CN211656498U - 一种基于电感探针拾取束流相位信号的腔体结构 - Google Patents

一种基于电感探针拾取束流相位信号的腔体结构 Download PDF

Info

Publication number
CN211656498U
CN211656498U CN201921996444.XU CN201921996444U CN211656498U CN 211656498 U CN211656498 U CN 211656498U CN 201921996444 U CN201921996444 U CN 201921996444U CN 211656498 U CN211656498 U CN 211656498U
Authority
CN
China
Prior art keywords
cavity
outer conductor
conductor
inner conductor
phase signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921996444.XU
Other languages
English (en)
Inventor
汪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201921996444.XU priority Critical patent/CN211656498U/zh
Application granted granted Critical
Publication of CN211656498U publication Critical patent/CN211656498U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

本实用新型涉及一种基于电感探针拾取束流相位信号的腔体结构,包括筒体状的腔体外导体、腔体内导体,腔体外导体的左端盖、右端盖均与束流运输管道相连通,腔体内导体的左、右端分别与腔体外导体两端连通的束流运输管道相对应,腔体内导体的右端面与腔体外导体的右端盖之间相接触形成短路端,腔体内导体的左端面与腔体外导体的左端盖之间具有水平间距形成开路端,电感式感应探针伸入腔体外导体与腔体内导体之间的环形空腔,并与腔体外导体的右端盖相连接。本实用新型为非阻拦式的腔体结构,可以实时拾取束流的相位信息,并且可以大大降低加速器设备周围的环境剂量,同时克服了加速器设备空间有限的问题,提高了束流相位信号拾取装置的信噪比。

Description

一种基于电感探针拾取束流相位信号的腔体结构
技术领域
本实用新型涉及回旋加速器的技术领域,尤其是涉及一种基于电感探针拾取束流相位信号的腔体结构。
背景技术
在质子治疗的回旋加速器应用中,治疗过程对束流的强度、稳定性及引出效率的要求较高。回旋加速器在实际运行过程中,由于高频系统的热损耗、外界的温度变化以及供电电源的不稳定性等因素都会对回旋加速器的磁场强度产生影响,并会导致磁场的失谐,对束流稳定性以及引出效率都会有所影响,这些对回旋加速器设备和日常维护的开机运行人员以及需要进行放疗的病人来说都是不利因素。
因此,为了研究等时性加速器的束流相位稳定控制,实现自动调谐束流相位稳定系统。亟需研发设计一种拾取束流相位信号的腔体结构,同时需要考虑降低加速器设备周围的环境剂量,以及加速器设备的空间有限等问题。
实用新型内容
本实用新型的目的是提供一种基于电感探针拾取束流相位信号的腔体结构,其非阻拦的腔体结构可以实时拾取束流的相位信息,并且可以大大降低加速器设备周围的环境剂量,同时克服了加速器设备空间有限的问题,提高了束流相位信号拾取装置的信噪比。
本实用新型的上述实用新型目的是通过以下技术方案得以实现的:
一种基于电感探针拾取束流相位信号的腔体结构,包括筒体状的腔体外导体、腔体内导体,所述腔体外导体的左端盖、右端盖均与束流运输管道相连通,腔体内导体的左、右端分别与腔体外导体两端连通的束流运输管道相对应,腔体内导体的右端面与腔体外导体的右端盖之间相接触形成短路端,腔体内导体的左端面与腔体外导体的左端盖之间具有水平间距形成开路端,电感式感应探针伸入腔体外导体与腔体内导体之间的环形空腔,并与腔体外导体的右端盖相连接。
通过采用上述技术方案,该拾取束流相位信号的腔体结构安装于回旋加速器的束流运输管道上,腔体结构的腔体外导体、腔体内导体的具体尺寸参数采用优选设计,当束流通过该腔体结构时,会激起该腔体结构的谐振,位于腔体结构的短路端的电感式感应探针便可以拾取到束流相位信号,将束流相位信号与高频加速电场的参考相位信号进行鉴相,通过鉴相的输出结果曲线来调节主磁铁电源的励磁电流,从而稳定回旋加速器的磁场强度,保证引出束流粒子每次通过加速电场时,均处于加速的状态,从而提高回旋加速器引出束流的稳定性与引出效率。该拾取束流相位信号的腔体结构用于高精度束流相位信号拾取工作,属于束流相位稳定控制系统的研究设备,为拾取引出不同能量的束流提供了必要条件。
本实用新型进一步设置为:所述束流运输管道与腔体内导体的直径相同,且腔体外导体、腔体内导体与束流运输管道的轴心线相重合。
通过采用上述技术方案,该腔体结构的腔体内导体与束流运输管道的直径保持一致,使得引出束流通过拾取束流相位信号的腔体结构时,可以激起束流相位探针腔体的谐振,从而拾取到束流相位信号,为等时性加速器的束流相位稳定控制的研究提供条件。
本实用新型进一步设置为:所述束流运输管道、腔体内导体的直径均为190~210mm,壁厚均为4~6mm。
通过采用上述技术方案,腔体内导体与束流运输管道的直径保持一致,使得引出束流通过拾取束流相位信号的腔体结构时,可以激起束流相位探针腔体的谐振,从而拾取到束流相位信号。
本实用新型进一步设置为:所述束流运输管道、腔体内导体的直径均为200mm,壁厚均为5mm。
通过采用上述技术方案,束流运输管道、腔体内导体的直径限定为200mm,壁厚为5mm,使得引出束流通过拾取束流相位信号的腔体结构时,可以激起该腔体结构的谐振,从而拾取到束流相位信号。
本实用新型进一步设置为:所述腔体外导体与腔体内导体之间垂直间距为46~48mm,腔体外导体的左端盖与腔体内导体的左端面之间水平间距为8.5~9.5mm,腔体外导体的长度为260~264mm,腔体内导体的长度为250~254mm。
通过采用上述技术方案,该拾取束流相位信号的腔体结构的腔体外导体与腔体内导体之间的垂直间距、水平间距以及腔体外导体长度对该腔体结构的本征频率均有影响,腔体外导体与腔体内导体之间的垂直间距越大,拾取束流相位信号的腔体结构的本征频率越小,腔体外导体与腔体内导体之间的水平间距越大,即开路端的电容越大,拾取束流相位信号的腔体结构的本征频率越大,腔体外导体、腔体内导体的长度越长,拾取束流相位信号的腔体结构的本征频率越小。
本实用新型进一步设置为:所述腔体外导体与腔体内导体之间垂直间距为47mm,腔体外导体的左端盖与腔体内导体的左端面之间水平间距为10mm,腔体外导体的长度为262mm,腔体内导体的长度为252mm。
通过采用上述技术方案,该拾取束流相位信号的腔体结构限定尺寸参数,保证拾取束流相位信号的腔体结构的本征频率为142.4MHz。
本实用新型进一步设置为:所述腔体结构的本征频率为142.4MHz。
通过采用上述技术方案,该拾取束流相位信号的腔体结构的本征频率为142.4MHz,其非阻拦式的腔体结构可以实现实时测量束流相位,并且保证了加速器设备周围的环境剂量水平,特别适用与等时性加速器束流相位稳定控制的研究。
本实用新型进一步设置为:所述腔体外导体的侧壁连通有靠近其右端盖的探针导管,所述电感式感应探针位于探针导管内。
通过采用上述技术方案,位于该腔体结构的短路端的电感式感应探针可以拾取到束流相位信号,将该束流相位信号与高频加速电场的参考相位信号进行鉴相,通过鉴相的输出结果曲线来调节主磁铁电源的励磁电流。
综上所述,本实用新型的有益技术效果为:
1.本实用新型拾取束流相位信号的腔体结构安装于回旋加速器的束流运输管道上,腔体结构的腔体外导体、腔体内导体的具体尺寸参数采用优选设计,当束流通过该腔体结构时,会激起该腔体结构的谐振,位于腔体结构的短路端的电感式感应探针便可以拾取到束流相位信号,将束流相位信号与高频加速电场的参考相位信号进行鉴相,通过鉴相的输出结果曲线来调节主磁铁电源的励磁电流,从而稳定回旋加速器的磁场强度,保证引出束流粒子每次通过加速电场时,均处于加速的状态,从而提高回旋加速器引出束流的稳定性与引出效率。该拾取束流相位信号的腔体结构用于高精度束流相位信号拾取工作,属于束流相位稳定控制系统的研究设备,为拾取引出不同能量的束流提供了必要条件。
2.本实用新型腔体结构的腔体内导体与束流运输管道的直径保持一致,使得引出束流通过拾取束流相位信号的腔体结构时,可以激起束流相位探针腔体的谐振,从而拾取到束流相位信号,为等时性加速器的束流相位稳定控制的研究提供条件;本腔体结构与传统的拾取方式相比较,本腔体结构的空间结构小巧,信噪比大大提高,其非阻拦式的腔体结构可以实现实时测量束流相位信号,并且保证了加速器设备周围的环境剂量水平,特别适用与等时性加速器束流相位稳定控制的研究。
3.本实用新型的腔体外导体与腔体内导体之间的垂直间距越大,拾取束流相位信号的腔体结构的本征频率越小,腔体外导体与腔体内导体之间的水平间距越大,即开路端的电容越大,拾取束流相位信号的腔体结构的本征频率越大,腔体外导体、腔体内导体的长度越长,拾取束流相位信号的腔体结构的本征频率越小。腔体外导体与腔体内导体之间的垂直间距、水平间距以及腔体外导体长度对该腔体结构的本征频率均有影响,拾取束流相位信号的腔体结构的本征频率为142.4MHz。
附图说明
图1是本实用新型的腔体结构示意图。
图2是本实用新型腔体结构的电磁场分布图。
图3是本实用新型腔体结构的磁场分布图。
图4是本实用新型在230MeV、300nA束流线作为激励时,拾取束流相位信号的腔体结构的拾取端电压显示图。
附图标记为:1、腔体内导体;11、左端面;12、右端面;2、腔体外导体;21、左端盖;22、右端盖;23、探针导管;3、束流运输管道;4、电感式感应探针;5、环形空腔;6、开路端;7、短路端。
具体实施方式
以下结合附图对本实用新型作进一步详细说明。
参照图1,本实用新型公开了一种基于电感探针拾取束流相位信号的腔体结构,包括筒体状的腔体外导体2、腔体内导体1,腔体外导体2的左端盖21、右端盖22均与束流运输管道3相连通,腔体内导体1的左、右端分别与腔体外导体2两端连通的束流运输管道3相对应,腔体内导体1的右端面12与腔体外导体2的右端盖22之间相接触形成短路端7,腔体内导体1的左端面11与腔体外导体2的左端盖21之间具有水平间距形成开路端6,电感式感应探针4伸入腔体外导体2与腔体内导体1之间的环形空腔5,并与腔体外导体2的右端盖22相连接,腔体外导体2的侧壁连通有靠近其右端盖22的探针导管23,电感式感应探针4位于探针导管23内;
腔体结构的本征频率为142.4MHz,束流运输管道3与腔体内导体1的直径相同,且腔体外导体2、腔体内导体1与束流运输管道3的轴心线相重合;束流运输管道3、腔体内导体1的直径均为200mm,壁厚均为5mm;腔体外导体2与腔体内导体1之间垂直间距为47mm,腔体外导体2的左端盖21与腔体内导体1的左端面11之间水平间距为10mm,腔体外导体2的长度为262mm,腔体内导体1的长度为252mm。
本实施例中腔体结构具体尺寸参数的实验设计步骤如下:
a) 如图1所示,通过CST软件建立拾取束流相位信号的腔体结构的模型,腔体内导体1与加速器的束流输运管道直径保持一致,直径为200mm,壁厚达5mm,腔体外导体2与腔体内导体1之间的垂直间距、水平间距以及腔体外导体2长度对该腔体结构的本征频率均有影响;
b) 通过CST软件,采用控制变量法研究某一特定变量对该腔体结构的本征频率的影响;
c) 固定腔体外导体2与腔体内导体1之间的水平间距以及腔体外导体2的长度,改变腔体外导体2与腔体内导体1之间的垂直间距,得出的实验结论:腔体外导体2与腔体内导体1之间的垂直间距越大,拾取束流相位信号的腔体结构的本征频率越小;
d)该腔体结构开路端6的腔体外导体2与腔体内导体1之间的水平间距决定开路端6电容的大小,固定腔体内导体1的长度,然后改变腔体外导体2的长度来观察该腔体结构的本征频率的变化,得出的实验结论:腔体外导体2与腔体内导体1之间的水平间距越大,即开路端6的电容越大,拾取束流相位信号的腔体结构的本征频率越大;
e) 固定该腔体结构开路端6的电容大小,改变腔体外导体2的长度和腔体内导体1的长度,得出的实验结论:腔体外导体2、腔体内导体1的长度越长,拾取束流相位信号的腔体结构的本征频率越小;
f) 经过以上三个变量对该腔体结构本征频率有影响的仿真实验,择优选取与本征频率142.4MHz相近的尺寸,即得腔体外导体2与腔体内导体1之间垂直间距为47mm,腔体外导体2的左端盖21与腔体内导体1的左端面11之间水平间距为10mm,腔体外导体2的长度为262mm,腔体内导体1的长度为252mm,仿真后拾取束流相位信号的腔体结构的电磁场分布如图2所示;
g) 在CST软件的Particle Wakefield模式下,设置230MeV、300nA束流线作为激 励,束流的速度由下式计算得到:
Figure DEST_PATH_IMAGE001
,其中,W是束流能量,单位为eV,
Figure 386648DEST_PATH_IMAGE002
,计算得到β约为0.7,假设束流线长度为30mm,计算出电荷量约为 7.95E-10C。电感式感应探针4的采样端接入50Ohm负载,在负载端观察其电压值,仿真结果 如图4所示。从图4可以看出,利用CST软件可以仿真得到拾取束流相位信号的腔体结构的拾 取端电压,说明该非阻拦式的腔体结构可以用于测量束流相位信号。
本具体实施方式的实施例均为本实用新型的较佳实施例,并非依此限制本实用新型的保护范围,故:凡依本实用新型的结构、形状、原理所做的等效变化,均应涵盖于本实用新型的保护范围之内。

Claims (8)

1.一种基于电感探针拾取束流相位信号的腔体结构,包括筒体状的腔体外导体(2)、腔体内导体(1),其特征在于:所述腔体外导体(2)的左端盖(21)、右端盖(22)均与束流运输管道(3)相连通,腔体内导体(1)的左、右端分别与腔体外导体(2)两端连通的束流运输管道(3)相对应,腔体内导体(1)的右端面(12)与腔体外导体(2)的右端盖(22)之间相接触形成短路端(7),腔体内导体(1)的左端面(11)与腔体外导体(2)的左端盖(21)之间具有水平间距形成开路端(6),电感式感应探针(4)伸入腔体外导体(2)与腔体内导体(1)之间的环形空腔(5),并与腔体外导体(2)的右端盖(22)相连接。
2.根据权利要求1所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述束流运输管道(3)与腔体内导体(1)的直径相同,且腔体外导体(2)、腔体内导体(1)与束流运输管道(3)的轴心线相重合。
3.根据权利要求2所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述束流运输管道(3)、腔体内导体(1)的直径均为190~210mm,壁厚均为4~6mm。
4.根据权利要求3所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述束流运输管道(3)、腔体内导体(1)的直径均为200mm,壁厚均为5mm。
5.根据权利要求1所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述腔体外导体(2)与腔体内导体(1)之间垂直间距为46~48mm,腔体外导体(2)的左端盖(21)与腔体内导体(1)的左端面(11)之间水平间距为8.5~9.5mm,腔体外导体(2)的长度为260~264mm,腔体内导体(1)的长度为250~254mm。
6.根据权利要求5所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述腔体外导体(2)与腔体内导体(1)之间垂直间距为47mm,腔体外导体(2)的左端盖(21)与腔体内导体(1)的左端面(11)之间水平间距为10mm,腔体外导体(2)的长度为262mm,腔体内导体(1)的长度为252mm。
7.根据权利要求5~6任一项所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述腔体结构的本征频率为142.4MHz。
8.根据权利要求1~6任一项所述的基于电感探针拾取束流相位信号的腔体结构,其特征在于:所述腔体外导体(2)的侧壁连通有靠近其右端盖(22)的探针导管(23),所述电感式感应探针(4)位于探针导管(23)内。
CN201921996444.XU 2019-11-16 2019-11-16 一种基于电感探针拾取束流相位信号的腔体结构 Active CN211656498U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921996444.XU CN211656498U (zh) 2019-11-16 2019-11-16 一种基于电感探针拾取束流相位信号的腔体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921996444.XU CN211656498U (zh) 2019-11-16 2019-11-16 一种基于电感探针拾取束流相位信号的腔体结构

Publications (1)

Publication Number Publication Date
CN211656498U true CN211656498U (zh) 2020-10-09

Family

ID=72692534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921996444.XU Active CN211656498U (zh) 2019-11-16 2019-11-16 一种基于电感探针拾取束流相位信号的腔体结构

Country Status (1)

Country Link
CN (1) CN211656498U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677976A (zh) * 2019-11-16 2020-01-10 中国原子能科学研究院 一种基于电感探针拾取束流相位信号的腔体结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677976A (zh) * 2019-11-16 2020-01-10 中国原子能科学研究院 一种基于电感探针拾取束流相位信号的腔体结构

Similar Documents

Publication Publication Date Title
CN110677976A (zh) 一种基于电感探针拾取束流相位信号的腔体结构
CN211656498U (zh) 一种基于电感探针拾取束流相位信号的腔体结构
CN208590144U (zh) 直线加速器和同步加速器
CN106385758B (zh) 超导回旋加速器谐振腔容性耦合匹配方法
CA2345627C (en) Method of reducing axial beam focusing
Zhang et al. Detection of metal obstacles in wireless charging system of electric vehicle
Yang et al. Field measurement for superconducting magnets of ADS injector I
CN103996591B (zh) 微波离子源及其启动方法
CN103406657A (zh) 一种用于电子束加工的电磁偏转扫描线圈
CN101827489B (zh) 用于加速负氢、h2+的紧凑型回旋加速器
CN207612455U (zh) 直线型磁约束等离子体装置
CN206181534U (zh) 一种生产放射性同位素的超导回旋加速器
CN201839504U (zh) 医用偏转磁聚焦结构的重离子或质子同步加速器
CN207166844U (zh) 高频加速腔
CN115209606A (zh) 一种并列加速式强流离子加速器
CN105120590A (zh) 一种医用放射性同位素生产系统
CN208969226U (zh) 一种核磁共振扫描发射器
Wang et al. Research on optimal coil configuration scheme of insulator relay WPT system
Zhang et al. Comprehensive test stand for high-intensity cyclotron development
CN207731730U (zh) 感应式电缆悬垂度在线测控系统
CN203368895U (zh) 一种pet/spect/bnct三用小型医用回旋加速器
Smirnov et al. CYCLOTRON SYSTEM С-250
CN106304604A (zh) 一种用于中子俘获治疗的中子发生器
Wang et al. Design and construction progress of a 7 MeV/u cyclotron
CN109860010A (zh) 一种施加局部电场抑制电子束径向振荡的方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant