CN211711091U - Automatic anti-icing and deicing device for fuel wing of aircraft - Google Patents

Automatic anti-icing and deicing device for fuel wing of aircraft Download PDF

Info

Publication number
CN211711091U
CN211711091U CN201922341231.XU CN201922341231U CN211711091U CN 211711091 U CN211711091 U CN 211711091U CN 201922341231 U CN201922341231 U CN 201922341231U CN 211711091 U CN211711091 U CN 211711091U
Authority
CN
China
Prior art keywords
fuel
wing
temperature sensor
temperature
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201922341231.XU
Other languages
Chinese (zh)
Inventor
陈晨
冯诗愚
江荣杰
周利彪
张瑞华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201922341231.XU priority Critical patent/CN211711091U/en
Application granted granted Critical
Publication of CN211711091U publication Critical patent/CN211711091U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The utility model discloses an quote automatic defroster that prevents of aircraft fuel wing contains including oil tank, fuel pump, flow valve, electric heating layer, controller, icing detector, temperature sensor and level gauge. The utility model discloses utilize aviation fuel to absorb a large amount of heats on ground, carry the higher fuel of temperature to the interlayer between the interior covering of aircraft wing and the outer covering through the circulating pump at the flight in-process and carry out abundant heat exchange, keep wing surface temperature to be higher than the freezing point, prevent that the wing from freezing. And meanwhile, when the fuel temperature of the airplane is reduced to a certain value or the fuel quantity of a fuel tank is too low, the outer skin of the wing is directly heated, so that the deicing device is prevented from losing effectiveness after the fuel temperature is too low. The utility model discloses wing defroster deicing efficiency is high to the energy comes from accounting for the absorptive sensible heat of the higher fuel of aircraft proportion, thereby has reduced the energy consumption that prevents and removes ice device effectively.

Description

Automatic anti-icing and deicing device for fuel wing of aircraft
Technical Field
The utility model relates to an aircraft anti-icing deicing technical field especially relates to an automatic defroster that prevents of quoting aircraft fuel wing.
Background
The reason why the surface of the wing of the airplane is frozen is that supercooled water drops in the atmosphere or supercooled rain in the falling water are frozen after contacting the wing of the airplane with the temperature lower than the freezing point, or water vapor is directly desublimated and frozen on the surface of the wing with the temperature lower than the freezing point. Icing of the flying wings is a serious hazard, which destroys the smooth flow field on the surface of the aircraft, increases the flight resistance, and reduces the reliability of flight control and the lift force of the aircraft. As the power increases to compensate for the extra drag and the flight angle of attack increases due to nose lift taken to maintain altitude, the critical angle of attack decreases, the aircraft stalls at higher speeds or at lower angles of attack than normal, and the maneuverability and stability deteriorates, possibly falling into an uncontrolled and unrecoverable roll or pitch condition, particularly causing the maneuverability of the aircraft to be out of control during take-off and landing conditions, resulting in serious flight accidents.
The current common deicing technologies can be divided into mechanical deicing, liquid deicing and thermal deicing according to working modes. Wherein, the mechanical deicing technology can be divided into pneumatic belt deicing and electric pulse deicing; the thermal deicing technology can be divided into electric heating deicing and gas heating deicing according to a heat source and a heating mode. The electric heating deicing technology has the advantages of small volume, simple structure, automatic control and the like, so that the electric heating deicing technology is widely applied to the field of airplane deicing and deicing. The parts with small protection area and low deicing requirements are deiced by adopting an electrothermal cycle; the electric heating ice prevention and removal technology is mostly adopted for parts such as windshields, airspeeds and the like which are not allowed to freeze and have low power consumption; the wings with large protection area and high anti-icing requirement are also electrically heated to prevent and remove ice, but the energy consumption of the electrically heated to prevent and remove the ice is large, and the compensatory loss of fuel oil of the airplane is increased.
SUMMERY OF THE UTILITY MODEL
The utility model aims to solve the technical problem that to the defect that involves in the background art, provide an automatic defroster that prevents of quoting aircraft fuel wing, utilize aviation fuel to absorb a large amount of heats on ground, carry the interlayer between aircraft wing's interior covering and the outer covering through the circulating pump to the higher fuel of temperature at the flight in-process to through opening of controller intermittent type nature's control flow valve, reduced effectively and prevented removing the energy consumption of icing equipment.
The utility model discloses a solve above-mentioned technical problem and adopt following technical scheme:
an automatic deicing device for a fuel wing of a quoted aircraft comprises an oil tank, a circulating pump, a stop valve, a controller, a first temperature sensor, an electric heating layer, an icing detector, a flow valve, a filter, a liquid level meter and a second temperature sensor;
a plurality of fuel oil flow channels pointing to the edge of the wing from the fuselage are formed between the outer wing skin and the inner wing skin of the airplane;
an outlet of the oil tank, the circulating pump and one end of the stop valve are connected in sequence through pipelines; the other end of the stop valve is respectively connected with one end of each fuel oil channel close to the machine body through a pipeline; one end of the flow valve is respectively connected with one end of each fuel oil channel far away from the machine body through a pipeline; the other end of the flow valve, the filter and the inlet of the oil tank are connected in sequence through pipelines;
the filter is used for filtering impurities carried in the flowing process of the fuel oil and preventing the impurities from flowing back to the oil tank;
the first temperature sensor and the icing detector are arranged on the outer surface of the outer skin of the wing, wherein the first temperature sensor is used for measuring the temperature of the outer surface of the outer skin of the wing and transmitting the temperature to the controller; the icing detector is used for detecting whether the outer surface of the outer skin of the wing is iced or not and transmitting the result to the controller;
the electric heating layer is arranged on the outer surface of the outer skin of the wing and is used for receiving the controller to heat the outer surface of the outer skin of the wing;
the liquid level meter and the second temperature sensor are arranged in the oil tank and are respectively used for measuring the liquid level height and the oil temperature in the oil tank and transmitting the liquid level height and the oil temperature to the controller;
the controller respectively with first temperature sensor, freeze detector, level gauge, second temperature sensor, circulating pump, stop valve, flow valve, electric heating layer electrical connection for according to first temperature sensor, freeze detector, level gauge, second temperature sensor's response data control circulating pump, stop valve, flow valve, electric heating layer work.
The utility model also discloses a this cite automatic deicing device's of preventing of aircraft fuel wing working method contains following step:
step 1), a first temperature sensor, an icing detector, a second temperature sensor and a liquid level meter are used for respectively measuring the temperature of the outer surface of the outer skin of the wing, whether the outer surface of the outer skin of the wing is iced, the liquid level height in an oil tank and the temperature of oil in the oil tank and transmitting the temperature to a controller;
step 2), when the second temperature sensor monitors that the temperature of the aviation fuel in the aircraft fuel tank is higher than the freezing point, the controller controls the circulating pump to work and controls the stop valve and the flow valve to be opened; at the moment, the circulating pump pumps out the fuel oil from the oil tank, the fuel oil flows into the wing interlayer through the stop valve, the fuel oil and the outer skin of the wing perform heat transfer, the surface temperature of the wing is guaranteed to be higher than the freezing point, and the wing is prevented from being frozen; the fuel oil after sufficient heat exchange flows back to the oil tank from the wing partition layer through the filter;
step 3), when the second temperature sensor monitors that the temperature of aviation fuel in an aircraft fuel tank is lower than the freezing point or the fuel quantity of the fuel tank is too low, the controller controls the circulating pump to stop working and controls the stop valve and the flow valve to close, so that the fuel of the wing interlayer does not flow circularly any more; and meanwhile, the controller controls the electric heating layer to work to directly heat the outer skin of the wing.
The utility model adopts the above technical scheme to compare with prior art, have following technological effect:
the device utilizes aviation fuel to absorb a large amount of heat on the ground, delivers the fuel with higher temperature to an interlayer between an inner skin and an outer skin of an airplane wing through a circulating pump in the flying process, controls the opening of a flow valve intermittently through a controller, and performs sufficient heat exchange between the fuel and the outer skin of the wing through heat convection, so that the surface temperature of the wing can be kept higher than the freezing point, and the wing is prevented from being frozen. Meanwhile, a set of electric heating layer is additionally arranged on an interlayer between the inner skin and the outer skin, and the electric heating layer is used for taking over work when the fuel temperature of the airplane is reduced to a certain value or the fuel quantity of a fuel tank is too low, so that the outer skin of the wing is directly heated, and the deicing device is prevented from losing effectiveness after the fuel temperature is too low. The sensor and the controller are used for automatically controlling the switching of the two working modes, so that the deicing efficiency of the wing deicing device is high, and the energy comes from the sensible heat absorbed by fuel oil with higher specific gravity of the airplane, thereby effectively reducing the energy consumption of the deicing device.
Drawings
FIG. 1 is a schematic view of an automatic deicing device for an aircraft fuel wing.
The system comprises a fuel tank 1, a circulating pump 2, a stop valve 3, a controller 4, a first temperature sensor 5, an outer wing skin 6, an inner wing skin 7, an electric heating layer 8, an icing detector 9, a flow valve 10, a filter 11, a liquid level meter 12 and a second temperature sensor 13.
Detailed Description
The technical scheme of the utility model is further explained in detail with the attached drawings as follows:
the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, components are exaggerated for clarity.
As shown in fig. 1, the utility model discloses an automatic anti-icing and deicing device for a fuel wing of a quoted aircraft, which comprises an oil tank 1, a circulating pump 2, a stop valve 3, a controller 4, a first temperature sensor 5, an electric heating layer 8, an icing detector 9, a flow valve 10, a filter 11, a liquid level meter 12 and a second temperature sensor 13;
a plurality of fuel oil flow channels pointing to the edge of the wing from the fuselage are formed between the wing outer skin 6 and the wing inner skin 7 of the airplane;
an outlet of the oil tank 1, the circulating pump 2 and one end of the stop valve 3 are sequentially connected through a pipeline; the other end of the stop valve 3 is respectively connected with one end of each fuel oil channel close to the machine body through a pipeline; one end of the flow valve 10 is respectively connected with one end of each fuel oil channel far away from the machine body through a pipeline; the other end of the flow valve 10, the filter 11 and the inlet of the oil tank 1 are connected in sequence through pipelines;
the filter 11 is used for filtering impurities carried in the flowing process of the fuel oil and preventing the impurities from flowing back to the oil tank 1;
the first temperature sensor 5 and the icing detector 9 are both arranged on the outer surface of the wing outer skin 6, wherein the first temperature sensor 5 is used for measuring the temperature of the outer surface of the wing outer skin 6 and transmitting the temperature to the controller 4; the icing detector 9 is used for detecting whether the outer surface of the outer wing skin 6 is iced or not and transmitting the result to the controller 4;
the electric heating layer 8 is arranged on the outer surface of the outer wing skin 6 and used for receiving the controller 4 to heat the outer surface of the outer wing skin 6;
the liquid level meter 12 and the second temperature sensor 13 are arranged in the oil tank 1, and are respectively used for measuring the liquid level height and the oil temperature in the oil tank 1 and transmitting the liquid level height and the oil temperature to the controller 4;
the controller 4 respectively with first temperature sensor 5, freeze detector 9, level gauge 12, second temperature sensor 13, circulating pump 2, stop valve 3, flow valve 10, electric heating layer 8 electricity link to each other for according to first temperature sensor 5, freeze detector 9, level gauge 12, the response data control circulating pump 2 of second temperature sensor 13, stop valve 3, flow valve 10, electric heating layer 8 work.
The utility model also discloses a this cite automatic deicing device's of preventing of aircraft fuel wing working method contains following step:
step 1, a first temperature sensor 5, an icing detector 9, a second temperature sensor 13 and a liquid level meter 12 are used for respectively measuring the temperature of the outer surface of the outer wing skin 6, whether the outer surface of the outer wing skin 6 is iced, the liquid level height in the oil tank 1 and the oil temperature in the oil tank 1 and transmitting the temperatures to the controller 4;
step 2, when the second temperature sensor 13 monitors that the aviation fuel temperature in the aircraft fuel tank 1 is higher than the freezing point, the controller 4 controls the circulating pump 2 to work and controls the stop valve 3 and the flow valve 10 to be opened; at the moment, the circulating pump 2 pumps the fuel out of the oil tank 1, the fuel flows into the wing interlayer through the stop valve 3, the fuel and the outer skin 6 of the wing perform heat transfer, the surface temperature of the wing is guaranteed to be higher than the freezing point, and the wing is prevented from being frozen; the fuel oil after sufficient heat exchange flows back to the oil tank 1 from the wing partition layer through the filter 11;
step 3, when the second temperature sensor 13 monitors that the temperature of aviation fuel in the aircraft fuel tank 1 is lower than the freezing point or the fuel quantity of the fuel tank 1 is too low, the controller 4 controls the circulating pump 2 to stop working and controls the stop valve 3 and the flow valve 10 to close, so that the fuel of the wing interlayer does not flow circularly any more; meanwhile, the controller 4 controls the electric heating layer 8 to work, and the outer skin 6 of the wing is directly heated.
The above-mentioned embodiments further describe the objects, technical solutions and advantages of the present invention in detail, it should be understood that the above description is only the embodiments of the present invention, and is not intended to limit the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (1)

1. An automatic deicing device for a fuel wing of a quoted aircraft is characterized by comprising an oil tank (1), a circulating pump (2), a stop valve (3), a controller (4), a first temperature sensor (5), an electric heating layer (8), an icing detector (9), a flow valve (10), a filter (11), a liquid level meter (12) and a second temperature sensor (13);
a plurality of fuel oil flow channels pointing to the edge of the wing from the fuselage are formed between the outer wing skin (6) and the inner wing skin (7) of the airplane;
an outlet of the oil tank (1), one end of the circulating pump (2) and one end of the stop valve (3) are connected in sequence through pipelines; the other end of the stop valve (3) is respectively connected with one end of each fuel oil channel close to the machine body through a pipeline; one end of the flow valve (10) is respectively connected with one end of each fuel oil channel far away from the machine body through a pipeline; the other end of the flow valve (10), the filter (11) and the inlet of the oil tank (1) are connected in sequence through pipelines;
the filter (11) is used for filtering impurities carried in the flowing process of the fuel oil and preventing the impurities from flowing back to the oil tank (1);
the first temperature sensor (5) and the icing detector (9) are arranged on the outer surface of the outer wing skin (6), wherein the first temperature sensor (5) is used for measuring the temperature of the outer surface of the outer wing skin (6) and transmitting the temperature to the controller (4); the icing detector (9) is used for detecting whether the outer surface of the outer wing skin (6) is iced or not and transmitting the result to the controller (4);
the electric heating layer (8) is arranged on the outer surface of the outer wing skin (6) and used for receiving the controller (4) to heat the outer surface of the outer wing skin (6);
the liquid level meter (12) and the second temperature sensor (13) are arranged in the oil tank (1) and are respectively used for measuring the liquid level height and the oil temperature in the oil tank (1) and transmitting the liquid level height and the oil temperature to the controller (4);
the controller (4) respectively with first temperature sensor (5), icing detector (9), level gauge (12), second temperature sensor (13), circulating pump (2), stop valve (3), flow valve (10), electric heating layer (8) electricity link to each other for according to first temperature sensor (5), icing detector (9), level gauge (12), the response data control circulating pump (2) of second temperature sensor (13), stop valve (3), flow valve (10), electric heating layer (8) work.
CN201922341231.XU 2019-12-24 2019-12-24 Automatic anti-icing and deicing device for fuel wing of aircraft Withdrawn - After Issue CN211711091U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922341231.XU CN211711091U (en) 2019-12-24 2019-12-24 Automatic anti-icing and deicing device for fuel wing of aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922341231.XU CN211711091U (en) 2019-12-24 2019-12-24 Automatic anti-icing and deicing device for fuel wing of aircraft

Publications (1)

Publication Number Publication Date
CN211711091U true CN211711091U (en) 2020-10-20

Family

ID=72819757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922341231.XU Withdrawn - After Issue CN211711091U (en) 2019-12-24 2019-12-24 Automatic anti-icing and deicing device for fuel wing of aircraft

Country Status (1)

Country Link
CN (1) CN211711091U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963045A (en) * 2019-12-24 2020-04-07 南京航空航天大学 Automatic anti-icing and deicing device for fuel wing of aircraft and working method of automatic anti-icing and deicing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963045A (en) * 2019-12-24 2020-04-07 南京航空航天大学 Automatic anti-icing and deicing device for fuel wing of aircraft and working method of automatic anti-icing and deicing device
CN110963045B (en) * 2019-12-24 2024-02-13 南京航空航天大学 Automatic deicing device for fuel wing of quoted aircraft and working method of automatic deicing device

Similar Documents

Publication Publication Date Title
CN107745816B (en) A kind of aircraft wing automatic deicer
US8444093B1 (en) Airplane leading edge de-icing apparatus
CN205203396U (en) Aircraft engine nacelle steam anti -icing system
EP3461743B1 (en) Combined fluid ice protection and electronics cooling system
JP2011516344A (en) Aircraft deicing system
CN105696436B (en) A kind of runway ice protection system
CN110963045B (en) Automatic deicing device for fuel wing of quoted aircraft and working method of automatic deicing device
EP1935783B1 (en) Ice protection system including a plurality of segmented sub-areas and a cyclic diverter valve
CN211711090U (en) Wing ice preventing and removing device based on nano composite phase change material
CN108058832B (en) Combined type anti-icing liquid-air bag anti-icing and deicing system
CN208134635U (en) A kind of anti-deicing system for medium-and-large-sized fixed-wing unmanned plane
CN110963044B (en) Wing deicing device based on nanocomposite phase change material and working method thereof
CN211711091U (en) Automatic anti-icing and deicing device for fuel wing of aircraft
CN105966626A (en) Novel helicopter rotor wing hot-air expansion film and electricity and heat combination ice preventing/removing device
CN104129504A (en) Flute-shaped tube structure with adjustable angle for hot air anti-icing
CN201110462Y (en) System for expelling and preventing ice liquid of route
CN104787344A (en) Automatic airplane surface heating device
CN106005431B (en) A kind of injecting type lifting airscrew prevents/deicer
CN203996904U (en) A kind of bourdon's tube structure of the angle adjustable for hot air anti-icing
CN209776813U (en) anti-icing and deicing device for wings and empennage of turboprop
CN109720582A (en) A kind of combined type electric heating-anti-deicing system of anti-freeze fluid
CN113525694A (en) Deicing system is prevented to wing
CN205117631U (en) Take heat radiating means's wind -powered electricity generation erection column
CN204821482U (en) Anti -icing defogging system of hybrid aircraft windscreen
CN215475822U (en) Quick heating device for airplane deicing vehicle

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20201020

Effective date of abandoning: 20240213

AV01 Patent right actively abandoned

Granted publication date: 20201020

Effective date of abandoning: 20240213