CN211556956U - High-reliability direct-current power supply for transformer substation - Google Patents
High-reliability direct-current power supply for transformer substation Download PDFInfo
- Publication number
- CN211556956U CN211556956U CN201922056772.8U CN201922056772U CN211556956U CN 211556956 U CN211556956 U CN 211556956U CN 201922056772 U CN201922056772 U CN 201922056772U CN 211556956 U CN211556956 U CN 211556956U
- Authority
- CN
- China
- Prior art keywords
- diode
- module
- bus
- switch
- battery pack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002457 bidirectional effect Effects 0.000 claims description 39
- 238000012544 monitoring process Methods 0.000 claims description 37
- 239000003990 capacitor Substances 0.000 claims description 25
- 230000000903 blocking effect Effects 0.000 claims description 22
- 238000002955 isolation Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种变电站直流电源系统领域,尤其涉及一种变电站用高可靠性直流电源。The utility model relates to the field of a direct current power supply system for a substation, in particular to a high reliability direct current power supply for a substation.
背景技术Background technique
直流系统电源是变电站内继电保护及自动控制等装置的供电电源,蓄电池组作为直流系统正常工作的唯一备用电源是直流系统的核心组成部分,其供电可靠性对电力系统的安全运行起着重要的作用。The DC system power supply is the power supply for the relay protection and automatic control devices in the substation. As the only backup power supply for the DC system to work normally, the battery pack is the core component of the DC system, and its power supply reliability plays an important role in the safe operation of the power system. effect.
目前,直流系统的供电方案为:380V交流电转化为110V或220V直流电给系统供电,同时有一组蓄电池备用,当交流异常时,由蓄电池组供电。备用电源只有一个蓄电池组,交流异常时,若该蓄电池组也发生故障,直流系统就将失去电源;电池更换时更换流程复杂。蓄电池组为电池串联,单节故障就会造成整组故障,即单只落后效应。充放电试验时各项指标不能实时采集;实时监控功能不完善,蓄电池的运行状态及性能变化趋势不能完全掌握,不能及时预警,排除故障隐患。若直流负载处短路,由于DC/DC供电电流有上限,故无法提供断路器跳闸电流,无法切断短路电流。At present, the power supply scheme of the DC system is: 380V AC is converted into 110V or 220V DC to supply power to the system, and there is a set of batteries for backup. When the AC is abnormal, the battery pack supplies power. There is only one battery pack for the backup power supply. When the AC is abnormal, if the battery pack also fails, the DC system will lose power; the replacement process for battery replacement is complicated. The battery group is connected in series, and a single fault will cause the entire group to fail, that is, a single lag effect. Various indicators cannot be collected in real time during the charge and discharge test; the real-time monitoring function is not perfect, the operation status and performance change trend of the battery cannot be fully grasped, and the early warning cannot be timely to eliminate hidden troubles. If the DC load is short-circuited, because the DC/DC power supply current has an upper limit, it cannot provide the tripping current of the circuit breaker and cannot cut off the short-circuit current.
例如,一种在中国专利文献上公开的“一种变电站直流电源系统”,其公告号“CN203481883U”,包括蓄电池模块组,所述蓄电池模块组包括多个并联的蓄电池模块,每个所述蓄电池模块包括AC/DC充电模块、磷酸铁锂蓄电池组和DC/DC升压模块;所述变电站直流电源系统还包括供电电流调整模块、充放电电流调整模块、保护装置和电池管理模块;所述供电电流调整模块、充放电电流调整模块、保护装置、电池管理模块均与所述蓄电池模块组电性连接。该电源系统虽然采用并联电池模块的结构,但若直流负载处短路,由于DC/DC供电电流有上限,故无法提供断路器跳闸电流,无法切断短路电流,支撑母线电压的响应速度也受DC/DC性能影响。For example, a "substation DC power supply system" disclosed in Chinese patent documents, its bulletin number "CN203481883U", includes a battery module group, the battery module group includes a plurality of parallel battery modules, each of the battery modules The module includes an AC/DC charging module, a lithium iron phosphate battery pack and a DC/DC booster module; the substation DC power supply system further includes a power supply current adjustment module, a charge and discharge current adjustment module, a protection device and a battery management module; the power supply The current adjustment module, the charge and discharge current adjustment module, the protection device, and the battery management module are all electrically connected to the battery module group. Although the power supply system adopts the structure of parallel battery modules, if there is a short circuit at the DC load, due to the upper limit of the DC/DC supply current, it cannot provide the trip current of the circuit breaker, and cannot cut off the short-circuit current. The response speed of the supporting bus voltage is also affected by the DC/DC. DC performance impact.
实用新型内容Utility model content
本实用新型主要解决现有技术直流电源系统电池组串联,可靠性差,存在单只落后效应;在直流负载处短路时,无法切断短路电流的问题;提供一种变电站用高可靠性直流系统,解决在交流异常且蓄电池组也发生故障时,直流系统就将失去电源和直流电源系统电池模块单只落后效应的问题,以及解决在直流负载处短路时,无法切断短路电流的问题。The utility model mainly solves the problem that the battery packs of the prior art DC power supply system are connected in series, the reliability is poor, and there is a single backward effect; when the DC load is short-circuited, the short-circuit current cannot be cut off; When the AC is abnormal and the battery pack also fails, the DC system will lose power and the single backward effect of the DC power system battery module, and solve the problem that the short-circuit current cannot be cut off when the DC load is short-circuited.
本实用新型的上述技术问题主要是通过下述技术方案得以解决的:The above-mentioned technical problems of the present utility model are mainly solved by the following technical solutions:
本实用新型包括母线、AC/DC模块、断路器和直流负载;AC/DC模块输入端的母线为交流母线,AC/DC模块输出端的母线为直流母线,直流母线包括若干直流出线,每个直流出线均连接直流负载,断路器设置在直流出线上;其特征在于,所述的直流电源还包括双向DC/DC模块和电池模块,电池模块包括若干并联的电池组,每个电池组均连接有一个双向DC/DC模块;双向DC/DC模块与直流母线相连接;电池组与直流母线之间设置有导向元件。The utility model comprises a busbar, an AC/DC module, a circuit breaker and a DC load; the busbar at the input end of the AC/DC module is an AC busbar, the busbar at the output end of the AC/DC module is a DC busbar, and the DC busbar includes a plurality of DC outlet wires, each DC outlet wire Both are connected to the DC load, and the circuit breaker is arranged on the DC outlet; it is characterized in that the DC power supply further includes a bidirectional DC/DC module and a battery module, and the battery module includes a number of parallel battery packs, and each battery pack is connected with one A bidirectional DC/DC module; the bidirectional DC/DC module is connected with the DC bus; a guiding element is arranged between the battery pack and the DC bus.
使用电池组并联代替串联方案,一个电池模块包括若干个电池组,电池组之间互为备用,当有若干电池组发生故障,即使只剩下一组蓄电池也能维持供电,保证不失电。考虑实际,一个电池模块包括3或4个电池组。电池组并联代替串联,每个电池组中相应的蓄电池数减少,考虑实际,3个电池组时,每个电池组包括18节蓄电池,4个电池组时,每个电池组包括13节蓄电池;减弱了单只落后效应,减低了故障的概率,提高了直流系统的可靠性。采用了并联的电池组,能在电池组出现故障时,直接更换故障的电池组,不影响直流系统的正常工作;更换工序简单,不需要先安装备用电池,进行故障电池组的更换,再拆除备用电池。更换备用电池组的工序简单、方便、安全。Using the battery pack in parallel instead of the series scheme, a battery module includes several battery packs, and the battery packs serve as backups for each other. When several battery packs fail, even if only one set of batteries is left, the power supply can be maintained to ensure no power loss. Considering the reality, one battery module includes 3 or 4 battery packs. When the battery packs are connected in parallel instead of in series, the corresponding number of batteries in each battery pack is reduced. Considering the actual situation, when there are 3 battery packs, each battery pack includes 18 batteries, and when there are 4 battery packs, each battery pack includes 13 batteries; It weakens the single backward effect, reduces the probability of failure, and improves the reliability of the DC system. The use of parallel battery packs can directly replace the faulty battery pack when the battery pack fails, without affecting the normal operation of the DC system; the replacement process is simple, and there is no need to install a backup battery first, replace the faulty battery pack, and then remove it spare battery. The procedure of replacing the backup battery pack is simple, convenient and safe.
在直流母线与电池组之间设置有导向元件,将电池组通过导向元件串联,连接到直流母线上,当直流负载短路时,向断路器提供开断电流,保护直流系统,提高直流系统的可靠性和安全性;串联电池与直流母线直接相连,当直流母线失压时能瞬时提供电压,直至DC/DC开始工作,支撑起电压,更提高了直流负载的供电可靠性。A guiding element is arranged between the DC bus bar and the battery pack, and the battery pack is connected in series through the guiding element and connected to the DC bus bar. When the DC load is short-circuited, a breaking current is provided to the circuit breaker to protect the DC system and improve the reliability of the DC system. The battery in series is directly connected to the DC bus, and can provide voltage instantaneously when the DC bus loses voltage until the DC/DC starts to work, supporting the voltage, which further improves the power supply reliability of the DC load.
作为优选,所述的导向元件为二极管,二极管包括二极管D5和二极管D8;电池组之间依次串联,组成串联电池组;二极管D5的阳极连接直流母线的负母线,二极管D5的阴极连接串联电池组的负极;二极管D8的阳极连接串联电池组的正极,二极管D8的阴极连接直流母线的正母线。因为二极管的反向截止特性,在直流母线电压正常时,电池组的串联电路不导通;当直流母线直流负载短路时,直流母线的电压降为0,串联电路导通,为断路器提供开断电流,保证在直流负载短路时断路器能够正常动作,保证了直流系统的可靠性和安全性。Preferably, the guiding element is a diode, and the diode includes a diode D5 and a diode D8; the battery packs are connected in series to form a series battery pack; the anode of the diode D5 is connected to the negative bus of the DC bus, and the cathode of the diode D5 is connected to the series-connected battery pack The anode of the diode D8 is connected to the anode of the series battery pack, and the cathode of the diode D8 is connected to the positive bus of the DC bus. Because of the reverse cut-off characteristic of the diode, when the DC bus voltage is normal, the series circuit of the battery pack does not conduct; when the DC bus DC load is short-circuited, the voltage drop of the DC bus is 0, the series circuit is conducted, and the circuit breaker provides opening The current is cut off to ensure that the circuit breaker can operate normally when the DC load is short-circuited, which ensures the reliability and safety of the DC system.
作为优选,所述的直流电源还包括监控单元和上位机,监控单元包括监控芯片和与监控芯片相连接的电压传感器、温度传感器、电流传感器;所述的电压传感器、温度传感器和电流传感器连接在电池模块上,监控芯片与DC/DC模块的控制端连接,监控芯片通过通信协议与上位机连接。监控单元监测电池模块的电流、电压和温度数据,监控芯片将数据上传到上位机,方便数据的记录、储存和观察。监控单元使用触摸式微机监控器,型号为KXT05。监控芯片连接上位机和DC/DC模块的控制端,方便工作人员远程控制。Preferably, the DC power supply further includes a monitoring unit and a host computer, and the monitoring unit includes a monitoring chip and a voltage sensor, a temperature sensor, and a current sensor connected to the monitoring chip; the voltage sensor, temperature sensor, and current sensor are connected to the On the battery module, the monitoring chip is connected with the control terminal of the DC/DC module, and the monitoring chip is connected with the upper computer through a communication protocol. The monitoring unit monitors the current, voltage and temperature data of the battery module, and the monitoring chip uploads the data to the host computer to facilitate data recording, storage and observation. The monitoring unit uses a touch-type microcomputer monitor, the model is KXT05. The monitoring chip is connected to the host computer and the control terminal of the DC/DC module, which is convenient for the remote control of the staff.
作为优选,所述的双向DC/DC模块为带隔离的双向DC/DC模块;双向DC/DC模块包括带隔离的直流降压电路和带隔离的直流升压电路;所述的直流降压电路与直流升压电路的电路结构相同,直流升压电路与直流降压电路反向并联;直流降压电路的输入端连接直流升压电路的输出端,直流降压电路的输出端连接直流升压电路的输入端。选用双向DC/DC模块,DC/DC模块既能从直流母线向电池组充电,又能通过DC/DC模块从电池组向直流母线放电,系统结构简单,功能完备。双向DC/DC模块对电池组的充放电根据双向DC/DC模块的输出电压的大小与直流母线电压的大小差以及闭锁开关S1的开关状态来实现,不需要程序的控制,低延时,快速响应。Preferably, the bidirectional DC/DC module is an isolated bidirectional DC/DC module; the bidirectional DC/DC module includes an isolated DC step-down circuit and an isolated DC boost circuit; the DC step-down circuit The circuit structure of the DC boost circuit is the same as that of the DC boost circuit. The DC boost circuit is connected in reverse parallel with the DC step-down circuit; the input end of the DC step-down circuit is connected to the output end of the DC boost circuit, and the output end of the DC step-down circuit is connected to the DC boost circuit. the input of the circuit. The bidirectional DC/DC module is selected. The DC/DC module can not only charge the battery pack from the DC bus, but also discharge from the battery pack to the DC bus through the DC/DC module. The system has a simple structure and complete functions. The charging and discharging of the battery pack by the bidirectional DC/DC module is realized according to the difference between the output voltage of the bidirectional DC/DC module and the DC bus voltage and the switching state of the blocking switch S1, without program control, low delay, fast response.
作为优选,所述的双向DC/DC模块还包括二极管D6、二极管D7、闭锁开关S1和互锁开关S2;互锁开关S2的第一端连接直流母线的正母线,互锁开关S2的第二端连接闭锁开关S1的第一端,闭锁开关S2的第二端连接直流降压电路的正输入端;直流降压电路的负输入端连接直流母线的负母线,直流降压电路的正输出端连接二极管D6的阳极,二极管D6的阴极连接电池组的正极端,直流降压电路负输出端连接电池组的负极端;直流升压电路的输入端连接电池组,直流升压电路的正输出端连接二极管D7的阳极,二极管D7的阴极连接互锁开关S2的第二端,直流升压电路的负输出端连接直流母线的负母线。二极管D6和二极管D7起到导向作用,防止电流倒灌引起的危险。在双向DC/DC模块和直流母线之间设置有互锁开关S2,在直流降压电路的输入端设置有闭锁开关S1,闭锁开关S1控制电池组的充电闭锁,互锁开关S2在远程充放电时,保证仅有一组电池组进行充放电工作,能分开控制各个电池组的充放电状态,实现各电池组之间相互闭锁功能,保证只有一个电池组处于充放电状态。Preferably, the bidirectional DC/DC module further includes a diode D6, a diode D7, a blocking switch S1 and an interlocking switch S2; the first end of the interlocking switch S2 is connected to the positive bus of the DC bus, and the second end of the interlocking switch S2 The terminal is connected to the first terminal of the blocking switch S1, the second terminal of the blocking switch S2 is connected to the positive input terminal of the DC step-down circuit; the negative input terminal of the DC step-down circuit is connected to the negative bus bar of the DC bus, and the positive output terminal of the DC step-down circuit Connect the anode of diode D6, the cathode of diode D6 is connected to the positive terminal of the battery pack, the negative output terminal of the DC step-down circuit is connected to the negative terminal of the battery pack; the input terminal of the DC boost circuit is connected to the battery pack, and the positive output terminal of the DC boost circuit is connected The anode of the diode D7 is connected, the cathode of the diode D7 is connected to the second end of the interlock switch S2, and the negative output end of the DC boost circuit is connected to the negative bus of the DC bus. Diode D6 and diode D7 play a guiding role to prevent the danger caused by current backflow. An interlock switch S2 is set between the bidirectional DC/DC module and the DC bus, and a blocking switch S1 is set at the input end of the DC step-down circuit. The blocking switch S1 controls the charging and blocking of the battery pack, and the interlock switch S2 is used for remote charging and discharging When charging and discharging, it is ensured that only one battery pack is charged and discharged, the charging and discharging status of each battery pack can be controlled separately, and the mutual locking function of each battery pack can be realized to ensure that only one battery pack is in the charging and discharging status.
作为优选,所述的带隔离的直流降压电路包括第一能控开关、第二能控开关、第三能控开关、第四能控开关、二极管D1、二极管D2、二极管D3、二极管D4、电感L1、电容C1和变压器T1;第二能控开关的第一端作为直流降压电路的正输入端,第二能控开关的第二端连接第一能控开关的第一端,第一能控开关的第二端作为直流降压电路的负输入端;第四能控开关的第一端连接第二能控开关的第一端,第四能控开关的第二端连接第三能控开关的第一端,第三能控开关的第二端连接第一能控开关的第二端;二极管D1的阴极连接二极管D2的阳极;二极管D3的阴极连接二极管D4的阳极;二极管D1的阳极连接二极管D3的阳极,二极管D4的阴极连接二极管D2的阴极;变压器T1原边的第一输入端连接第二开关管的第二端,变压器T1原边的第二输入端连接第四开关管的第二端,变压器T1副边的第一输出端连接二极管D2的阳极,变压器T1副边的第二输出端连接二极管D4的阳极;变压器T1原边的第一输入端和变压器T1原边的第一输出端为同名端;二极管D3的阳极连接电容C1的第一端,二极管D4的阴极连接电感L1的第一端,电感L1的第二端连接电容C1的第二端;电容C1的第一端作为直流降压电路的负输出端,电容C1的第二端作为直流降压电路的正输出端。电感L1稳流,电容C1稳压。直流降压电路为电池组充电,AC/DC模块将交流电转换为110V的直流电压,直流降压模块的开启电压109V,直流降压电路把直流母线的110V电压降到更低,为电池组中的电池充电。因为直流升压电路和直流降压电路结构相同,且反向并联,直流升压电路的输出电压为108V,当直流母线正常供电时,直流母线的电压为110V。当直流母线的电压大于DC/DC模块充电开启电压,且充电功能未闭锁时,直流母线为电池组充电;当直流母线的电压小于DC/DC模块输出端的电压时,电池组放电。电路结构简单,不需要程序控制,通过电压差实现,低延时,响应速度快。且使用了变压器隔离了电池组和直流母线之间电的联系,提高了安全性。Preferably, the isolated DC step-down circuit includes a first controllable switch, a second controllable switch, a third controllable switch, a fourth controllable switch, a diode D1, a diode D2, a diode D3, a diode D4, Inductor L1, capacitor C1 and transformer T1; the first end of the second controllable switch is used as the positive input end of the DC step-down circuit, the second end of the second controllable switch is connected to the first end of the first controllable switch, and the first end of the second controllable switch is connected to the first end of the first controllable switch. The second end of the controllable switch is used as the negative input end of the DC step-down circuit; the first end of the fourth controllable switch is connected to the first end of the second controllable switch, and the second end of the fourth controllable switch is connected to the third energy The first end of the control switch, the second end of the third control switch is connected to the second end of the first control switch; the cathode of the diode D1 is connected to the anode of the diode D2; the cathode of the diode D3 is connected to the anode of the diode D4; The anode is connected to the anode of the diode D3, the cathode of the diode D4 is connected to the cathode of the diode D2; the first input terminal of the primary side of the transformer T1 is connected to the second terminal of the second switch tube, and the second input terminal of the primary side of the transformer T1 is connected to the fourth switch tube The second end of the secondary side of the transformer T1 is connected to the anode of the diode D2, the second output end of the secondary side of the transformer T1 is connected to the anode of the diode D4; the first input end of the primary side of the transformer T1 is connected to the anode of the primary side of the transformer T1 The first output terminal is the same name terminal; the anode of diode D3 is connected to the first terminal of capacitor C1, the cathode of diode D4 is connected to the first terminal of inductor L1, and the second terminal of inductor L1 is connected to the second terminal of capacitor C1; One end serves as the negative output end of the DC step-down circuit, and the second end of the capacitor C1 serves as the positive output end of the DC step-down circuit. The inductor L1 stabilizes the current, and the capacitor C1 stabilizes the current. The DC step-down circuit charges the battery pack, the AC/DC module converts the alternating current into a DC voltage of 110V, the turn-on voltage of the DC step-down module is 109V, and the DC step-down circuit reduces the 110V voltage of the DC bus to a lower level, which is used in the battery pack. battery charge. Because the DC boost circuit and the DC step-down circuit have the same structure and are connected in reverse parallel, the output voltage of the DC boost circuit is 108V. When the DC bus is normally powered, the DC bus voltage is 110V. When the voltage of the DC bus is greater than the charging voltage of the DC/DC module, and the charging function is not blocked, the DC bus charges the battery pack; when the voltage of the DC bus is less than the voltage of the output terminal of the DC/DC module, the battery pack is discharged. The circuit structure is simple, no program control is required, and it is realized by voltage difference, with low delay and fast response speed. In addition, the transformer is used to isolate the electrical connection between the battery pack and the DC bus, and the safety is improved.
作为优选,所述的闭锁开关S1、互锁开关S2和能控开关均为电磁开关。使用电磁开关,控制方式简单,成本低。Preferably, the locking switch S1, the interlocking switch S2 and the controllable switch are all electromagnetic switches. Using the electromagnetic switch, the control method is simple and the cost is low.
作为优选,所述的闭锁开关S1和能控开关为N沟道MOS管,闭锁开关S1和能控开关的第一端为MOS管的漏极,闭锁开关S1和能控开关的第二端为MOS管的源极。使用N沟道MOS管作为开关,成本低,控制方式简单,抗干扰能力强。Preferably, the blocking switch S1 and the controllable switch are N-channel MOS transistors, the first ends of the blocking switch S1 and the controllable switch are the drains of the MOS transistors, and the second ends of the blocking switch S1 and the controllable switch are The source of the MOS tube. Using N-channel MOS tube as the switch, the cost is low, the control method is simple, and the anti-interference ability is strong.
作为优选,所述的每个电池组包括18节串联的蓄电池。单个电池组的蓄电池数降低到18节,降低了每个电池组的蓄电池数目,降低了电池组由于单只落后效应造成的发生故障的概率,提高了直流电源的可靠性和安全性。Preferably, each battery pack includes 18 batteries connected in series. The number of batteries in a single battery pack is reduced to 18, which reduces the number of batteries in each battery pack, reduces the probability of failure of the battery pack due to the single backward effect, and improves the reliability and safety of the DC power supply.
本实用新型的有益效果是:The beneficial effects of the present utility model are:
1.使用并联的电池组,降低了因为单只落后效应发生故障的概率,降低电池模块出故障的概率,提高了直流电源的可靠性。1. The use of parallel battery packs reduces the probability of failure due to the single backward effect, reduces the probability of battery module failure, and improves the reliability of the DC power supply.
2.在直流母线与电池组之间设置有二极管,在一般情况下截止,在负载短路时为断路器提供开断电流,保证了直流电源的安全性和可靠性。2. A diode is arranged between the DC bus and the battery pack, which is normally cut off, and provides breaking current for the circuit breaker when the load is short-circuited, ensuring the safety and reliability of the DC power supply.
3. 串联电池与直流母线直接相连,当直流母线失压时能瞬时提供电压,直至DC/DC开始工作,支撑起电压,更提高了直流负载的供电可靠性。3. The battery in series is directly connected to the DC bus. When the DC bus loses voltage, it can provide voltage instantaneously until the DC/DC starts to work to support the voltage, which improves the reliability of the DC load power supply.
4.采用并联的电池组,在故障更换时不需要额外的设备,也不需要断电,更换电池组的工序简单,提高效率。4. Using parallel battery packs, no additional equipment is required for fault replacement, and no power failure is required. The process of replacing battery packs is simple and efficiency is improved.
5.监控单元监测电池模块状态,连接上位机,远程控制电池组充放电,节省人力,避免人工检测的误差。5. The monitoring unit monitors the status of the battery module, connects to the host computer, and remotely controls the charging and discharging of the battery pack, saving manpower and avoiding errors in manual detection.
6.使用双向DC/DC模块,双向DC/DC模块根据电压差以及闭锁开关S1的开关状态实现充放电功能,不需要程序控制,响应速度快、低延时。6. The bidirectional DC/DC module is used. The bidirectional DC/DC module realizes the charging and discharging function according to the voltage difference and the switching state of the blocking switch S1, without program control, with fast response speed and low delay.
7.双向DC/DC模块带变压器隔离,隔离了电池组和直流母线之间电的联系,提高了安全性。7. The bidirectional DC/DC module has transformer isolation, which isolates the electrical connection between the battery pack and the DC bus and improves safety.
附图说明Description of drawings
图1是本实用新型的一种电路原理连接结构框图。FIG. 1 is a block diagram of a circuit principle connection structure of the present invention.
图2是本实用新型的一种监控单元连接结构框图。Figure 2 is a block diagram of the connection structure of a monitoring unit of the present invention.
图3是本实用新型的一种双向DC/DC模块电路图。FIG. 3 is a circuit diagram of a bidirectional DC/DC module of the present invention.
图中1. AC/DC模块,2. 断路器,3. 直流负载,4. 电池组,5.DC/DC模块,51.直流降压电路,52.直流升压电路,6电池模块,7监控单元,71.监控芯片,72.电压传感器,73.温度传感器,74.电流传感器,8.上位机。In the picture 1. AC/DC module, 2. circuit breaker, 3. DC load, 4. battery pack, 5. DC/DC module, 51. DC step-down circuit, 52. DC boost circuit, 6. battery module, 7. Monitoring unit, 71. Monitoring chip, 72. Voltage sensor, 73. Temperature sensor, 74. Current sensor, 8. Host computer.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本实用新型的技术方案作进一步具体的说明。The technical solutions of the present utility model will be further described in detail below through embodiments and in conjunction with the accompanying drawings.
实施例:Example:
一种变电站用高可靠性直流电源,如图1所示,包括母线、AC/DC模块1、断路器2、直流负载3、DC/DC模块5、电池模块6、监控单元7和上位机8。A high-reliability DC power supply for a substation, as shown in Figure 1, includes a bus bar, an AC/DC module 1, a
AC/DC模块1输入端的母线为交流母线,AC/DC模块1输出端的母线为直流母线。交流母线包括火线L和零线N,直流母线包括正母线M+和负母线M-。直流母线包括若干直流出线,每个直流出现均连接直流负载3,断路器2设置在直流出线的与直流负载3之间。在一个断路器2断路保护时,其他直流出线的直流负载依旧能继续工作。电池模块6与DC/DC模块5相连接,DC/DC模块5与直流母线相连接。监控单元7与电池模块6和DC/DC模块5的控制端相连接,监控单元7与上位机8通过通信协议通信连接。The busbar at the input end of the AC/DC module 1 is an AC busbar, and the busbar at the output end of the AC/DC module 1 is a DC busbar. The AC bus includes the live line L and the neutral line N, and the DC bus includes the positive bus M+ and the negative bus M-. The DC bus includes several DC outlet lines, each DC occurrence is connected to the
电池模块6包括若干并联的电池组4,每个电池组4均连接有一个DC/DC模块5,DC/DC模块5与直流母线相连接。每个电池组包括18节串联的蓄电池。单个电池组的蓄电池数降低到18节,减少了每个电池组中的蓄电池数目,降低了电池组由于单只落后效应造成的发生故障的概率,提高了直流电源的可靠性。The battery module 6 includes a plurality of parallel battery packs 4, each
本实施例采用了并联的电池组4,能在电池组4出现故障时,直接更换故障的电池组,不影响直流系统的正常工作;更换工序简单,不需要先安装备用电池,进行故障电池组的更换,再拆除备用电池。更换备用电池组的工序简单、方便、安全,提高工作效率。This embodiment adopts the battery packs 4 connected in parallel, so that when the
使用电池组4并联代替串联方案,一个电池模块6包括三个或四个电池组4并联,在本实施例中为三个电池组4并联。电池组4之间互为备用,当有一个或多个电池组4发生故障时,即使只剩下一组蓄电池也能维持供电,也能保证不失电。在交流异常且电池模块6中部分电池组4故障时,直流系统依旧有电源供电;电池模块6中的单个或部分电池组4的故障不会使得整个电池模块6故障;每个电池组中的蓄电池数目减少,减弱了单只落后效应,减低了故障的概率,提高了直流系统的可靠性;串联电池与直流母线直接相连,当直流母线失压时能瞬时提供电压,直至DC/DC开始工作,支撑起电压,更提高了直流电源的供电可靠性。Instead of the series solution, the battery packs 4 are used in parallel, and one battery module 6 includes three or four
电池模块6与直流母线之间设置有二极管。在本实施例中,二极管包括二极管D5和二极管D8。A diode is provided between the battery module 6 and the DC bus. In this embodiment, the diodes include diodes D5 and D8.
电池组之间依次串联,组成串联电池组。在本实施例中,从靠近AC/DC模块1侧到靠近断路器2侧的电池组依次为第一电池组、第二电池组和第三电池组。第一电池组的正极连接第二电池组的负极,第二电池组的正极连接第三电池组的负极;二极管D5的阳极连接直流母线的负母线M-,二极管D5的阴极连接第一电池组负极;二极管D8的阳极连接第三电池组正极,二极管D8的阴极连接直流母线的正母线M+。The battery packs are connected in series in sequence to form a series battery pack. In this embodiment, the battery packs from the side close to the AC/DC module 1 to the side close to the
因为二极管的反向截止特性,在直流母线电压正常时,电池组4的串联电路不导通;当直流母线直流负载3短路时,直流母线的电压降为零,电池组4的串联电路导通,为断路器提供开断电流,保证在直流负载短路时断路器能够正常动作,保证了直流系统的可靠性和安全性。Because of the reverse cut-off characteristic of the diode, when the DC bus voltage is normal, the series circuit of the
如图2所示,监控单元7包括监控芯片71和与监控芯片71相连接的电压传感器72、温度传感器73、电流传感器74;所述的电压传感器72、温度传感器73和电流传感器74连接在电池模块6上,监控芯片71与DC/DC模块5的控制端连接,监控芯片71通过通信协议与上位机8连接。As shown in FIG. 2 , the
监控单元7通过电流传感器74、电压传感器72和温度传感器73分别监测电池模块6的电流、电压和温度数据,监控芯片71将数据上传到上位机8,方便数据的记录、储存和观察。节省人力读取监测数据,避免人工误差,节省人力。监控单元8使用触摸式微机监控器,型号为KXT05。监控芯片71连接上位机8和DC/DC模块5的控制端,方便工作人员远程控制电池模块6进行充放电电实验,节省人力,控制方便。The
如图3所示,双向DC/DC模块5为带隔离的双向DC/DC模块5。双向DC/DC模块5包括带隔离的直流降压电路51、带隔离的直流升压电路52、二极管D6、二极管D7、闭锁开关S1和互锁开关S2。直流降压电路51与直流升压电路52的电路结构相同,直流升压电路52与直流降压电路51反向并联。在本实施例中,闭锁开关S1为N沟道MOS管,互锁开关S2为电磁开关。As shown in FIG. 3 , the bidirectional DC/DC module 5 is a bidirectional DC/DC module 5 with isolation. The bidirectional DC/DC module 5 includes a DC step-
直流降压电路51包括第一能控开关、第二能控开关、第三能控开关、第四能控开关、二极管D1、二极管D2、二极管D3、二极管D4、电感L1、电容C1和变压器T1。第一能控开关为带保护二极管的N沟道MOS管Q1,第二能控开关为带保护二极管的N沟道MOS管Q2,第三能控开关为带保护二极管的N沟道MOS管Q3,第四能控开关为带保护二极管的N沟道MOS管Q4。The DC step-
MOS管Q2的漏极作为直流降压电路51的正输入端,MOS管Q2的源极连接MOS管Q1的漏极,MOS管Q1的源极作为直流降压电路51的负输入端。MOS管Q4的漏极连接MOS管Q2的漏极,MOS管Q4的源极连接MSO管Q3的漏极,MOS管Q3的源极连接MOS管Q1的源极。二极管D1的阴极连接二极管D2的阳极,二极管D3的阴极连接二极管D4的阳极;二极管D1的阳极连接二极管D3的阳极,二极管D4的阴极连接二极管D2的阴极。变压器T1原边的第一输入端连接MOS管Q2的源极,变压器T1原边的第二输入端连接MOS管Q4的源极,变压器T1副边的第一输出端连接二极管D2的阳极,变压器T1副边的第二输出端连接二极管D4的阳极;变压器T1原边的第一输入端和变压器T1原边的第一输出端为同名端。The drain of the MOS transistor Q2 serves as the positive input of the DC step-
二极管D3的阳极连接电容C1的第一端,二极管D4的阴极连接电感L1的第一端,电感L1的第二端连接电容C1的第二端;电容C1的第一端作为直流降压电路51的负输出端,电容C1的第二端作为直流降压电路51的正输出端。The anode of the diode D3 is connected to the first end of the capacitor C1, the cathode of the diode D4 is connected to the first end of the inductor L1, and the second end of the inductor L1 is connected to the second end of the capacitor C1; the first end of the capacitor C1 serves as the DC step-
直流降压电路51为电池组充电,AC/DC模块1将交流电转换为110V的直流电压,直流降压电路51把直流母线的110V电压降到更低,为电池组4中的电池充电。电路结构简单,充电不需要程序控制,通过电压差以及闭锁开关S1的开关状态实现,低延时,响应速度快。使用N沟道MOS管作为开关,成本低,控制方式简单,抗干扰能力强。且使用了变压器隔离了电池组和直流母线之间电的联系,提高了安全性。The DC step-
直流升压电路52包括第五能控开关、第六能控开关、第七能控开关、第八能控开关、二极管D9、二极管D10、二极管D11、二极管D12、电感L2、电容C2和变压器T2。第五能控开关为带保护二极管的N沟道MOS管Q5,第六能控开关为带保护二极管的N沟道MOS管Q6,第七能控开关为带保护二极管的N沟道MOS管Q7,第八能控开关为带保护二极管的N沟道MOS管Q8。The
MOS管Q6的漏极作为直流升压电路52的正输入端,MOS管Q6的源极连接MOS管Q5的漏极,MOS管Q5的源极作为直流升压电路52的负输入端。MOS管Q8的漏极连接MOS管Q6的漏极,MOS管Q8的源极连接MSO管Q7的漏极,MOS管Q7的源极连接MOS管Q5的源极。二极管D9的阴极连接二极管D10的阳极,二极管D11的阴极连接二极管D12的阳极;二极管D9的阳极连接二极管D11的阳极,二极管D12的阴极连接二极管D10的阴极。变压器T1原边的第一输入端连接MOS管Q6的源极,变压器T1原边的第二输入端连接MOS管Q8的源极,变压器T1副边的第一输出端连接二极管D6的阳极,变压器T1副边的第二输出端连接二极管D12的阳极;变压器T1原边的第一输入端和变压器T1原边的第一输出端为同名端。The drain of the MOS transistor Q6 serves as the positive input of the
二极管D11的阳极连接电容C2的第一端,二极管D12的阴极连接电感L2的第一端,电感L2的第二端连接电容C2的第二端;电容C2的第一端作为直流升压电路52的负输出端,电容C2的第二端作为直流升压电路52的正输出端。The anode of the diode D11 is connected to the first end of the capacitor C2, the cathode of the diode D12 is connected to the first end of the inductor L2, and the second end of the inductor L2 is connected to the second end of the capacitor C2; the first end of the capacitor C2 serves as the
直流升压电路的输出电压为108V,当直流母线正常供电时,直流母线的电压为110V。当直流母线的电压大于DC/DC模块5充电开启电压,且充电功能未闭锁时,直流母线为电池组充电;当直流母线的电压小于DC/DC模块5输出端的电压时,电池组放电。电路结构简单,不需要程序控制,通过电压差实现,低延时,响应速度快。使用N沟道MOS管作为开关,成本低,控制方式简单,抗干扰能力强。且使用了变压器隔离了电池组和直流母线之间电的联系,提高了安全性。The output voltage of the DC boost circuit is 108V. When the DC bus is powered normally, the voltage of the DC bus is 110V. When the voltage of the DC bus is greater than the charging voltage of the DC/DC module 5 and the charging function is not blocked, the DC bus charges the battery pack; when the voltage of the DC bus is lower than the voltage of the output terminal of the DC/DC module 5, the battery pack is discharged. The circuit structure is simple, no program control is required, and it is realized by voltage difference, with low delay and fast response speed. Using N-channel MOS tube as the switch, the cost is low, the control method is simple, and the anti-interference ability is strong. In addition, the transformer is used to isolate the electrical connection between the battery pack and the DC bus, and the safety is improved.
互锁开关S2的第一端连接直流母线的正母线M+,互锁开关S2的第二端连接闭锁开关S1的漏极,闭锁开关S2的源极连接直流降压电路51的正输入端,即MOS管Q2的漏极。直流降压电路51的负输入端,即MOS管Q1的源极连接直流母线的负母线M-,直流降压电路51的正输出端即电容C1的第二端连接二极管D6的阳极,二极管D6的阴极连接电池组4的正极端,直流降压电路51负输出端,即电容C1的第一端连接电池组4的负极端。直流升压电路51的输入端连接电池组4,即MOS管Q6的漏极连接电池组4的正极端,MOS管Q5的源极连接电池组4的负极端;直流升压电路52的正输出端,即电容C2的第二端连接二极管D7的阳极,二极管D7的阴极连接互锁开关S2的第二端,直流升压电路52的负输出端,即电容C2的第一端连接直流母线的负母线M-。The first end of the interlock switch S2 is connected to the positive bus M+ of the DC bus, the second end of the interlock switch S2 is connected to the drain of the blocking switch S1, and the source of the blocking switch S2 is connected to the positive input terminal of the DC step-
闭锁开关S1控制电池组的充电闭锁,互锁开关S2在远程充放电时,保证仅有一组电池组进行充放电工作。The locking switch S1 controls the charging and locking of the battery pack, and the interlock switch S2 ensures that only one battery pack is charged and discharged during remote charging and discharging.
选用双向DC/DC模块5,DC/DC模块5既能从直流母线向电池组4充电,又能通过DC/DC模块5从电池组4相直流母线放电,结构简单,功能完备。双向DC/DC模块5使用了变压器隔离了电池组4和直流母线之间电的联系,提高了安全性。电池组4的充放电通过双向DC/DC模块5的输出电压和直流母线电压之间的电压差实现,不需要程序控制,在直流母线失电的瞬间,电池组就能通过双向DC/DC模块5放电,低延迟、响应速度快。The bidirectional DC/DC module 5 is selected. The DC/DC module 5 can not only charge the
在正常情况下,电池组4自动充电过程:Under normal conditions, the
380V交流电源通过AC/DC模块1转换为110V直流电压,输出至直流母线;同时,直流母线处的直流电压110V达到由双向DC/DC模块5充电开启电压109V,双向DC/DC模块5充电功能开启,为电池组4充电。充电过程无需进行电压监测与控制,在直流母线电压达到充电开启电压的情况下,自动进行。双向DC/DC模块5输出电压108V低于直流母线电压,放电功能关闭。The 380V AC power is converted into 110V DC voltage through AC/DC module 1, and output to the DC bus; at the same time, the DC voltage at the DC bus is 110V to reach the charging voltage of 109V by the bidirectional DC/DC module 5, and the bidirectional DC/DC module 5 charging function Turn on to charge the
在交流异常的情况下,电池组4自动放电过程:In the case of abnormal AC, the
当交流异常造成直流母线电压下降时,双向DC/DC模块5输出电压108V大于直流母线电压,放电功能迅速开启,电池组4自动放电给直流母线供电,该放电过程同样无需进行电压监测与控制。同时,直流母线处电压不足以达到双向DC/DC模块5的充电开启电压109V,双向DC/DC模块5的充电功能关闭。When the AC abnormality causes the DC bus voltage to drop, the output voltage of the bidirectional DC/DC module 5 is 108V greater than the DC bus voltage, the discharge function is quickly turned on, and the
选用双向DC/DC模块5,DC/DC模块5既能从直流母线向电池组4充电,又能通过DC/DC模块5从电池组4相直流母线放电,电池组的充放电状态由双向DC/DC模块输出的电压和直流母线电压之间的电压差控制,不需要程序控制,在直流母线失电时,电池组能通过双向DC/DC模块放电,响应时间快、低延迟。整个直流系统结构简单,功能完备。在双向DC/DC模块5和直流母线之间设置有互锁开关,在直流降压模块的输入端设置有闭锁开关,闭锁开关控制电池组的充电闭锁,互锁开关在远程充放电时,保证仅有一组电池组进行充放电工作,能分开控制各个电池组的充放电状态,实现各电池组之间相互闭锁功能,保证只有一个电池组处于充放电状态。The bidirectional DC/DC module 5 is selected. The DC/DC module 5 can not only charge the
本实用新型专利使用并联的电池组,减少了每个电池组中蓄电池的数量,降低了因为单只落后效应发生故障的概率,降低电池模块出故障的概率,提高了直流电源的可靠性。在故障更换时不需要额外的设备,也不需要断电,更换电池组的工序简单,提高效率。在直流母线与电池组之间设置有二极管,在一般情况下截止,在负载短路时为断路器提供开断电流,保证了直流电源的安全性和可靠性。监控单元监测电池模块状态,连接上位机,远程控制电池组充放电,节省人力,避免人工检测的误差。使用双向DC/DC模块,双向DC/DC模块通过电压差实现充放电功能,相应速度快、无延迟,整个直流电源结构简单,功能完全,成本低。The utility model patent uses parallel battery packs, which reduces the number of batteries in each battery pack, reduces the probability of failure due to the single backward effect, reduces the probability of battery module failure, and improves the reliability of the DC power supply. There is no need for additional equipment or power failure during fault replacement, the process of replacing the battery pack is simple, and the efficiency is improved. A diode is arranged between the DC bus bar and the battery pack, which is normally cut off and provides a breaking current for the circuit breaker when the load is short-circuited, ensuring the safety and reliability of the DC power supply. The monitoring unit monitors the status of the battery module, connects to the host computer, and remotely controls the charging and discharging of the battery pack, saving manpower and avoiding errors in manual detection. The bidirectional DC/DC module is used, and the bidirectional DC/DC module realizes the charging and discharging function through the voltage difference, with fast response speed and no delay. The entire DC power supply has a simple structure, complete functions and low cost.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922056772.8U CN211556956U (en) | 2019-11-25 | 2019-11-25 | High-reliability direct-current power supply for transformer substation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922056772.8U CN211556956U (en) | 2019-11-25 | 2019-11-25 | High-reliability direct-current power supply for transformer substation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211556956U true CN211556956U (en) | 2020-09-22 |
Family
ID=72502846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922056772.8U Active CN211556956U (en) | 2019-11-25 | 2019-11-25 | High-reliability direct-current power supply for transformer substation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211556956U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113394765A (en) * | 2021-06-11 | 2021-09-14 | 国网山东省电力公司莱芜供电公司 | Parallel direct-current power supply system |
CN114188932A (en) * | 2021-10-25 | 2022-03-15 | 广西电网有限责任公司玉林供电局 | Intelligent bus coupler applied to station direct-current power supply system |
CN116742294A (en) * | 2023-08-15 | 2023-09-12 | 江苏天合储能有限公司 | Control method of battery cluster and energy storage system |
-
2019
- 2019-11-25 CN CN201922056772.8U patent/CN211556956U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113394765A (en) * | 2021-06-11 | 2021-09-14 | 国网山东省电力公司莱芜供电公司 | Parallel direct-current power supply system |
CN114188932A (en) * | 2021-10-25 | 2022-03-15 | 广西电网有限责任公司玉林供电局 | Intelligent bus coupler applied to station direct-current power supply system |
CN116742294A (en) * | 2023-08-15 | 2023-09-12 | 江苏天合储能有限公司 | Control method of battery cluster and energy storage system |
CN116742294B (en) * | 2023-08-15 | 2023-10-27 | 江苏天合储能有限公司 | Control method of battery cluster and energy storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111049245B (en) | High-reliability direct-current power supply for transformer substation and detection method | |
CN211556956U (en) | High-reliability direct-current power supply for transformer substation | |
WO2022166931A1 (en) | Power optimizer having short circuit protection, and photovoltaic power generation system | |
CN116094143B (en) | Power voltage detecting system | |
CN102664454A (en) | Non-floating charging type substation direct current power supply system based on iron lithium battery | |
CN109066829A (en) | A kind of battery group open-circuit fault recombination discharge system and battery | |
CN105655879A (en) | Voltage arranging mode of bus merging unit double configuration of 110 kV system in intelligent substation double-bus wiring mode | |
CN102148529A (en) | Control device and control method thereof for intelligently supplying power to circuit breaker control unit | |
CN110994633B (en) | Chained SVG chain link module bypass control system and control method thereof | |
CN201994717U (en) | Control device for supplying power to breaker control units | |
CN203660548U (en) | Transformer substation direct-current power supply system provided with emergency stand-by power supply | |
CN101789618B (en) | Wind-solar compensation type solar energy power supply system | |
CN213661215U (en) | Direct current power supply parallel system | |
CN108462465A (en) | One kind can monitor photovoltaic junction box and its working method | |
CN202749900U (en) | Singe-phase inverter for emergency power supply | |
CN117411117A (en) | DC power modules and systems, system operation and maintenance control methods, and intelligent management and control platforms | |
CN110596601A (en) | Single storage battery open circuit on-line monitoring and automatic bridging method | |
CN115589060A (en) | Standby device of direct current system for station | |
CN203984225U (en) | A kind of frequency converter low voltage ride through device | |
CN208835827U (en) | A system of energy storage battery based on AGC frequency modulation in thermal power plant as a power backup system | |
CN210092957U (en) | Direct-current power supply device of transformer substation | |
CN107482613A (en) | A Substation DC System Based on DC/DC Isolation Module | |
CN207010233U (en) | A Substation DC System Based on DC/DC Isolation Module | |
CN113253124A (en) | Safe and energy-saving power storage battery nuclear capacity discharging device and method | |
CN220066935U (en) | Power supply charge and discharge management circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |