齿110——PM1,其他永磁体113的磁路与PM1类似。永磁磁场的一部分磁路依然可以描述为:PM1——与PM1相邻的定子导磁齿110——定子轭部——与PM2 相邻的定子导磁齿110——永磁体PM2,并按照此路径依次穿过余下的永磁体113,最终形成闭合磁路。永磁磁场在穿过永磁体113时,必然会穿过永磁体113外围的集中电枢绕组111,比如当永磁磁场穿过PM1或PM4的同时必然会穿过集中电枢绕组B1或B3,但是由于气隙磁阻较大,永磁磁场不会通过气隙进入转子10,因此穿入和穿出集中电枢绕组B1或B3的永磁磁场相同,最终集中电枢绕组B1或B3中的永磁磁链几乎为零;而对于B相的其他集中电枢绕组B2和B4来说,由于永磁磁链仅穿过绕组外侧的定子轭部,不会穿入或穿出集中电枢绕组B2和B4,它们的永磁磁链也为零。这一现象不随转子10的转动而改变,在转子10旋转的过程中A相的磁链始终为零,无相反电势产生。由于永磁体113均匀分布且三相对称, A、C两相同样具有B相的特性。因此本实施例具有与实施例2相同的特性。In this embodiment, as shown in FIG. 8 , the number and arrangement of the motor windings are the same as those of the second embodiment, and the flux linkage change and back electromotive force in the three-phase windings have the same characteristics as those of the second embodiment. The number of permanent magnet blocks is doubled compared to that of the motor in Example 2, and m*q=6 permanent magnets on the
实施例4Example 4
图10为一台盘式混合励磁磁通切换电机。本实施例中,m=3,n=1,k=2,q=1。与实施例1电机的不同之处在于,本实施例中每个电机单元中每一相集中电枢绕组串联的集中电枢绕组111对数k=2。即,该电机为三相电机,具有A、B、C三相,包含1个电机单元,每个电机单元中有k=2对集中电枢绕组,定子11导磁齿110的个数为Ns=4*m*n*k=24;导磁齿依次设有集中电枢绕组111的个数为2*m*n*k=12,每个集中电枢绕组111跨两个导磁齿110,相邻的集中电枢绕组111共用一个槽;其余2*m*k*n=12个槽中依次设置2*m*k*n=12个集中励磁绕组112,每个集中励磁绕组112跨相邻的两个导磁齿110,每两个集中励磁绕组112共用一个槽,相邻两集中励磁绕组112产生的磁场方向相反;定子11中第一电机单元中的集中励磁绕组串联联接组成第一集中励磁绕组单元,第一集中励磁绕组单元和第二集中励磁绕组单元可串联或并联组成集中励磁绕组;所述定子11上永磁体113的块数为m*q=3,均匀镶嵌在励磁槽轴向内侧,每两块永磁体之间间隔4*k*n/q=8个定子导磁齿110,所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组112产生的磁场方向相反。转子10为齿槽型,转子导磁齿的个数为Nr=(2*m*k±1)n,当k=1,m=3,n=2时,Nr 可为11,13,本实施例取Nr=13。Figure 10 shows a disk-type hybrid excitation flux switching motor. In this embodiment, m=3, n=1, k=2, and q=1. The difference from the motor in Embodiment 1 is that in this embodiment, the number of pairs of
由于本实施例中k=2,n=1,电机单元中任意一相绕组所串联的集中电枢绕组111的对数为k=2(如图11所示定子轴向结构示意图,电机单元中的A11和A22),从任意一相的第一个集中电枢绕组起(如从A11起),有k=2个相邻放置的集中电枢绕组属于同一相,其后依次设置属于相邻相的k=2个集中电枢绕组111(即图12中的B11和C12),按照上述排列方式,电机单元中的三相集中电枢绕组的排列方式为: A11-A12-B11-B12-C11-C12-A21-A22-B21-B22-C21-C22。属于同相的2k=4 个集中电枢绕组111与次级的相对位置相差半个转子极距,对应为180度电气角度,如图3 中A相两集中电枢绕组A11和A21。此时,集中电枢绕组A11跨过两个导磁齿,其中心线正对着转子10齿的中心线,而集中电枢绕组A21的中心线正对着转子10槽的中心线,二者与转子10的相对位置相差半个转子极距,在空间上相差180度电气角度。由于A11与A12, A21与A22与转子10的相对位置较接近,集中绕组A11、A12、A21和A22串联成A相绕组时,A相绕组反电势幅值稍小于集中绕组A11、A12、A21和A22基波幅值的四倍。B相和C相绕组具有同样的特点。因此本实施例具有与实施例1相同的特性。Since k=2 and n=1 in this embodiment, the logarithm of the
实施例5Example 5
图13也为一台盘式混合励磁磁通切换电机。本实施例中,m=5,n=1,k=1,q=1,即,该电机为五相电机,定子11包含1个电机单元,每个电机单元中有k=1对集中电枢绕组,定子11上导磁齿110的个数为Ns=4*m*n*k=20;导磁齿依次设有集中电枢绕组111的个数为 2*m*n*k=10,每个集中电枢绕组111跨两个导磁齿110,相邻的集中电枢绕组111共用一个槽;其余2*m*k*n=10个槽中依次设置2*m*k*n=10个集中励磁绕组112,每个集中励磁绕组 112跨相邻的两个导磁齿110,每两个集中励磁绕组112共用一个槽,相邻两集中励磁绕组112 产生的磁场方向相反;定子11中第一电机单元中的集中励磁绕组串联联接组成第一集中励磁绕组单元,第一集中励磁绕组单元和第二集中励磁绕组单元可串联或并联组成集中励磁绕组;所述定子11永磁体113的块数为m*q=5,均匀镶嵌在励磁槽轴向内侧,每两块永磁体之间间隔4*k*n/q=4个定子导磁齿110,所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组产生的磁场方向相反。转子10为导磁材料组成的齿槽型结构,转子导磁齿的个数为Nr=(2*m*k±1)n,当k=1,m=5,n=1时,Nr可为9,11,本实施例取 Nr=11。本实施例电机中任意一相绕组所串联的集中电枢绕组111的对数为k=1。如图14所示,A相集中电枢绕组由两个集中电枢绕组A1、A2串联组成,集中电枢绕组A1跨过两个导磁齿110,其中心线正对着转子10齿的中心线,而集中电枢绕组A2的中心线正对着转子10 槽的中心线,二者与转子10的相对位置相差半个转子极距,在空间上相差180度电气角度。因此,该电机同样具有磁路互补特性,每相绕组中产生的反电势高次谐波相互抵消,最终得到的相反电势具有较好的正弦性。Figure 13 is also a disk-type hybrid excitation flux switching motor. In this embodiment, m=5, n=1, k=1, q=1, that is, the motor is a five-phase motor, the stator 11 includes one motor unit, and each motor unit has k=1 pair of centralized power For the armature winding, the number of magnetic conductive teeth 110 on the stator 11 is Ns=4*m*n*k=20; the number of concentrated armature windings 111 on the magnetic conductive teeth is 2*m*n*k=10 , each concentrated armature winding 111 straddles two magnetic conductive teeth 110, and the adjacent concentrated armature windings 111 share a slot; the remaining 2*m*k*n=10 slots are sequentially set with 2*m*k*n =10 concentrated excitation windings 112, each concentrated excitation winding 112 spans two adjacent magnetic conductive teeth 110, every two concentrated excitation windings 112 share a slot, and the magnetic fields generated by the adjacent two concentrated excitation windings 112 are opposite in direction; the stator In 11, the concentrated excitation windings in the first motor unit are connected in series to form a first concentrated excitation winding unit, and the first concentrated excitation winding unit and the second concentrated excitation winding unit can be connected in series or in parallel to form a concentrated excitation winding; the stator 11 permanent magnet 113 The number of blocks is m*q=5, which are evenly embedded in the axial inner side of the excitation slot, and the interval between each two permanent magnets is 4*k*n/q=4 stator magnetic conductive teeth 110. All
本实施例电机中永磁体113的充磁方向与实施例1电机也具有相同的特点,永磁磁场仅在定子11形成闭合磁路。如图15所示,由于永磁体113所在槽的轭部的存在,大部分的永磁体113的磁路只经过相邻导磁齿110和永磁体113所在槽的轭部,以PM1为例,可以描述为:PM1——PM1相邻定子导磁齿110——轭部——PM1相邻另一导磁齿——PM1。永磁磁场的少部分磁路依然可以描述为:PM1——与PM1相邻的定子导磁齿——定子轭部——与 PM2相邻的定子导磁齿——PM2,并按照此路径依次穿过余下的永磁体,最终形成闭合磁路。永磁磁场穿过永磁体PM1的同时必然会穿过集中电枢绕组B1,但是由于气隙磁阻较大,永磁磁场不会通过气隙进入转子10,因此穿入和穿出集中电枢绕组B11的永磁磁场相同,最终集中电枢绕组B11中的永磁磁链几乎为零;而对于B相的其他集中电枢绕组B2来说,由于永磁磁链仅穿过绕组外侧的定子11轭部,不会穿入或穿出集中电枢绕组A2,它们的永磁磁链也为零。这一现象不随转子10的转动而改变,在转子10旋转的过程中A相的磁链始终为零,无相反电势产生。由于永磁体113均匀分布,B、C、D、E相同样具有A相的特性。因此本实施例电机同样具备本实用新型电机的特点。The magnetization direction of the
实施例6Example 6
图16为一台盘式双定子混合励磁磁通切换电机,本实施例由实施例2沿转子10外端面对称得到,为磁路并联型混合励磁磁通切换电机,电机两个定子11可以单独工作,也可以并联工作或串联工作。本实施例中,m=3,n=2,k=1,q=1,本实施例单个定子11上电机单元数n=2。即,该电机为三相电机,具有A、B、C三相,包含2个电机单元,每个电机单元中有k=1对集中电枢绕组,单个定子11导磁齿110的个数为Ns=4*m*n*k=24;导磁齿依次设有集中电枢绕组111的个数为2*m*n*k=12,每个集中电枢绕组111跨两个导磁齿110,相邻的集中电枢绕组111共用一个槽;其余2*m*k*n=12个槽中依次设置2*m*k*n=12个集中励磁绕组112,每个集中励磁绕组112跨相邻的两个导磁齿110,每两个集中励磁绕组112共用一个槽,相邻两集中励磁绕组112产生的磁场方向相反;单个定子11中第一电机单元中的集中励磁绕组串联联接组成第一集中励磁绕组单元,第一集中励磁绕组单元和第二集中励磁绕组单元可串联或并联组成集中励磁绕组;两个定子上的励磁单元可以并联或串联,也可以单独控制;所述单个定子11上永磁体113的块数为m*q=3,均匀镶嵌在励磁槽轴向内侧,每两块永磁体之间间隔4*k*n/q=8个定子导磁齿110,所有永磁体113的充磁方向均沿同一圆周切线方向,并和所在的励磁槽中的集中励磁绕组产生的磁场方向相反。转子10为齿槽型,转子导磁齿的个数为Nr=(2*m*k±1)n,当k=1,m=3,n=2时,Nr可为10,14,本实施例取Nr=14;由于本实施例是有实施例2对称得到的,所以,电机的特性并没有改变,两个定子11单元可以单独控制,同相集中电枢绕组111也可以通过串联或并联组成一相绕组来控制。Fig. 16 is a disk-type dual-stator hybrid excitation flux switching motor. This embodiment is obtained symmetrically along the outer end face of the
在励磁电流为零时,电机中的磁场与实施例2中磁场的相同,只在定子11侧形成回路。不考虑永磁体113的影响,如果两个定子11中集中励磁绕组112均通入正电流时,可以得出两个定子11在转子10的磁路是相反。为了提高电机效率,使得对称得到的定子11中集中励磁绕组112中通入负的励磁电流,由于永磁体113与相同槽的集中励磁绕组的磁场方向相反,所以,对称得到的定子11上永磁体113上的充磁方向相同,如图17所示。由于两个定子可以单独工作也可以串联或并联工作,所以对称得到的定子11上的永磁体113的个数可以与原定子11相同,也可以不同,其核心在于保证永磁磁场方向与所在槽励磁磁场方向相反,且保证4*n*k/q为正整数。When the excitation current is zero, the magnetic field in the motor is the same as that in Embodiment 2, and a loop is formed only on the
实施例7Example 7
图18为一台双定子混合励磁磁通切换电机,本实施例由实施例2沿转子外部端面对称而来,为磁路串联型混合励磁磁通切换电机,与实施例6不同点在于,转子10无轭部,为了满足永磁体113与相同槽励磁磁场方向相反,永磁体113的充磁方向与原定子11的充磁方向相反,如图19所示。当励磁电流为为零时,永磁磁场具有与实施例2和实施例6相同的特性。当通入励磁电流时,励磁磁路不同于实施例6,励磁磁路经过两个定子11和转子10形成回路,不同于实施例6在单个定子11和转子10之间形成回路,因此称之为串联磁路型混合励磁磁通切换电机。磁路串联型电机,一般两边同时工作。两侧定子11上的永磁体113的数量可以相同,也可以不同,其核心在于保证永磁磁场方向与所在槽励磁磁场方向相反,且保证4*n*k/q为正整数。Figure 18 shows a dual-stator hybrid excitation flux switching motor. This embodiment is symmetrical along the outer end surface of the rotor from Embodiment 2. It is a magnetic circuit series-type hybrid excitation flux switching motor. The difference from Embodiment 6 is that the
实施例8Example 8
图20为一台双转子混合励磁磁通切换电机,由实施例2沿定子11外侧端面对称得到。如图21所示,为使得在定子11轭部产生的磁场方向相同,改变对称得到一侧的集中励磁绕组112的电流方向,这样在定子11的磁场方向相同,此时,为磁路并联型混合励磁磁通切换电机。集中电枢绕组111和永磁体113的方向保持不变。单侧电机具有实施例2相同的特性,两侧集中电枢绕组可以串联或并联运行,该电机具有与实施例2相同的特性。当电机中励磁电流为零时,由于定子轭部的存在,以PM1为例,电机中永磁磁路可以描述为:PM1——PM1 相邻的导磁齿110——轭部——PM1另一相邻导磁齿110——回到PM1。由于永磁体113的充磁方向沿同一圆周方向,所以有一部分永磁磁路可以描述为:PM1——PM1相邻导磁齿110 ——轭部——PM2相邻导磁齿——PM2——PM2另一相邻导磁齿110——轭部——PM3相邻导磁齿110——PM3——PM3另一导磁齿——轭部——PM1另一导磁齿——回到PM1。因此本实施例具有与实施例2相同的特性。FIG. 20 shows a dual-rotor hybrid excitation magnetic flux switching motor, which is obtained symmetrically along the outer end face of the
实施例9Example 9
图22为一台双转子混合励磁磁通切换电机,由实施例2沿定子11外侧端面对称得到。如图23所示,为磁力串联型混合励磁磁通切换电机。对称得到的绕组结构与原定子11上相同,为了满足永磁体113的磁场方向与所在槽励磁磁场方向相反,对称得到的永磁体113的充磁方向反向。由于电机上下两部分的磁路是串联的,定子11中的磁场水平分量很小,因此可以将所有槽的轭部出去。当集中励磁绕组112通入的电流为零时,上下两侧的永磁磁路串联,以PM3和PM6为例,可以描述为:PM3——PM3相邻的导磁齿110——PM6——PM6 相邻的导磁齿110——回到PM。当集中励磁绕组112中通入正向电流时,不考虑永磁体113 的影响,励磁磁场的磁路经过上下两个转子和气隙进入定子,可以描述为:定子导磁齿110 ——上侧气隙——上侧转子——上侧气隙——另一定子导磁齿110——下侧气隙——下侧转子——下侧气隙——回到定子导磁齿。因此本实施例具有实施例2相同的特性。FIG. 22 is a dual-rotor hybrid excitation magnetic flux switching motor, which is obtained symmetrically along the outer end surface of the
以上显示和描述了本实用新型的基本原理和主要特征和本实用新型的优点。本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内。本实用新型要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention are shown and described above. It should be understood by those skilled in the art that the present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention The new model will also have various changes and improvements, which all fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921874529.0U CN211830528U (en) | 2019-11-01 | 2019-11-01 | Multiphase disc type hybrid excitation flux switching motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921874529.0U CN211830528U (en) | 2019-11-01 | 2019-11-01 | Multiphase disc type hybrid excitation flux switching motor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211830528U true CN211830528U (en) | 2020-10-30 |
Family
ID=73146985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921874529.0U Active CN211830528U (en) | 2019-11-01 | 2019-11-01 | Multiphase disc type hybrid excitation flux switching motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211830528U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110611413A (en) * | 2019-11-01 | 2019-12-24 | 南京航空航天大学 | A multi-phase disc hybrid excitation flux switching motor |
CN112467950A (en) * | 2020-11-19 | 2021-03-09 | 东南大学 | Rotor permanent magnet type dual-rotor axial magnetic field hybrid excitation flux switching motor |
CN112688517A (en) * | 2020-12-29 | 2021-04-20 | 福州大学 | Mixed excitation axial magnetic field permanent magnet motor |
-
2019
- 2019-11-01 CN CN201921874529.0U patent/CN211830528U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110611413A (en) * | 2019-11-01 | 2019-12-24 | 南京航空航天大学 | A multi-phase disc hybrid excitation flux switching motor |
CN112467950A (en) * | 2020-11-19 | 2021-03-09 | 东南大学 | Rotor permanent magnet type dual-rotor axial magnetic field hybrid excitation flux switching motor |
CN112688517A (en) * | 2020-12-29 | 2021-04-20 | 福州大学 | Mixed excitation axial magnetic field permanent magnet motor |
CN112688517B (en) * | 2020-12-29 | 2021-11-02 | 福州大学 | A hybrid excitation axial magnetic field permanent magnet motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103647382B (en) | Bimorph transducer high power density magnetic flux switch permanent magnet motor | |
CN108964396B (en) | Stator Partitioned Alternating Pole Hybrid Excitation Motor | |
CN108880152B (en) | A dual-stator hybrid excitation magnetic suspension switched reluctance motor | |
CN108233563B (en) | Multiphase hybrid excitation synchronous motor | |
CN109951038B (en) | Bilateral excitation type tangential magnet steel hybrid excitation brushless motor | |
Xiang et al. | A new partitioned-rotor flux-switching permanent magnet motor with high torque density and improved magnet utilization | |
CN110311522B (en) | Four-phase symmetric electro-magnetic doubly salient motor | |
CN113489178A (en) | Wide-area-running alternating pole type permanent magnet auxiliary synchronous reluctance motor | |
CN211830528U (en) | Multiphase disc type hybrid excitation flux switching motor | |
CN101662172A (en) | Composite excitation type magnetic flux reverse motor | |
CN110138109A (en) | Rotor sectional type magnetic circuit complementary type hybrid exciting synchronous motor | |
CN103490532A (en) | Fault-tolerant type stator segmentation flux switching memory motor | |
CN102832767B (en) | Parallel hybrid excitation brushless direct-current fault-tolerant motor | |
CN202856573U (en) | Multivariant switch magnetic resistance motor | |
CN110611413A (en) | A multi-phase disc hybrid excitation flux switching motor | |
CN104716808B (en) | A kind of multiphase electric excitation synchronous motor | |
CN109687671A (en) | Axial parallel type bimorph transducer multiphase permanent magnet fault-tolerant electric machine | |
CN201536282U (en) | Flux reversal motor with magnetic field regulating capabilities | |
CN202889138U (en) | Parallel type composite excitation brushless direct-current motor | |
CN113659787B (en) | Five-phase axial flux permanent magnet motor for electric automobile | |
CN108258820B (en) | A non-overlapping winding cogging type dual-rotor permanent magnet synchronous motor | |
CN103280902B (en) | A kind of ten two-phase stator permanent magnetic type flux switch motors | |
CN111555484A (en) | Halbach permanent magnet memory motor with double-layer windings | |
CN110601474A (en) | Radial magnetic field composite flux switching motor | |
CN202798388U (en) | Side-by-side mixing excitation brushless direct current fault-tolerant motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |