CN211602754U - Ankle biomechanics loading device - Google Patents
Ankle biomechanics loading device Download PDFInfo
- Publication number
- CN211602754U CN211602754U CN201922080250.1U CN201922080250U CN211602754U CN 211602754 U CN211602754 U CN 211602754U CN 201922080250 U CN201922080250 U CN 201922080250U CN 211602754 U CN211602754 U CN 211602754U
- Authority
- CN
- China
- Prior art keywords
- bracket
- vertical axis
- ankle
- foot plate
- connector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000003423 ankle Anatomy 0.000 title claims abstract description 42
- 210000002683 foot Anatomy 0.000 claims abstract description 79
- 239000002184 metal Substances 0.000 claims description 3
- 210000000544 articulatio talocruralis Anatomy 0.000 abstract description 19
- 241001227561 Valgus Species 0.000 abstract description 4
- 241000469816 Varus Species 0.000 abstract description 2
- 230000036544 posture Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 206010060820 Joint injury Diseases 0.000 description 3
- 208000022542 ankle injury Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 208000027502 Ankle fracture Diseases 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000000459 calcaneus Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000000001 dental powder Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000002082 fibula Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 210000001872 metatarsal bone Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000008289 pathophysiological mechanism Effects 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本实用新型提供一种足踝生物力学加载装置,包括脚板、纵轴支架、横轴支架、底托支架、底部连接头、顶部连接头及竖轴滑杆;纵轴支架与横轴支架固定连接;脚板的前后两端与纵轴支架端头活动连接,沿横轴方向移动和绕纵轴转动;横轴支架两端与底托支架活动连接,沿纵轴方向摆动;底托支架与底部连接头活动连接,绕横轴转动,底座连接头绕竖轴转动;顶部连接头沿竖轴滑杆上下移动,用于固定足部标本并调节竖向的压力。本实用新型通过脚板三维六自由度的调整,模拟踝关节跖屈、背伸、内翻、外翻、内旋和外旋的六种状态,使模拟的结果更接近足踝在运动过程中的真实生理状况。
The utility model provides a biomechanical loading device for an ankle, which comprises a foot plate, a vertical axis support, a horizontal axis support, a bottom support bracket, a bottom connector, a top connector and a vertical axis sliding rod; the vertical axis bracket and the horizontal axis bracket are fixedly connected ; The front and rear ends of the foot plate are movably connected with the end of the vertical axis support, moving along the horizontal axis and rotating around the vertical axis; the two ends of the horizontal axis support are movably connected with the bottom bracket, swinging along the vertical axis; the bottom bracket is connected with the bottom The head is movably connected and rotates around the horizontal axis, and the base connector rotates around the vertical axis; the top connector moves up and down along the vertical axis slide bar to fix the foot specimen and adjust the vertical pressure. The utility model simulates six states of plantar flexion, dorsiflexion, varus, valgus, internal rotation and external rotation of the ankle joint through the adjustment of the three-dimensional six-degree-of-freedom of the foot plate, so that the simulated result is closer to the movement of the ankle. real physical condition.
Description
技术领域technical field
本实用新型属于医学实验装置的技术领域,具体涉及一种足踝生物力学加载装置。The utility model belongs to the technical field of medical experimental devices, in particular to a biomechanical loading device for ankles.
背景技术Background technique
踝关节是人体重要的负重关节,随着社会人群对体育运动参与度的提升,包括踝关节骨折在内的各类踝关节及其周围稳定结构的损伤机制及治疗选择至今存在较大的争议。生物力学实验是现阶段探索各类踝关节损伤机制及对比不同手术方法的可靠手段。踝关节匹配度较高且运动方向及应力负载变化复杂,踝关节在正常活动过程中存在跖屈、背伸、内外翻、内外旋、旋前及旋后等姿势,更长见于多种姿势的复合状态,每种特定的姿势所承担的应力也不同。现有力学加载装置多数仅能实现轴向的应力加载。因此既往生物力学实验因无法精确模拟踝关节病理生理学状态;所以其结果可靠性不高。更有个别研究对踝关节损伤的诊断及治疗造成误导,出现误诊、漏诊、治疗不当、过度治疗等情况出现。The ankle joint is an important weight-bearing joint in the human body. With the increase of social participation in sports, the injury mechanism and treatment options of various ankle joints and their surrounding stable structures, including ankle fractures, are still controversial. Biomechanical experiments are a reliable means to explore various ankle injury mechanisms and compare different surgical methods at this stage. The ankle joint has a high degree of matching, and the movement direction and stress load change are complex. During the normal activities of the ankle joint, there are postures such as plantar flexion, dorsiflexion, inversion, internal and external rotation, pronation and supination, which are more common in various postures. Compound states, each specific posture bears a different amount of stress. Most of the existing mechanical loading devices can only achieve axial stress loading. Therefore, the previous biomechanical experiments cannot accurately simulate the pathophysiological state of the ankle joint; therefore, the reliability of the results is not high. Some studies have misled the diagnosis and treatment of ankle injuries, resulting in misdiagnosis, missed diagnosis, inappropriate treatment, and excessive treatment.
鉴于以上情况,当前迫切需要一种切实可靠的足踝部加载器械来实现运动过程中踝关节不同的姿势。更加真实地模拟踝关节的病理生理学过程;更好的研究踝关节损伤的机制及选择更好的手术治疗方法。In view of the above situation, there is an urgent need for a reliable foot-ankle loading device to realize different postures of the ankle during exercise. More realistically simulate the pathophysiological process of the ankle joint; better study the mechanism of ankle joint injury and choose better surgical treatment methods.
实用新型内容Utility model content
为了解决上述现有技术存在的问题,本实用新型的目的是提供一种足踝生物力学加载装置,能有效的模拟踝关节在真实运动过程中的受力状况。In order to solve the above-mentioned problems in the prior art, the purpose of the present invention is to provide a biomechanical loading device for the ankle, which can effectively simulate the stress condition of the ankle joint in the real movement process.
为实现上述目的,本实用新型提一种足踝生物力学加载装置,包括脚板、纵轴支架、横轴支架、底托支架、底部连接头、顶部连接头及竖轴滑杆;纵轴支架与横轴支架固定连接;脚板的前后两端与纵轴支架端头活动连接,沿横轴方向移动和绕纵轴转动;横轴支架两端与底托支架活动连接,沿纵轴方向摆动;底托支架与底部连接头活动连接,绕横轴转动,底部连接头绕竖轴转动;顶部连接头沿竖轴滑杆上下移动,用于固定足部标本并调节竖向的压力。In order to achieve the above purpose, the present utility model provides a biomechanical loading device for the ankle, which includes a foot plate, a vertical axis support, a horizontal axis support, a bottom support support, a bottom connecting head, a top connecting head and a vertical axis sliding rod; The horizontal axis bracket is fixedly connected; the front and rear ends of the foot plate are movably connected with the end of the vertical axis bracket, move along the horizontal axis direction and rotate around the vertical axis; the two ends of the horizontal axis bracket are movably connected with the bottom bracket bracket, swinging along the vertical axis direction; The support bracket is movably connected with the bottom connector, rotates around the horizontal axis, and the bottom connector rotates around the vertical axis; the top connector moves up and down along the vertical axis slide bar to fix the foot specimen and adjust the vertical pressure.
进一步地,纵轴支架端头设置有横向夹头,横向夹头一端与纵轴支架端头活动连接,另一端固定夹在脚板的不同位置。Further, the end of the vertical axis support is provided with a transverse collet, one end of the transverse collet is movably connected with the end of the longitudinal axis support, and the other end is fixedly clamped at different positions of the foot plate.
进一步地,横向夹头设置有若干个螺钉孔,螺钉孔与螺钉的配合使横向夹头固定夹紧脚板。Further, the transverse collet is provided with several screw holes, and the cooperation of the screw holes and the screws enables the transverse collet to fix and clamp the foot plate.
进一步地,纵轴支架的端头设置有若干个纵轴转动刻度孔,纵轴转动刻度孔排列形成若干个圆弧形,脚板的连接头插入在纵轴转动刻度孔内,以调整脚板绕纵轴转动的角度。Further, the end of the vertical axis bracket is provided with a number of longitudinal axis rotation scale holes, the longitudinal axis rotation scale holes are arranged to form a number of arcs, and the connector of the foot plate is inserted into the longitudinal axis rotation scale hole to adjust the vertical axis of the foot plate. The angle of rotation of the shaft.
进一步地,纵轴支架与横轴支架垂直相交,相交部位通过金属螺钉固定连接。Further, the vertical axis bracket and the horizontal axis bracket intersect vertically, and the intersecting parts are fixedly connected by metal screws.
进一步地,脚板设有多个均匀分布的足部固定孔,足部固定孔与螺钉的配合使足部标本固定在脚板上。Further, the foot plate is provided with a plurality of evenly distributed foot fixing holes, and the cooperation of the foot fixing holes and the screws enables the foot specimen to be fixed on the foot plate.
进一步地,横轴支架两端设置有多个均匀分布呈圆弧状的纵向移动刻度孔,与底托支架上的纵向移动刻度孔对应,以调整脚板绕横轴转动的角度。Further, the two ends of the horizontal axis bracket are provided with a plurality of evenly distributed longitudinal moving scale holes in arc shape, corresponding to the longitudinal moving scale holes on the bottom bracket bracket, so as to adjust the rotation angle of the foot plate around the horizontal axis.
进一步地,底部连接头和顶部连接头均为圆锥面,底部连接头设有纵向凹槽。Further, both the bottom connector and the top connector are conical surfaces, and the bottom connector is provided with a longitudinal groove.
进一步地,还包括底托连接件,底托连接件上部与底托支架固定连接,下部活动连接于纵向凹槽内,进行来回摆动。Further, it also includes a bottom bracket connector, the upper part of the bottom bracket connector is fixedly connected with the bottom bracket bracket, and the lower part is movably connected in the longitudinal groove to swing back and forth.
进一步地,还包括基座,底部连接头与竖轴滑杆固定在基座上。Further, it also includes a base, and the bottom connector and the vertical shaft sliding rod are fixed on the base.
与现有技术相比,本实用新型提供的足踝生物力学加载装置能更有效的模拟踝关节在真实运动过程中的受力状况。将足踝部标本的足底与脚板固定连接,脚板与纵轴支架活动连接,通过纵轴支架的调整使脚板沿横轴方向移动和绕纵轴转动,实现脚板两个自由度的调整,可以模拟足踝的内翻和外翻。横轴支架在底托支架上摆动,底托支架在底部连接头上绕横轴转动,使脚板实现横轴转动的自由度调整,可以模拟足踝的跖屈和背伸。底部连接头绕竖轴转动,使脚板实现竖轴转动的自由度调整,可以模拟足踝的外旋和内旋。顶部连接头与足部标本的上部连接,顶部连接头在竖轴滑杆上移动调整位置,实现对足部标本脚踝的生物力学加载,模拟了足踝在运动状况中的受力的状况。本实用新型可以对足部标本进行三维六自由度的力学作用,实现足踝的复合姿势。通过本实用新型可以模拟足踝的各种受力状况,使检测观察的结果更接近脚踝在运动过程中的真实生理状况。Compared with the prior art, the ankle biomechanical loading device provided by the utility model can more effectively simulate the stress condition of the ankle joint in the real movement process. The sole of the ankle specimen is fixedly connected to the foot plate, and the foot plate is movably connected to the vertical axis bracket. Through the adjustment of the longitudinal axis bracket, the foot plate moves along the horizontal axis and rotates around the vertical axis to realize the adjustment of the two degrees of freedom of the foot plate. Simulates the inversion and valgus of the ankle. The horizontal axis bracket swings on the bottom bracket, and the bottom bracket rotates around the horizontal axis on the bottom connector, so that the foot plate can realize the degree of freedom adjustment of the horizontal axis rotation, which can simulate the plantar flexion and dorsi extension of the ankle. The bottom connector rotates around the vertical axis, so that the foot plate can realize the adjustment of the degree of freedom of the vertical axis rotation, which can simulate the external rotation and internal rotation of the ankle. The top connector is connected to the upper part of the foot specimen, and the top connector moves and adjusts the position on the vertical axis slide bar to realize the biomechanical loading of the ankle of the foot specimen, simulating the stress condition of the ankle during exercise. The utility model can perform three-dimensional and six-degree-of-freedom mechanical action on the foot specimen, so as to realize the compound posture of the ankle. The utility model can simulate various stress conditions of the ankle, so that the result of detection and observation is closer to the real physiological condition of the ankle during exercise.
附图说明Description of drawings
图1是本实用新型实施例中足踝生物力学加载装置的正视图;Fig. 1 is the front view of the ankle biomechanical loading device in the embodiment of the present invention;
图2是本实用新型实施例中足踝生物力学加载装置的局部放大图;Fig. 2 is a partial enlarged view of the ankle biomechanical loading device in the embodiment of the present invention;
图3是本实用新型实施例中纵轴支架和脚板的俯视图;Fig. 3 is the top view of the vertical axis support and the foot plate in the embodiment of the present invention;
图4是本实用新型实施例中纵轴支架和横轴支架的俯视图;4 is a top view of the vertical axis support and the horizontal axis support in the embodiment of the present utility model;
图5是本实用新型实施例中底托支架和横轴支架的侧视图;5 is a side view of the bottom bracket bracket and the horizontal axis bracket in the embodiment of the present utility model;
图6是本实用新型实施例中纵轴支架的侧视图;Fig. 6 is the side view of the vertical axis support in the embodiment of the present invention;
图7是本实用新型实施例中底部连接头的俯视图;Fig. 7 is the top view of the bottom connector in the embodiment of the present invention;
图8是本实用新型实施例中底托支架的仰视图。8 is a bottom view of the bottom bracket bracket in the embodiment of the present invention.
具体实施方式Detailed ways
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。In order to make the purpose, technical solutions and advantages of the present utility model more clearly understood, the present utility model will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not intended to limit the present invention.
本实用新型实施例提供一种足踝生物力学加载装置,如图1和2所示,包括脚板1、纵轴支架2、横轴支架3、底托支架4、底部连接头5、顶部连接头6及竖轴滑杆7;纵轴支架2与横轴支架3固定连接;脚板1的前后两端与纵轴支架端头21活动连接,沿横轴方向移动和绕纵轴转动;横轴支架3 两端与底托支架4活动连接,沿纵轴方向摆动;底托支架4与底部连接头5 活动连接,绕横轴转动,底部连接头5绕竖轴转动;顶部连接头6沿竖轴滑杆7上下移动,用于固定足部标本并调节竖向的压力。An embodiment of the present utility model provides a biomechanical loading device for the ankle, as shown in Figures 1 and 2, comprising a foot plate 1, a
采用上述结构,将足部标本的足底与脚板1固定连接,脚板1与纵轴支架2活动连接,通过纵轴支架2的调整使脚板1沿横轴方向移动和绕纵轴转动,实现脚板1两个自由度的调整,可以模拟足踝内翻和外翻的状态。横轴支架3在底托支架4上摆动,底托支架4在底部连接头5上绕横轴转动,使脚板1实现绕横轴转动的自由度调整,可以模拟足踝的跖屈和背伸的状态。底部连接头5绕竖轴转动,使脚板1实现竖轴转动的自由度调整,可以模拟足踝的外旋和内旋的状态。顶部连接头6与足部标本的上部连接,顶部连接头6在竖轴滑杆7上移动调整位置,实现对足部标本脚踝的生物力学加载,模拟了足踝在运动状况中的受力的状况。这样可以对足部标本进行三维六自由度的力学作用,实现足踝的复合姿势,使检测观察的结果更接近脚踝在运动过程中的真实生理状况。By adopting the above structure, the sole of the foot specimen is fixedly connected with the foot plate 1, and the foot plate 1 is movably connected with the
本实施例中脚板1、纵轴支架2、横轴支架3、底托支架4、底部连接头 5、顶部连接头6及竖轴滑杆7均采用高强度钢做成,以保证其足够的刚度,最大限度减少其在使用过程中装置产生的形变,减少应力损失,提高试验精度和结果的可信度。In this embodiment, the foot plate 1 , the
如图3和4所示,纵轴支架端头21设置有横向夹头22,横向夹头22 一端与纵轴支架端头21活动连接,另一端固定夹在脚板1上。横向夹头22 设置有若干个螺钉孔221,螺钉孔221与螺钉的配合使横向夹头22固定夹紧脚板1。横向夹头22夹在脚板1的不同位置,使脚板1产生横轴位移。如图 2所示,纵轴支架端头21设置有若干个纵轴转动刻度孔211,排列形成若干个圆弧形。脚板1的连接头11插入在纵轴转动刻度孔211内,以调整脚板1 绕纵轴转动的角度。这样就可以模拟足踝内翻和外翻的状态。As shown in FIGS. 3 and 4 , the
本实施例中,纵轴支架2与横轴支架3垂直相交,连接部位使用金属螺丝固定,对脚板1形成稳定牢固的支撑。In this embodiment, the
如图3所示,脚板1设有多个均匀分布的足部固定孔12,本实施例中足部固定孔12一共有十五排,每排五个。使用螺钉可依据需要固定足部标本的跟骨、第一、第五跖骨头来固定足部标本于脚板1上。通过不将螺钉固定在不同位置的足部固定孔1,可以适配不同大小的足部标本,还可防止使用过程中足部标本的移位及滑脱,提高实验安全性。As shown in FIG. 3 , the foot plate 1 is provided with a plurality of evenly distributed foot fixing holes 12 . In this embodiment, there are fifteen rows of the
如图5和6所示,横轴支架3两端设置有多个均匀分布的纵向移动刻度孔31,纵向移动刻度孔31组成圆弧状,与底托支架的纵向移动刻度孔41 对应,将插件插入到横轴支架3的纵向移动刻度孔31和底托支架的纵向移动刻度孔41中,可以固定横轴支架3的转动角度,从而调整脚板1绕横轴转动的角度,模拟足踝的跖屈和背伸状态。As shown in Figures 5 and 6, a plurality of evenly distributed longitudinal movement scale holes 31 are provided at both ends of the
如图2和7所示,底部连接头5和顶部连接头6均为圆锥面,底部连接头5设有纵向凹槽51。如图1和8所示,还包括底托连接件9,底托连接件 9上部与底托支架4固定连接,下部活动连接于纵向凹槽51内的插孔52中,在凹槽51内进行来回摆动,使脚板1可以绕横轴转动,模拟足踝的跖屈和背伸状态。As shown in FIGS. 2 and 7 , the
如图1所示,本实施例还包括基座8,底部连接头5与竖轴滑杆7固定在基座上,使底部连接头5与顶部连接头6配合更稳定。顶部连接头6沿着竖轴滑杆7向下移动,可以增加足部标本的受力。As shown in FIG. 1 , this embodiment further includes a base 8 on which the
本实用新型的使用方法:The use method of this utility model:
1、首先将新鲜冰冻尸体标本自膝关节以下15cm截断;去除标本踝关节水平以上表面皮肤、皮下及其他软组织,保留踝关节及足部完整的韧带组织;通过截骨制作踝关节骨折模型后使用复位内固定的方法固定标本模型;使用牙托粉包埋固定胫腓骨骨端,连接固定顶端接口备用。1. First, cut off the fresh frozen corpse specimen from 15cm below the knee joint; remove the surface skin, subcutaneous and other soft tissues above the level of the ankle joint of the specimen, and retain the complete ligament tissue of the ankle joint and foot; make an ankle fracture model by osteotomy before use The method of reduction and internal fixation was used to fix the specimen model; the tibia and fibula bone ends were embedded and fixed with dental powder, and the top interface was connected and fixed for use.
2、将标本固定在脚板1上,上端与顶部连接头6连接固定;周期性调节脚板1的自由度,实现标本踝关节正常步态周期中特定的姿势,调节顶部连接头6在竖轴滑杆7上位置,从而调整特定姿势踝关节所承受的应力大小。2. Fix the specimen on the foot plate 1, and the upper end is connected and fixed with the top connector 6; periodically adjust the degree of freedom of the foot plate 1 to achieve a specific posture in the normal gait cycle of the ankle joint of the specimen, and adjust the top connector 6 to slide on the vertical axis. The position of the rod 7 is adjusted to adjust the stress on the ankle joint in a specific posture.
如此对标本进行特定周期及频率的生物力学循环加载,可对骨折内固定的强度进行生物力学测试。同样原理可以模拟其它足踝部损伤的损伤机制及手术方式的检测。本实用新型进行足踝部损伤病理生理机制的探索与手术方式的力学测试获得可靠的数据;为足踝部损伤的治疗选择提供了高质量的参考依据。In this way, biomechanical cyclic loading of a specific period and frequency can be performed on the specimen, and a biomechanical test can be performed on the strength of fracture internal fixation. The same principle can simulate the injury mechanism and surgical detection of other foot and ankle injuries. The utility model obtains reliable data through the exploration of the pathophysiological mechanism of the injury of the foot and ankle and the mechanical test of the operation method, and provides a high-quality reference basis for the selection of the treatment of the injury of the foot and ankle.
本实用新型实施例操作简单,安全可靠,是基于对踝关节正常生物力学机制的模拟,来可以实现步态周期不同时相踝关节的姿势,以及体育运动中踝关节特殊姿势。本实施例可以实现踝关节不同步态周期时相中的力学测试,更加真实的反映踝关节损伤的发病机制及更加客观准确的对比不同治疗方法的优劣。The embodiment of the utility model is simple to operate, safe and reliable, and is based on the simulation of the normal biomechanical mechanism of the ankle joint, so that the posture of the ankle joint in different phases of the gait cycle and the special posture of the ankle joint in sports can be realized. This embodiment can realize the mechanical test of the ankle joint in different phases of the synchrony, more truly reflect the pathogenesis of ankle joint injury, and more objectively and accurately compare the advantages and disadvantages of different treatment methods.
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求的保护范围为准。The above are only the preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. The changes or replacements should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922080250.1U CN211602754U (en) | 2019-11-27 | 2019-11-27 | Ankle biomechanics loading device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922080250.1U CN211602754U (en) | 2019-11-27 | 2019-11-27 | Ankle biomechanics loading device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211602754U true CN211602754U (en) | 2020-09-29 |
Family
ID=72589371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922080250.1U Active CN211602754U (en) | 2019-11-27 | 2019-11-27 | Ankle biomechanics loading device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211602754U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112451308A (en) * | 2020-10-29 | 2021-03-09 | 雷德宝 | Lower limb rehabilitation instrument |
CN112858051A (en) * | 2019-11-27 | 2021-05-28 | 深圳市第二人民医院 | Ankle biomechanics loading device |
CN112842640A (en) * | 2021-02-23 | 2021-05-28 | 重庆熙科医疗科技有限公司 | Method and device for testing biological stability of implanted talus prosthesis |
-
2019
- 2019-11-27 CN CN201922080250.1U patent/CN211602754U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112858051A (en) * | 2019-11-27 | 2021-05-28 | 深圳市第二人民医院 | Ankle biomechanics loading device |
CN112451308A (en) * | 2020-10-29 | 2021-03-09 | 雷德宝 | Lower limb rehabilitation instrument |
CN112842640A (en) * | 2021-02-23 | 2021-05-28 | 重庆熙科医疗科技有限公司 | Method and device for testing biological stability of implanted talus prosthesis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schopper et al. | Higher stability and more predictive fixation with the Femoral Neck System versus Hansson Pins in femoral neck fractures Pauwels II | |
Jafarnezhadgero et al. | Effects of corrective training on drop landing ground reaction force characteristics and lower limb kinematics in older adults with genu valgus: A randomized controlled trial | |
CN211602754U (en) | Ankle biomechanics loading device | |
CN105769119B (en) | Knee joint soft tissue balance measuring device and its measurement method | |
Shoji et al. | Suture-button fixation and anterior inferior tibiofibular ligament augmentation with suture-tape for syndesmosis injury: a biomechanical cadaveric study | |
Kulig et al. | Selective activation of tibialis posterior: evaluation by magnetic resonance imaging | |
Blackman et al. | Cadaveric flatfoot model: ligament attenuation and Achilles tendon overpull | |
WO2021253827A1 (en) | Squatting human lower limbs joint biomimetic device | |
Lewis et al. | Determination of subtalar joint axis location by restriction of talocrural joint motion | |
Dal Maso et al. | Glenohumeral translations during range-of-motion movements, activities of daily living, and sports activities in healthy participants | |
Li et al. | Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement-brush-knee and twist-step | |
CN109172283A (en) | A kind of knee joint three-dimensional motion detection and training device | |
Kaya et al. | Intraoperative testing of passive and active state mechanics of spastic semitendinosus in conditions involving intermuscular mechanical interactions and gait relevant joint positions | |
Vaarbakken et al. | Primary functions of the quadratus femoris and obturator externus muscles indicated from lengths and moment arms measured in mobilized cadavers | |
Hubbard et al. | Reliability of intratester and intertester measurements derived from an instrumented ankle arthrometer. | |
Rowley et al. | Contributions of flexor hallucis longus and brevis muscles to isometric toe flexor force production | |
Ha et al. | Biomechanical analysis of a novel wedge locking plate in a porcine tibial model | |
CN205234503U (en) | A shin bone section bone auxiliary device that is used for accurate demonstration to cut surface of bone hypsokinesis angle | |
CN202920318U (en) | Joint replacement interval balance auxiliary instrument | |
CN112858051A (en) | Ankle biomechanics loading device | |
Besch et al. | A biomechanical evaluation to optimize the configuration of a hinged external fixator for the primary treatment of severely displaced intraarticular calcaneus fractures with soft tissue damage | |
CN104173055B (en) | A kind of have the virtual intraarticular physical dimension survey tool turning the heart | |
CN111366280A (en) | Pressure distribution measurement method based on medical simulation soft leg | |
Chen | Effects of Electroacupuncture Combined with Exercise Therapy on Sports Function of Meniscus Injured Athletes. | |
RU167394U1 (en) | Device for functional radiation diagnostics of the feet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |