CN211642599U - Vector-tilting coaxial dual-rotor unmanned aerial vehicle - Google Patents
Vector-tilting coaxial dual-rotor unmanned aerial vehicle Download PDFInfo
- Publication number
- CN211642599U CN211642599U CN201920990038.6U CN201920990038U CN211642599U CN 211642599 U CN211642599 U CN 211642599U CN 201920990038 U CN201920990038 U CN 201920990038U CN 211642599 U CN211642599 U CN 211642599U
- Authority
- CN
- China
- Prior art keywords
- rotor
- motor
- fuselage
- tilting
- rotor blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007246 mechanism Effects 0.000 claims description 53
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 19
- 239000004917 carbon fiber Substances 0.000 claims description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 7
- 230000000875 corresponding effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 241001515997 Eristalis tenax Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010034719 Personality change Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002304 esc Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Landscapes
- Toys (AREA)
Abstract
提供一种矢量倾转的共轴双旋翼无人机,由机身(101)、动力装置(102)和矢量倾转装置(103)组成,无人机左右两侧的动力装置(102)和矢量倾转装置(103)是对称且结构完全相同的。无人机高速前飞带来的后行桨叶失速问题可由上下旋翼转速相反,其后行桨叶所处位置相对机体对称的特性而解决;一副旋翼产生的侧倾力矩被另一副旋翼的侧倾力矩平衡。
Provided is a coaxial dual-rotor drone with vector tilt, which is composed of a fuselage (101), a power device (102) and a vector tilt device (103), the power devices (102) on the left and right sides of the drone and the The vector tilting device (103) is symmetrical and identical in structure. The stall problem of the backward blades caused by the high-speed forward flight of the UAV can be solved by the opposite rotation speed of the upper and lower rotors, and the position of the backward blades is symmetrical with respect to the body; the roll moment generated by one rotor is affected by the other. The roll moment of the rotor is balanced.
Description
技术领域technical field
本实用新型涉及一种可以垂直起降的共轴双旋翼无人机,具体而言,涉及一种矢量倾转的四旋翼无人机技术领域。The utility model relates to a coaxial double-rotor unmanned aerial vehicle capable of taking off and landing vertically, in particular to the technical field of a vector tilting quad-rotor unmanned aerial vehicle.
背景技术Background technique
近年来,无人机技术不断发展和完善,在商业和军事领域都得到了广泛的应用。传统的共轴双旋翼无人机大多数采用两台或两台以上的电机与减速器等机构连接,通过减速器的两个转向相反的输出轴分别与上下旋转翼连接,实现上下旋翼的反向旋转,从而使两旋翼带来的反作用相互抵消。但是在现有的技术中,传统的共轴双旋翼无人机上下两个旋翼直径、形状完全相同,造成飞行效率不高,且机械结构十分复杂,安全性低下。In recent years, UAV technology has been continuously developed and improved, and it has been widely used in both commercial and military fields. Most of the traditional coaxial dual-rotor UAVs use two or more motors to connect with the reducer and other mechanisms, and connect the upper and lower rotors respectively through the two output shafts of the reducer with opposite directions to realize the reverse rotation of the upper and lower rotors. Rotate in the opposite direction, so that the reactions brought by the two rotors cancel each other out. However, in the existing technology, the diameter and shape of the upper and lower rotors of the traditional coaxial dual-rotor UAV are exactly the same, resulting in low flight efficiency, complex mechanical structure and low safety.
实用新型内容Utility model content
针对现有技术存在的缺陷,本实用新型提出一种矢量倾转的共轴双旋翼无人机,可有效解决目前传统地共轴双旋翼动力组件机械结构复杂、零部件较多等安全设计方面的一些难点。In view of the defects in the prior art, the present utility model proposes a coaxial dual-rotor UAV with vector tilting, which can effectively solve the safety design aspects of the current traditional coaxial dual-rotor power assembly with complex mechanical structure and many parts and components. some difficulties.
本实用新型的矢量倾转的共轴双双旋翼无人机,由机身101、动力装置102 和矢量倾转装置103组成,无人机左右两侧的动力装置102和矢量倾转装置103 是对称且结构完全相同的;其特征在于The vector tilting coaxial double-rotor UAV of the present invention is composed of a
机身101分为机身壳体、机身上方部分、机身内部部分、机身下方部分、左侧机臂套筒201和右侧机臂套筒207;其中机身壳体为长方体结构,包括位于机身壳体上部的机体上板202、机体底板219、左侧壁218、右侧壁220;通过第一固定连接装置使左侧壁218与机体上板202、机体底板219紧固连接;通过第二固定连接装置使机体上板202与左侧壁218、右侧壁220紧固连接;同样的,右侧壁220与机体底板219有相同的固定方式;The
在机身上方部分,在机体上板202上安装GPS导航接收天线基座222,从正面看,天线基座222呈倒“T”型,为惯用天线底座形状,利用第三固定连接装置使其与机体上板202紧固连接;在天线基座222上连接一根天线杆223,天线杆223上下两端均刻有螺纹,下端连接天线基座222,上端连接水平圆盘204;天线杆223与基座222、水平圆盘204同轴,且不可转动;将GPS固定在水平圆盘204上表面上;On the upper part of the fuselage, a GPS navigation receiving
在机体上板202上安装一个小型旋翼,小型旋翼自上而下由旋翼安装帽205、旋翼桨叶203和无刷直流电机206组成,无刷直流电机206通过第四固定连接装置紧固连接在无人机机体上板202上;旋翼安装帽205、旋翼桨叶203和无刷直流电机206相互之间的连接方式为惯用方式;A small rotor is installed on the
固定天线基座222和无刷直流电机206都位于无人机机体上板202的纵向中轴线上;The
机身内部部分安置有飞行控制器212、数据传输器221、4个电子调速器208、 209、216、217、第一舵机211、第二舵机213和电池214;飞行控制器212是无人机的控制中心,安装在机身内部,在收到指令后控制无刷直流电机206按照相应要求做出相应的动作,实现无人机飞行姿态的改变;数据传输器221安装在机身内部;电子调速器208、209、216、217采用无刷电调,接收启动、停止、制动信号后,实现对电机转速的控制,四个电子调速器的放置要考虑机身配重;电池214的安装位置由无人机重量配平确定;第一舵机211、第二舵机 213安装在飞行控制器两侧,根据配重固定安装在机体底板上,驱动传动轴转动,进而实现动力装置的倾转,改变无人机飞行姿态;The internal part of the fuselage is equipped with a
机身下方部分具有两个碳纤维脚架210、215,沿飞行方向左右对称安装在机体底板下方,碳纤维脚架210、215上部呈拱形形状,拱形碳纤维脚架210、 215拱形顶端通过第五固定连接装置或粘结剂与机体底板紧固连接;拱形碳纤维管两端穿过一根水平碳纤维管;The lower part of the fuselage has two
左侧机臂套筒201和右侧机臂套筒207均为空心长圆柱棒体,与无人机侧壁固定连接为一体,左右对称;左侧机臂套筒201的右端与机体左侧壁218固定连接为一体,左侧机臂套筒201的左端与左侧矢量倾转装置103连接;The
矢量倾转装置103包括左右两侧各一套,二者结构完全相同且对称放置;右侧矢量倾转装置103自右向左大致包括:右侧倾转机构传动轴303、第一轴承 302、右侧机臂套筒207、右侧壁220、第二轴承301、第二舵机213;The
右侧倾转机构传动轴303为轴承结构,右侧机臂套筒207左、右两端分别嵌入第二和第一轴承301、302,右侧倾转机构传动轴303通过这两个轴承套在右侧机臂套筒207内,用于减小传动轴驱动动力装置转动的阻力,右侧倾转机构传动轴303的轴心和两个轴承的轴心重合;右侧倾转机构传动轴303右端具有突出连接部,通过突出连接部与动力装置102连接;右侧倾转机构传动轴303 左端与无人机机身内部的第二舵机213可转动连接,通过可转动连接方式将第二舵机213与右侧倾转机构传动轴303连接在一起;第二舵机213驱动右侧倾转机构传动轴303转动,进而控制右侧动力装置实现倾转;右侧倾转机构传动轴303及机臂套筒207均为中空结构;The right tilting mechanism drive
无人机左右两侧动力装置结构相同且对称布置,左侧动力装置102自上而下由上旋翼桨叶锁死机构402、上旋翼桨叶401、上电机403、上电机座垫片405、电机支架404、下电机座垫片406、下电机407、下旋翼桨叶408、下旋翼桨叶锁死机构409组成;The power units on the left and right sides of the UAV have the same structure and are symmetrically arranged. The
上电机403通过第六固定连接装置与电机座垫片405固定连接,上电机403 位于上电机座垫片405之上;将上旋翼桨叶401固定在上电机403转子上端,转子转动驱动旋翼转动,产生升力;上旋翼桨叶锁死机构402安装在上电机403 转子上,用于锁死桨叶,防止其松动;下电机407与下电机座垫片406固定连接,下电机407位于下电机座垫片406之下;将下旋翼桨叶408固定在下电机 407的转子上,转子转动驱动旋翼转动,产生升力;下旋翼桨叶锁死机构409的形状和作用与上旋翼桨叶锁死机构402相同,安装在下电机407转子上;上、下电机座垫片405和406右端各自通过第七固定连接装置与左侧倾转机构传动轴410固定连接;上、下电机座垫片405和406左端通过第八固定连接装置与左侧电机支架404固定连接,电机支架404使上下两电机固定更加牢靠;并且,上电机403轴线与下电机407轴线重合,保证旋翼产生的升力最大化。The
在本实用新型的一个具体实施例中,四个电子调速器固定在机体底板的四个角位置。In a specific embodiment of the present utility model, four electronic speed governors are fixed at four corner positions of the bottom plate of the body.
在本实用新型的一个实施例中,右侧倾转机构传动轴303左端与无人机机身内部的第二舵机213可转动连接的方式为转动连接、螺纹连接或枢轴连接。In one embodiment of the present invention, the left end of the
在本实用新型的一个具体实施例中,右侧倾转机构传动轴303材料为碳纤维;机身材质选择复合材料;旋翼桨叶均选用碳纤维桨叶。In a specific embodiment of the present invention, the material of the
在本实用新型的一个具体实施例中,通过上电机403和下电机407上下对称安装,构成双旋翼机构。In a specific embodiment of the present invention, the
在本实用新型的一个实施例中,电机型号选择2212、3508或4010。In one embodiment of the present invention, the motor model is selected as 2212, 3508 or 4010.
在本实用新型的一个具体实施例中,电机型号选择3508。In a specific embodiment of the present invention, the motor model is selected as 3508.
在本实用新型的一个实施例中,上旋翼桨叶401和下旋翼桨叶408均为双叶型的具有一定扭曲率的弧形长薄片;桨盘载荷是旋翼的一个重要参数,可以表示为:M为飞行器总重量,Sy是旋翼桨盘的有效面积;采用共轴双旋翼结构,在工作过程中会产生扰流,使浆盘的有效面积减小,为方便计算共轴双旋翼浆盘的有效面积,引入一个修正系数λ,因此旋翼有效面积表示为: Sy=Kλπ(R12+R22),其中,R1为上旋翼桨叶401的旋转半径,R2为下旋翼桨叶 408的旋转半径,K为旋翼桨盘面积有效系数;无人机起飞必须满足的条件为:其中,η0为悬停有效系数,D为双旋翼有效面积直径;上旋翼桨叶401与下旋翼桨叶408半径不同,通过增大下旋翼桨叶408,使上下两个旋翼等速反向旋转产生相同的力,保证无人机的稳定性。In an embodiment of the present invention, the
在本实用新型的一个具体实施例中,浆盘修正系数为0.75,有效系数为0.95,η0=0.75;下旋翼桨叶408的半径为0.16m,上旋翼桨叶401的半径为0.12m;旋翼桨盘的有效面积Sy为0.38m2;机身材质采用AS4与PEEK的复合材料,无人机机身为中空的长方体结构,参数分别为:长25cm,宽20cm,高15cm。In a specific embodiment of the present invention, the correction coefficient of the paddle disk is 0.75, the effective coefficient is 0.95, and η 0 =0.75; the radius of the
本实用新型通过对动力系统的改进,无人机独特的外观设计等措施,通过两个无刷直流电机对称安装在无人机左右的上下两侧,并反向旋转,实现双旋翼机构,大大简化了传统复杂的机械共轴双旋翼机构。上下两个旋翼尺寸大小不同,保证上下两个旋翼等速反向旋转,使无人机稳定飞行,并且提高了飞行效率。同时,与传统的倾转旋翼左右布置且反转的对称性相比,共轴双旋翼反转的对称性还可有效解决以下两个问题:1、无人机高速前飞带来的后行桨叶失速问题可由上下旋翼转速相反,其后行桨叶所处位置相对机体对称的特性而解决;2、一副旋翼产生的侧倾力矩被另一副旋翼的侧倾力矩平衡。因此本实用新型设计的可矢量倾转的四旋翼无人机,具有悬停效率高、保持自转下滑能力、倾转机构简单、安全性高的优势。The utility model adopts measures such as the improvement of the power system, the unique appearance design of the unmanned aerial vehicle, and the two brushless DC motors are symmetrically installed on the left and right upper and lower sides of the unmanned aerial vehicle, and rotate in the opposite direction, so as to realize the double rotor mechanism, which greatly improves the Simplifies the traditional complex mechanical coaxial double rotor mechanism. The size of the upper and lower rotors is different, which ensures that the upper and lower rotors rotate in opposite directions at the same speed, which makes the drone fly stably and improves the flight efficiency. At the same time, compared with the symmetry of the traditional tilt-rotor arrangement and inversion, the symmetry of the coaxial dual-rotor inversion can also effectively solve the following two problems: 1. The backward travel caused by the high-speed forward flight of the UAV The problem of blade stall can be solved by the fact that the rotating speed of the upper and lower rotors is opposite, and the position of the rearward blade is symmetrical with respect to the body; 2. The roll moment generated by one rotor is balanced by the roll moment of the other rotor. Therefore, the vector tiltable quadrotor UAV designed by the utility model has the advantages of high hovering efficiency, maintaining the ability to rotate and slide down, simple tilting mechanism and high safety.
附图说明Description of drawings
图1是本实用新型矢量倾转四旋翼无人机整体结构图;Fig. 1 is the overall structure diagram of the vector tilting quadrotor unmanned aerial vehicle of the present utility model;
图2是本实用新型矢量倾转四旋翼无人机机身结构,其中图2(a)示出前视图;Fig. 2 is the fuselage structure of the vector tilting quadrotor unmanned aerial vehicle of the present invention, wherein Fig. 2 (a) shows a front view;
图2(b)示出左视图,图2(c)示出俯视图;Figure 2(b) shows a left side view, and Figure 2(c) shows a top view;
图3是本实用新型矢量倾转四旋翼无人机动力装置结构图;3 is a structural diagram of a vector tilting quadrotor unmanned aerial vehicle power device of the present invention;
图4是本实用新型矢量倾转四旋翼无人机矢量倾转装置结构图;4 is a structural diagram of a vector tilting device for a vector tilting quadrotor unmanned aerial vehicle of the present invention;
图5是本实用新型旋翼桨叶示意图。FIG. 5 is a schematic diagram of a rotor blade of the present invention.
具体实施方式Detailed ways
为了使本实用新型的构思、具体结构及产生的有益效果更加清楚明了,现结合以下实施例和附图对本实用新型的特征和效果进行完整的描述。应当理解,此处所描述的具体实施例仅用于描述本实用新型,而不用于限定本实用新型。In order to make the concept, specific structure and beneficial effects of the present invention more clear, the features and effects of the present invention will now be fully described with reference to the following embodiments and accompanying drawings. It should be understood that the specific embodiments described herein are only used to describe the present invention, but not to limit the present invention.
如图1所示,矢量倾转共轴双旋翼无人机由机身101、动力装置102和矢量倾转装置103组成,无人机左右两侧的动力装置102和矢量倾转装置103是对称且完全相同的。As shown in Figure 1, the vector tilting coaxial dual-rotor UAV is composed of a
如图2所示,机身101主要分为机身壳体、机身上方部分、机身内部部分、机身下方部分、左侧机臂套筒201和右侧机臂套筒207。As shown in FIG. 2 , the
机身壳体为中空壳体结构,壳体本身可以为长方体结构、壳类球体或其他具有对称结构的多边形结构体,机身壳体包括位于机身壳体上部的机体上板 202、机体底板219、左侧壁218、右侧壁220。在本实用新型的一个实施例中,机身壳体为长方体结构,如图2(b)所示,在左侧壁218开有4个螺孔,通过螺丝使左侧壁218与机体上板202、机体底板219紧固连接;如图2(c)俯视图所示,在机体上板202开有6个螺孔,通过螺丝使机体上板202与左侧壁218、右侧壁220紧固连接。同样的,右侧壁220与机体底板219有相同的固定方式,保证无人机机身整体的可靠性。The fuselage shell is a hollow shell structure, and the shell itself can be a cuboid structure, a shell-like sphere or other polygonal structures with a symmetrical structure.
在机身上方部分,在机身壳体上方大约中间靠后处,在机体上板202上安装GPS导航接收天线基座222,从正面看,天线基座222呈倒“T”型,为惯用天线底座形状,例如利用四颗螺丝使其与机体上板202紧固连接。在天线基座222 上连接一根天线杆223,天线杆223上下两端均刻有螺纹,下端连接天线基座 222,上端连接一水平圆盘204。天线杆223与基座222、水平圆盘204同轴,且不可转动,结构简单、连接可靠、拆装方便,将GPS安装在水平圆盘204上表面上,实际中通常利用例如3M胶等粘结剂将二者粘接。In the upper part of the fuselage, at the rear of the upper part of the fuselage, a GPS navigation receiving
在机身壳体上方大约中间靠前处,在机体上板202上安装一个小型旋翼,小型旋翼自上而下由旋翼安装帽205、旋翼桨叶203和无刷直流电机206组成,无刷直流电机206例如通过4颗螺丝紧固连接在无人机机体上板202上,其作用是保证无人机飞行过程中机身的平衡以及实现无人机俯仰姿态的改变。旋翼安装帽205、旋翼桨叶203和无刷直流电机206相互之间的连接方式为惯用连接,为本领域技术人员熟知。A small rotor is installed on the
固定天线基座222和无刷直流电机206大致都位于无人机机体上板202的纵向(飞行方向)的中轴线上。The fixed
机身内部部分安置有飞行控制器212、数据传输器221、4个电子调速器208、 209、216、217、第一舵机211、第二舵机213和电池214。飞行控制器212是无人机的控制中心,安装在机身内部的重心位置,在收到指令后控制无刷直流电机206按照相应要求做出相应的动作,实现无人机飞行姿态的改变;数据传输器221安装在机身内部靠边缘地带,方便无人机和地面站或者遥控设备进行数据、图片或视频的传输;电子调速器208、209、216、217采用无刷电调,接收启动、停止、制动信号后,实现对电机转速的控制,四个电子调速器的放置要考虑机身配重;在本实用新型的一个实施例中,四个电子调速器固定在机体底板的四个角位置。电池214是无人机的动力来源,容量一般由无人机载荷来确定,安装位置由无人机重量配平确定,电池214通常选择使用锂电池。第一舵机211、第二舵机213安装在飞行控制器两侧,根据配重固定安装在机体底板上。The inner part of the fuselage is equipped with a
机身下方部分具有两个碳纤维脚架210、215,沿飞行方向左右对称安装在机体底板下方,如图2(b)所示,碳纤维脚架210、215上部呈拱形形状,拱形碳纤维脚架210、215拱形顶端与机体底板紧固连接;拱形碳纤维管两端穿过一根水平碳纤维管,以增大无人机接地面积,在无人机起飞和着陆时起到支撑无人机的作用,避免无人机侧翻,水平碳纤维管从拱形碳纤维管两端分别伸出,在水平碳纤维管两伸出端各套一个海绵套,有效起到减震作用。在本实用新型的一个实施例中,拱形碳纤维脚架210、215拱形顶端钻有小孔,通过螺丝使其与无人机底板紧固连接。The lower part of the fuselage has two
无人机重量分析是飞行器设计过程中的一个重要环节,其总重决定了机身结构尺寸、材质以及电机功率需求等。无人机起飞总重量可以表示为:其中M为飞行器总重量,Md为电池重量,Mp为动力系统重量,Me电子设备重量,Ml为负载重量,Xs为结构重量因子。本实用新型设计的倾转旋翼无人机属于小型、速度低的飞行器,根据统计和经验得Xs的数值约为0.4-0.5之间。在本实用新型的一个实施例中,无人机起飞重量为3.5Kg,无人机的载重量为0.5Kg,Xs的取值为0.45。说明电池重量、动力系统重量、电子设备重量总和不能超过1.4Kg,可计算出机身结构重量不超过1.5Kg。机身材质可选择复合材料,在本实用新型的一个实施例中,优选地,采用AS4与PEEK的复合材料,直接熔铸成型,重量轻,强度高,成本低,无人机机身为中空的长方体结构,参数分别为:长25cm,宽20cm,高15cm。The weight analysis of UAV is an important link in the design process of the aircraft, and its total weight determines the structure size, material and motor power requirements of the fuselage. The total take-off weight of the drone can be expressed as: where M is the total weight of the aircraft, M d is the battery weight, M p is the power system weight, Me electronic equipment weight, M l is the load weight, and X s is the structural weight factor. The tilt-rotor unmanned aerial vehicle designed by the utility model is a small and low-speed aircraft, and the value of X s is about 0.4-0.5 according to statistics and experience. In an embodiment of the present invention, the take-off weight of the drone is 3.5Kg, the carrying capacity of the drone is 0.5Kg, and the value of X s is 0.45. Explain that the total weight of the battery, power system, and electronic equipment cannot exceed 1.4Kg, and it can be calculated that the weight of the fuselage structure does not exceed 1.5Kg. The material of the fuselage can be selected from composite materials. In an embodiment of the present invention, preferably, composite materials of AS4 and PEEK are used to directly melt and cast, which is light in weight, high in strength and low in cost. The fuselage of the drone is hollow. Cuboid structure, the parameters are: length 25cm, width 20cm, height 15cm.
左侧机臂套筒201和右侧机臂套筒207均为空心长圆柱棒体,与无人机侧壁固定连接为一体,左右对称。以左侧机臂套筒201为例进行介绍。如图2(b) 所示,左侧机臂套筒201的右端与机体左侧壁218固定连接为一体,左侧机臂套筒201的左端与左侧矢量倾转装置103连接。The
矢量倾转装置103包括左右两侧各一套,二者结构完全相同且对称放置。如图3所示,以右侧矢量倾转装置103为例进行介绍。由图可见,右侧矢量倾转装置103自右向左大致包括:右侧倾转机构传动轴303、第一轴承302、右侧机臂套筒207、右侧壁220、第二轴承301、第二舵机213。The
右侧倾转机构传动轴303为轴承结构,右侧机臂套筒207左、右两端分别嵌入第二和第一轴承301、302,右侧倾转机构传动轴303通过这两个轴承套在右侧机臂套筒207内,右侧倾转机构传动轴303的轴心和两个轴承的轴心重合。右侧倾转机构传动轴303右端具有突出连接部,通过突出连接部与动力装置102 连接,右侧倾转机构传动轴303的突出连接部构造及其与动力装置102的连接方式为本领域技术人员熟知,不再累述。右侧倾转机构传动轴303、右侧机臂套筒207、轴承301、轴承302之间的连接方式也是本领域技术人员熟知的,通过图示和上述文字描述,本领域技术人员能够轻松知晓这些部件之间的连接关系和工作原理,不再累述。右侧倾转机构传动轴303左端与无人机机身内部的第二舵机213可转动连接,连接方式可以为转动连接、螺纹连接或枢轴连接。在本实用新型的一个实施例中,通过螺纹连接的方式将第二舵机213与右侧倾转机构传动轴303连接在一起。第二舵机213驱动右侧倾转机构传动轴303转动,进而控制右侧动力装置实现倾转,达到控制无人机姿态和运动的目的。本实用新型中,右侧倾转机构传动轴303及机臂套筒207均为中空结构,右侧倾转机构传动轴303材料为碳纤维,以减轻无人机自身重量。在电机座垫片405、406 (如后详述)和左侧倾转机构传动轴410上开有电调线位孔,用于线路的布置,并使其不会影响矢量倾转机构的正常运转,此为本领域技术人员熟知,不再累述。The right tilting
图4示出动力装置102的示意图,由于无人机左右两侧动力装置结构相同且对称布置,因此以左侧动力装置102为例进行说明。左侧动力装置102自上而下由上旋翼安装帽402、上旋翼桨叶401、上电机403、上电机座垫片405、电机支架404、下电机座垫片406、下电机407、下旋翼桨叶408、下旋翼安装帽409组成。FIG. 4 shows a schematic diagram of the
通过上电机403和下电机407上下对称安装,构成双旋翼机构,提供无人机飞行及各种变换姿态所需的升力。在本实用新型的一个实施例中,电机型号可选择2212、3508、4010,优选地,型号选择为3508。如图所示,上电机403 与电机座垫片405固定连接,例如利用螺丝紧固连接,上电机403位于上电机座垫片405之上。将上旋翼桨叶401固定在上电机403转子上端,转子转动驱动旋翼转动,产生升力。上旋翼安装帽402为半圆球形状,内部掏空并在内部雕刻螺纹,通过螺纹安装在上电机403转子上,用于锁死桨叶,防止其松动。下电机407与下电机座垫片406固定连接,下电机407位于下电机座垫片406 之下。将下旋翼桨叶408固定在下电机407的转子上,转子转动驱动旋翼转动,产生升力。下旋翼安装帽409的形状和作用与上旋翼安装帽402相同,通过螺纹安装在下电机407转子上。上、下电机座垫片405和406右端各自与左侧倾转机构传动轴410固定连接,例如,上、下电机座垫片405和406右端各有一个螺孔,与左侧倾转机构传动轴410紧密贴合,利用螺丝自上而下穿插进行固定;上、下电机座垫片405和406左端通过例如上下2颗螺丝的固定连接装置与电机支架404固定连接,电机支架404使上下两电机固定更加牢靠。并且,上电机403轴线与下电机407轴线重合,保证旋翼产生的升力最大化。The
图5示出旋翼桨叶示意图,无人机旋翼类型的设计和选择对整个飞行器的飞行气动性至关重要,本实用新型中的旋翼桨叶均选用质量轻、硬度大的碳纤维桨叶,上旋翼桨叶401和下旋翼桨叶408均为双叶型的具有一定扭曲率的弧形长薄片。桨盘载荷是旋翼的一个重要参数,可以表示为:Sy是旋翼桨盘的有效面积。本实用新型采用的是共轴双旋翼结构,在工作过程中会产生扰流,使浆盘的有效面积减小,为方便计算共轴双旋翼浆盘的有效面积,引入一个修正系数λ,因此旋翼有效面积表示为:Sy=Kλπ(R12+R22),其中,R1为上旋翼桨叶401的旋转半径,R2为下旋翼桨叶408的旋转半径,K为旋翼桨盘面积有效系数。在本实用新型的一个实施例中,浆盘修正系数为0.75,有效系数为0.95,根据文献得到无人机起飞必须满足的条件为:其中,η0为悬停有效系数,这里取η0=0.75,D为双旋翼有效面积直径。经过计算可求得共轴双旋翼浆盘有效面积的直径D≥0.65m,这里选择共轴双旋翼浆盘有效面积的直径为0.7m,有效面积为0.38m2。在本实用新型中,上旋翼桨叶401与下旋翼桨叶408半径不同,通过增大下旋翼桨叶408,使上下两个旋翼等速反向旋转产生相同的力,保证无人机的稳定性,本实用新型中选择上下旋翼桨叶半径之比为3∶4。通过计算,下旋翼桨叶408的半径为0.16m,上旋翼桨叶401的半径为0.12m。因此,当无人机总重为3.5Kg时,共轴双旋翼桨盘的载荷为9.1Kg/m2。电动旋翼无人机的最大桨盘载荷为12Kg/m2,因此本实用新型设计的无人机的浆盘较为合理,并有一定的载荷余量。Fig. 5 shows the schematic diagram of the rotor blade. The design and selection of the rotor type of the UAV is very important to the flight aerodynamics of the whole aircraft. Both the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920990038.6U CN211642599U (en) | 2019-06-19 | 2019-06-19 | Vector-tilting coaxial dual-rotor unmanned aerial vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920990038.6U CN211642599U (en) | 2019-06-19 | 2019-06-19 | Vector-tilting coaxial dual-rotor unmanned aerial vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211642599U true CN211642599U (en) | 2020-10-09 |
Family
ID=72681269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920990038.6U Expired - Fee Related CN211642599U (en) | 2019-06-19 | 2019-06-19 | Vector-tilting coaxial dual-rotor unmanned aerial vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211642599U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110217389A (en) * | 2019-06-19 | 2019-09-10 | 中国人民解放军空军工程大学 | A kind of coaxial double-rotary wing unmanned plane that vector verts |
CN113598109A (en) * | 2021-07-13 | 2021-11-05 | 广东工业大学 | Control method and system of automatic bait casting device of unmanned aerial vehicle |
CN114476045A (en) * | 2022-04-07 | 2022-05-13 | 西安工业大学 | Coaxial twin-rotor aircraft with variable center of mass and control method thereof |
-
2019
- 2019-06-19 CN CN201920990038.6U patent/CN211642599U/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110217389A (en) * | 2019-06-19 | 2019-09-10 | 中国人民解放军空军工程大学 | A kind of coaxial double-rotary wing unmanned plane that vector verts |
CN110217389B (en) * | 2019-06-19 | 2025-02-14 | 中国人民解放军空军工程大学 | A vector tilt coaxial twin-rotor UAV |
CN113598109A (en) * | 2021-07-13 | 2021-11-05 | 广东工业大学 | Control method and system of automatic bait casting device of unmanned aerial vehicle |
CN114476045A (en) * | 2022-04-07 | 2022-05-13 | 西安工业大学 | Coaxial twin-rotor aircraft with variable center of mass and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110217389B (en) | A vector tilt coaxial twin-rotor UAV | |
CN106927030B (en) | Oil-electricity hybrid power multi-rotor aircraft and flight control method thereof | |
CN104859854B (en) | A dual-coaxial dual-rotor unmanned aerial vehicle with large load and low structural complexity | |
CN211033009U (en) | A small coaxial twin-rotor unmanned aerial vehicle | |
US20110177748A1 (en) | Vtol model aircraft | |
CN106882371A (en) | A kind of hybrid tilting rotor wing unmanned aerial vehicle | |
CN211642599U (en) | Vector-tilting coaxial dual-rotor unmanned aerial vehicle | |
CN207997982U (en) | Screw mechanism and VTOL fixed wing unmanned aerial vehicle vert | |
CN111332462A (en) | A portable small cylindrical coaxial reverse propeller three-blade rotor UAV | |
CN112224400B (en) | Novel tilt rotor aircraft and working method thereof | |
CN106915459A (en) | A kind of hybrid tilting rotor wing unmanned aerial vehicle | |
CN111003166A (en) | Tandem electric double-rotor helicopter and control system thereof | |
CN108313285A (en) | propeller tilt mechanism | |
CN108438215A (en) | It is a kind of to have the vector four-axle aircraft for keeping organism level ability | |
CN111232206A (en) | Fixed-pitch variable-speed dual-rotor tandem unmanned helicopter | |
CN109533310B (en) | A mobile launch foldable miniature coaxial double rotor suspension device | |
CN112644701A (en) | Transverse double-rotor unmanned aerial vehicle | |
JP5023330B2 (en) | Rotating blade mechanism, power generation device using the rotating blade mechanism, and moving device | |
CN208915439U (en) | Adjustable wing swallow shape simulation type unmanned plane | |
CN112046745B (en) | A Portable Modular UAV Platform | |
CN211869691U (en) | Hoverable eight-wing flapping aircraft | |
CN108609176A (en) | A kind of coaxial air-sea aircraft of verting | |
CN212267843U (en) | Double-layer synchronous variable-pitch coaxial rotor unmanned aerial vehicle | |
CN113306713B (en) | Coaxial dual-rotor UAV based on parallelogram control rotor axis | |
CN216805807U (en) | Rotor control device of tandem double-rotor unmanned helicopter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201009 Termination date: 20210619 |
|
CF01 | Termination of patent right due to non-payment of annual fee |