CN211442694U - Floating solar high-pressure air cushion power generation island - Google Patents

Floating solar high-pressure air cushion power generation island Download PDF

Info

Publication number
CN211442694U
CN211442694U CN201922311994.XU CN201922311994U CN211442694U CN 211442694 U CN211442694 U CN 211442694U CN 201922311994 U CN201922311994 U CN 201922311994U CN 211442694 U CN211442694 U CN 211442694U
Authority
CN
China
Prior art keywords
air cushion
corridor
peripheral annular
floating solar
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922311994.XU
Other languages
Chinese (zh)
Inventor
张新曙
支鹏飞
李张翰熠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201922311994.XU priority Critical patent/CN211442694U/en
Application granted granted Critical
Publication of CN211442694U publication Critical patent/CN211442694U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The utility model relates to a floating solar energy high pressure air cushion electricity generation island, including the main part of floating on the sea and the photovoltaic board that is used for the electricity generation, the surface of main part is arranged in to the photovoltaic board, the main part includes peripheral annular corridor, the corridor is separated to the cross, the air cushion module, and be used for supporting first depending on nest of tubes and the second of air cushion module and depend on the pipe, the cross is separated the corridor and is located in peripheral annular corridor and the center coincidence in cross point and peripheral annular corridor, first depending on the nest of tubes is located the surface of water, the second depends on the pipe to be located under the surface of water, the air cushion module includes the plane air cushion that the level set up and the skirt area part of vertical setting, the plane air cushion depends on the nest of tubes with first depending on, the top and the first group of tubes connect, the bottom depends on the union coupling. Compared with the prior art, the utility model discloses a design cross partition corridor helps improving the stability of floating solar energy high pressure air cushion electricity generation island to be convenient for install equipment such as photovoltaic board when the large size is used, and the on-the-spot maintenance.

Description

Floating solar high-pressure air cushion power generation island
Technical Field
The utility model belongs to the technical field of a photovoltaic power generation and specifically relates to a floating solar energy high pressure air cushion electricity generation island is related to.
Background
Photovoltaic power generation technology receives more and more attention as a technical means for developing renewable energy, the photovoltaic power generation technology needs sunlight irradiation, so the laying area is limited by land resources, and under the condition that most of the earth surface is ocean, the originally small land area cannot meet the production needs of people, so that the arrangement of photovoltaic power generation by utilizing ocean resources is particularly important.
For example, US10141885B2 discloses a floating solar system having a perimeter pontoon within which an array of individual photovoltaic panels, each of which is fitted with a pontoon, is suspended. The system can float on the sea, and photovoltaic power generation is realized.
But the installation can be convenient only under the small size, and the problem that the equipment is difficult to install and cannot be overhauled on site can occur under the large size. And the small size of the device provides poor resistance to storms and is not very efficient. In addition, the stability is poor and the overturn is easy to happen through a reproduction test.
SUMMERY OF THE UTILITY MODEL
The utility model aims at overcoming the defects of the prior art and designing a floating solar high-pressure air cushion power generation island.
The purpose of the utility model can be realized through the following technical scheme:
a floating solar high-pressure air cushion power generation island comprises a main body floating on the sea and a photovoltaic panel used for power generation, the photovoltaic panel is arranged on the surface of a main body, the main body comprises a peripheral annular corridor, a cross separation corridor and an air cushion module, and a first attached tube group and a second attached tube for supporting the air cushion module, the cross partition corridor is arranged in the peripheral annular corridor and the cross intersection point is superposed with the center of the peripheral annular corridor, the first attached pipe group is positioned on the water surface, the second attached pipe is positioned under the water surface, the air cushion module comprises a horizontal plane air cushion and a vertical skirt belt part, the planar air cushion is connected with the first attached pipe group, the top end of the skirt portion is connected with the first attached pipe group and the planar air cushion film, the bottom end of the skirt portion is connected with the second attached pipe, and the photovoltaic panel is installed on the planar air cushion.
The first set of depending tubes includes an annular portion and a cross portion secured to the peripheral annular gallery and the cross partition gallery, respectively.
The peripheral annular corridor comprises a floor plate for passing, a first baffle arranged on the inner side of the floor plate and a second baffle arranged on the outer side of the floor plate, wherein the height of the first baffle is higher than that of the second baffle.
The annular portion of the first set of depending tubes is located below the floor slab.
The peripheral annular corridor further includes a freeboard and a corridor entrance.
The cross partition corridor divides the circular shape of the surrounding city of the peripheral annular corridor into four fan-shaped areas, and the photovoltaic panels are respectively arranged in the fan-shaped areas.
The planar air cushion is an air cushion film, and the skirt strip part is a skirt strip film.
The air cushion modules of the four fan-shaped areas are divided and independent.
Compared with the prior art, the utility model discloses following beneficial effect has:
1) the cross separation corridor is designed to be beneficial to improving the stability of the solar high-voltage air cushion power generation island and the safety of partitions in the island, and is convenient for installing equipment such as a photovoltaic panel and the like in large-size application and field maintenance.
2) The safety of the photovoltaic panel can be guaranteed through the design of the peripheral annular corridor.
3) The height of the first baffle is higher than that of the second baffle, so that the stability can be improved under the condition of ensuring the safety.
4) By adopting the air cushion film, the wave resistance of the whole device can be enhanced and the stability can be improved
Drawings
Fig. 1 is a schematic structural view of the present invention;
fig. 2 is a schematic top view of the present invention;
FIG. 3 is a schematic view of a sector obtained by division;
FIG. 4 is a schematic cross-sectional view of a peripheral annular corridor;
FIG. 5 is a schematic view of a peripheral annular corridor;
wherein: 1. peripheral annular corridor, 2, cross separate corridor, 3, air cushion module, 4, cross separate corridor's nodical, 5, the first group of tubes of attaching, 6, attach the pipe support, 7, skirt area membrane, 8, the second is according to attaching the pipe, 11, floor board, 12, first baffle, 13, second baffle.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. The embodiment is implemented on the premise of the technical solution of the present invention, and a detailed implementation manner and a specific operation process are given, but the scope of the present invention is not limited to the following embodiments.
A floating solar high-pressure air cushion power generation island is shown in figures 1-3 and comprises a main body floating on the sea surface and a photovoltaic panel used for power generation, wherein the photovoltaic panel is arranged on the surface of the main body, the main body comprises a peripheral annular corridor 1, a cross separation corridor 2 and an air cushion module 3, a first attached pipe group 5 and a second attached pipe 8 are used for supporting the air cushion module, the cross separation corridor 2 is arranged in the peripheral annular corridor 1, the cross point coincides with the center of the peripheral annular corridor 1, the first attached pipe group 5 is located on the water surface, the second attached pipe 8 is located under the water surface, the air cushion module comprises a horizontal plane air cushion and a vertical skirt strip portion, the plane air cushion is connected with the first attached pipe group 5, the top end of the skirt strip portion is connected with the first attached pipe group 5, the bottom end of the skirt strip portion is connected with the second attached pipe 8, and the photovoltaic panel is installed on the plane air cushion.
The first attached pipe group 5 comprises an annular part and a cross part which are respectively fixed on the peripheral annular corridor 1 and the cross separation corridor 2, in addition, the first attached pipe group 5 can be further supported by optionally arranging an attached pipe support, and the air cushion module in each area extends downwards on the fan-shaped arc edge and is fixed on an underwater HDPE pipe, so that high-pressure air leakage of the air cushion film group is prevented.
As shown in fig. 4 to 5, the peripheral annular corridor 1 includes a floor panel 11 for passage, a first barrier 12 provided inside the floor panel 11, and a second barrier 13 provided outside the floor panel 11, and the first barrier 12 is higher than the second barrier 13.
The annular portion of the first depending tube group 5 is located below the floor panel 11.
The height of the first baffle 12 is 5 times or more of the maximum wave height of the sea area (calm sea area) where the power generation island is placed for ten years, and is set to be at least 1.2 m.
The peripheral annular corridor 1 also comprises a freeboard and a corridor entrance.
The cross partition corridor 2 divides the circular shape of the surrounding city of the peripheral annular corridor 1 into four fan-shaped areas, the photovoltaic panels are respectively installed in the fan-shaped areas, and the cross partition corridor 2 provides the support of the peripheral annular corridor 1 and the support of the air cushion module. The peripheral annular corridor 1 and the criss-cross partition corridor 2 are composed of HDPE pipes and HDPE plates which are relatively rigid and lightweight and can provide relatively large buoyancy support. The planar air cushion is an air cushion film, the skirt strip part is a skirt strip film 7, the skirt strip film 7 is arranged below the water surface and is connected with the second attached pipe 8 so that the skirt strip film can not overflow the water surface, high-pressure air leakage is caused, and the air cushion film is made of an ETFE (ethylene-tetrafluoroethylene copolymer) material which can bear large tensile stress so as to bear a photovoltaic panel and supporting facilities thereof laid on the air cushion module and ensure the service life and the safety of the whole island.
High-pressure air injected by an inflator pump is arranged under the air cushion membrane, so that the weight of the photovoltaic panel acting on the air cushion membrane group is balanced, and the corridor can be used for ways of installing, overhauling, observing equipment and the like. A high-pressure air layer is formed between the air cushion film and the water surface, so that enough pressure is guaranteed to support the photovoltaic panel, meanwhile, the tension applied to the air cushion film is kept in a reasonable range, and safety is guaranteed.

Claims (8)

1. A floating solar high-pressure air cushion power generation island comprises a main body floating on the sea and a photovoltaic panel used for generating power, wherein the photovoltaic panel is arranged on the surface of the main body, and is characterized in that the main body comprises a peripheral annular corridor (1), a cross separation corridor (2), an air cushion module (3), a first attached pipe group (5) and a second attached pipe (8) which are used for supporting the air cushion module, the cross separation corridor (2) is arranged in the peripheral annular corridor (1), the cross point coincides with the center of the peripheral annular corridor (1), the first attached pipe group (5) is positioned on the water surface, the second attached pipe (8) is positioned under the water surface, the air cushion module comprises a horizontally arranged plane air cushion and a vertically arranged skirt belt part, the plane air cushion is connected with the first attached pipe group (5), the top end of the skirt belt part is connected with the first attached pipe group (5) and the plane air cushion, the bottom end of the solar panel is connected with a second attached tube (8), and the photovoltaic panel is arranged on the plane air cushion.
2. The floating solar high-pressure air cushion power island of claim 1, wherein the first group of attached pipes (5) comprises a ring section and a cross section, which are fixed to the peripheral ring corridor (1) and the cross partition corridor (2), respectively.
3. The floating solar high-pressure air cushion power generation island according to claim 2, wherein the peripheral annular corridor (1) comprises a floor panel (11) for traffic, a first baffle (12) arranged inside the floor panel (11) and a second baffle (13) arranged outside the floor panel (11), the first baffle (12) having a higher height than the second baffle (13).
4. A floating solar high-pressure air-cushion power island according to claim 3, characterized in that the ring-shaped part of the first pipe-loop set (5) is located below the floor panel (11).
5. A floating solar high-pressure air-cushion power island according to claim 3, characterized in that the peripheral annular corridor (1) further comprises a freeboard and a corridor entrance.
6. The floating solar high-pressure air cushion power generation island according to claim 1, wherein the crisscross partition corridor (2) divides the circular shape of the surrounding of the peripheral annular corridor (1) into four sector areas, and the photovoltaic panels are respectively installed in the sector areas.
7. The floating solar high-voltage air cushion power generation island of claim 1, wherein the planar air cushion is an air cushion film and the skirt strip portion is a skirt strip film.
8. The floating solar high-pressure air cushion power generation island of claim 6, wherein the air cushion modules of the four sector areas are divided independently.
CN201922311994.XU 2019-12-20 2019-12-20 Floating solar high-pressure air cushion power generation island Active CN211442694U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922311994.XU CN211442694U (en) 2019-12-20 2019-12-20 Floating solar high-pressure air cushion power generation island

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922311994.XU CN211442694U (en) 2019-12-20 2019-12-20 Floating solar high-pressure air cushion power generation island

Publications (1)

Publication Number Publication Date
CN211442694U true CN211442694U (en) 2020-09-08

Family

ID=72297085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922311994.XU Active CN211442694U (en) 2019-12-20 2019-12-20 Floating solar high-pressure air cushion power generation island

Country Status (1)

Country Link
CN (1) CN211442694U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920819A (en) * 2019-12-20 2020-03-27 上海交通大学 Floating solar high-pressure air cushion power generation island

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920819A (en) * 2019-12-20 2020-03-27 上海交通大学 Floating solar high-pressure air cushion power generation island

Similar Documents

Publication Publication Date Title
KR101679538B1 (en) Flexible type floating solar power generating system
CN109263819A (en) Oversea wind, photovoltaic power generation and cage culture integrated system
US20120139255A1 (en) Technology for combined offshore floating wind power generation
KR101682856B1 (en) Flexible type floating solar power generating system
CN204998723U (en) Flexible surface of water floats photovoltaic power plant installing the system
JP3238760U (en) Energy storage system for offshore wind power generation
CN210555481U (en) Floating type offshore photovoltaic power generation platform
CN112701994A (en) Ocean resource three-dimensional development structure based on wind, light and fish complementation
KR101343482B1 (en) Flolting light structure having vertical type solar panel
CN211442694U (en) Floating solar high-pressure air cushion power generation island
CN114802627B (en) Semi-submersible offshore photovoltaic power generation platform and offshore photovoltaic power generation array
WO2017118998A1 (en) Floating solar platform
WO2017118228A1 (en) Aquatic photovoltaic system
CN111075659A (en) Offshore wind turbine floating foundation suitable for deep water area and construction method
CN212556710U (en) Floating type photovoltaic power generation system
CN204937420U (en) Water float bowl buoyancy aid and there is the device of solar generating of this buoyancy aid
CN106080997A (en) Marine floating carrying platform and the method for construction of photovoltaic plant
CN110920819A (en) Floating solar high-pressure air cushion power generation island
CN105763144A (en) Water surface photovoltaic power generation floating support apparatus
KR101852879B1 (en) A maritime photovoltaic power generation equipment
CN214256206U (en) Photovoltaic power generation system follows spot is floated to surface of water
JP2021535711A (en) Installation method of photovoltaic power plant and photovoltaic power plant
CN214799351U (en) Beach solar power generation device
KR101875506B1 (en) Floating Fish Cage Having Solar Power Device
CN218958818U (en) Photovoltaic power generation platform on water

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant